(54.236.58.220) 您好!臺灣時間:2021/03/09 16:37
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:邱創勝
研究生(外文):Chuang-Sheng Chiu
論文名稱:矽穿孔技術製程所需的化學機械研磨液之研究
論文名稱(外文):Preparation of Chemical Mechanical Polishing Slurry for Through Silicon Via
指導教授:謝建德謝建德引用關係
指導教授(外文):Chien-Te Hsieh
口試委員:胡哲嘉黃裕豪
口試委員(外文):Che-Chia HuYu-Hao Huang
口試日期:2017-12-14
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:89
中文關鍵詞:矽穿孔技術靜態蝕刻速率化學機械研磨研磨率
外文關鍵詞:Through-Silicon ViaTSVStatic etch rateSERChemical mechanical polishingCMPRemove rateR.R.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:108
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究在矽穿孔技術所需化學機械,研磨液以氫氧化鉀、研磨顆粒及乙二胺濃度調整提升平坦化效率及品質,並使用了氫氧化鉀和乙二胺之間交互作用下化學蝕刻的特性,進而選擇化學研磨液的濃度劑量,本實驗主要分成三大部份:第一部份針對矽、銅晶圓靜態蝕刻速率加以探討,使用氫氧化鉀及氫氧化銨互相比較取得最佳飽和曲線並選擇最佳添加濃度,第二部分使用不同濃度研磨顆粒劑量及氫氧化鉀添加至研磨液,並且由pH選擇最佳區間以及經由化學機械研磨得知最佳研磨率便於接下來研磨液配方設計,第三部分由現階段實驗得知最佳氫氧化鉀濃度為2%,後續固定氫氧化鉀2%及乙二胺不同濃度進行矽、銅晶圓靜態蝕刻速率找尋最佳濃度區間,並由靜態蝕刻實驗取得最佳添加研磨液配方,透過實驗設計使用化學機械研磨方式呈現對矽、銅晶圓最佳研磨率。

關鍵字:矽穿孔技術、靜態蝕刻速率、化學機械研磨、研磨率。
In the Through-Silicon Via required chemical polishing slurry, this work uses potassium hydroxide, abrasive particles and ethylenediamine concentrations adjusting to planarizating and quality. This study focuses on the use of potassium hydroxide and ethylenediamine interaction beween the chemical etching of the slurry dosage. The experiment is divided into three major parts: the first part discusses and copper wafer static etching rate sues potassium hydroxide and ammonium hydroxide to compare and each other to get the best saturation curre, imputing the best concentration. The second part uses different concentrations of abrasive particles and potassium hydroxide added to the slurry. We select the best pH interval from chemical mechanical polishing, thus finding out the best remove rate to slurry formula design. The third part clarifies the best potassium hydroxide concentration of 2%, fixed potassium hydroxide 2% and different ethylenediamine concentrations range. Accordingly the static etching experiment obtained gets leads to an optimal slurry formula and experimental design using chemical mechanical polishing to silicon and copper wafers polishing get an optimal remove rate.

Keywords: Through-Silicon Via, TSV, Static etch rate, SER, Chemical mechanical polishing, CMP, Remove rate, R.R.
摘要 I
Abstract II
圖目錄 VI
表目錄 X
第一章 緒論 1
1.1 前言 1
1.2 論文架構 4
1.3 研究動機與目的 6
第二章 文獻回顧 9
2.1 CMP製程與應用 9
2.2 研磨液介紹 17
2.3 各種CMP研磨液之開發 19
2.4 磨粒凝集改質 21
2.5 Cu-KOH 波貝圖 23
2.6 淺溝隔離層研磨液用研磨顆粒之開發 25
2.7 銅製程CMP研磨液開發 27
2.8 SiO2奈米矽溶膠基本介紹 33
2.9 低應力拋光CMP研磨液開發 35
2.10 SiO2奈米矽溶膠及物理化學特性 37
2.11 SiO2奈米矽溶膠製作 39
2.12 3D TSV矽穿孔技術介紹 44
第三章 實驗設備及流程 46
3.1 實驗藥品 46
3.2 實驗儀器 47
3.3 研磨液製備實驗流程 48
3.4 化學機械研磨實驗流程 49
3.5 化學機械晶圓研磨機製程設備 50
3.6 晶圓清洗機 54
3.7 原子力顯微鏡 61
第四章 結果與討論 63
4.1 矽晶圓浸泡NH4OH靜態蝕刻 63
4.2 矽晶圓浸泡KOH靜態蝕刻 66
4.3 銅晶圓浸泡KOH靜態蝕刻 68
4.4 KOH、Abrasives不同濃度對矽晶圓化學機械研磨 72
4.5 乙二胺靜態蝕刻速率 81
4.6 矽、銅晶圓研磨速率 83
第五章 結論及未來研究方向 86
5.1結論 86
5.2未來研究方向 89
參考文獻 90
[1].王洪昌 (2009),國立交通大學,晶圓代工技術發展之分析 網址 :
https://ir.nctu.edu.tw/bitstream/11536/39830/1/551101.pdf

[2].經濟部投資業務處,網址 :
http://www.fcu.edu.tw/wSite/publicfile/Attachment/f1264145544976.pdf

[3].薛丁仁、林志鴻,未來領先技術導向-三維矽穿孔技術(3D TSV)網址 : http://www.ndl.org.tw/docs/publication/20_3/pdf/F1.pdf

[4].理財網,矽穿孔TSV封裝,網址 : https://www.moneydj.com/KMDJ/Wiki/wikiViewer.aspx?keyid=7e9d34dd-3293-499d-b3fd-1f92935ccf51

[5].Doering R. and Nishi Y., Handbook of semiconductor manufacturing tech technology, CRC Press, 14, 68-77 (2007).

[6].Li Y., Microelectronic applications of chemical mechanical planarization, Wiley Interscience, New Jersey (2007).

[7].Kang Y.J., Kang B.K., and Park J.G., Effect of slurry pH on poly silicon CMP, International Conference on Planarization/CMP Technology, Dresden (2007).

[8].Amanokura J., Mabuchi K., Sakurada T., Nomura Y., Habiro M., and Akahoshi H., Development of planarity improved abrasive-free copper CMP slurry and practical non-selective barrier CMP slurry based on electrochemical study, International Conference on Planarization/CMP Technology, Dresden (2007).
[9].Kim H. J., Choi J.K., Hong M.K., and Lee K., Contact behavior and chemical mechanical polishing (CMP) performance of hole-type polishing pad, ECS Journal of Solid State Science and Technology, 1(4), 204-209 (2012).

[10].Hooper B.J., Byrne G., and Galligan S., Pad conditioning in chemical mechanical polishing, Journal of Materials Processing Technology, 123(1), 107-113 (2002).

[11].Yang J.C., Kim H., Lee C.G., Lee H.D., and Kim T., Optimization of CMP pad surface by laser induced micro hole, Journal of the Electrochemical Society, 158(1), 15-20 (2011).

[12].Zhou Z.Z., Yuan J.L., Lv B.H., and Zheng J.J., Study on pad conditioning parameters in silicon wafer CMP process, Key Engineering Materials, 359-360, 309-313 (2008).

[13].John M. and Chris D., Polishing pad surface characterization in chemical mechanical planarization, Journal of Materials Processing Technology, 153-154(10), 666-673 (2004).

[14].Yair E.E., Abelev E., Rabkin E., and Starosvetsky D., The compatibility of copper CMP slurries with CMP requirements, The Electrochemical Society, 150(9), 646-652 (2003).


[15].Crooks J.E. and Donnellan J.P., Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution, Journal of the Chemical Society-Perkin Translation, 2, 331-333 (1989).


[16].Li Z., Borucki L., Koshiyama I., and Philipossian A., Effect of slurry flow rate on tribological, thermal, and removal rate attributes of copper CMP, Journal of the Electrochemical Society, 151(7), 482-487 (2004).

[17].Jordan K., Michael S., Patrick C., Patrick L., and Jason J., Role of abrasive type and media surface energy on nanoparticle adsorption, International Conference on Planarization/CMP Technology, France (2012).

[18].Schade V.T., Connor P., Levy P., and Keleher J.J., Abrasive nanoparticle/filtermedia interactions-international conference on planarization technologies, International Conference on Planarization/CMP Technology, Korea (2011).

[19].Little R.J., Versteeg G.F., and Swaaij W.P., Solubility and diffusivity data for the absorption of COS, CO2 and N2O in amine solutions, Journal of Chemical & Engineering Data, 37(1), 49-55 (1992).

[20].Borucki L., A novel slurry injection system for CMP, Advances in Chemical Mechanical Planarization, 397-415 (2016).

[21].Pate K. and Safier P., Chemical metrology methods for CMP quality, Advances in Chemical Mechanical Planarization, 299-325 (2016).

[22].Penta N.K., 9-Abrasive-free and ultra-low abrasive chemical mechanical polishing processes, Advances in Chemical Mechanical Planarization, 213-227 (2016).

[23].Luan X.D., Liu Y.L., Wang C.W., and Liu G.L., Stability of weakly alkaline barrier slurry with the high selectivity, Microelectronic Engineering, 130, 28-34 (2014).

[24].Testa F., Coetsier C., Carretier E., Ennahali M., Laborie E., and Moulin P., Recycling a slurry for reuse in chemical mechanical planarization of tungsten wafer: Effect of chemical adjustments and comparison between static and dynamic experiments, Microelectronic Engineering, 113, 114-122 (2014).

[25].Basim G.B., Adler J.J., Mahajan U., Singh R.K., and Moudgilz B.M., Effect of particle size of chemical mechanical polishing slurries for enhanced polishing with minimal defects, Journal of the Electrochemical Society, 147(9), 3523-3528 (2000).

[26].Paul E., Frank K., Vlasta B., Jian Z., Fred S., and Robert V., A model of copper CMP, Journal of the Electrochemical Society, 152(4), 322-328 (2005).

[27].Paul E., A model of chemical mechanical polishing, Journal of the Electrochemical Society, 355-358 (2001).

[28].Desmond T., Aqueous potential-pH equilibriain copper-benzotriazole systems, Journal of the Electrochemical Society, 145(3), 42-45 (1998).

[29].Serdar A. and Fiona M., The role of glycine in the chemical mechanical planarization of copper, Journal of the Electrochemical Society, 149(6), 352-361 (2002).

[30].Paul E., Kaufman F., Brusic V., and Zhang J., A model of copper CMP, Journal of the Electrochemical Society, 322-328 (2005).

[31].Hariharaputhiran M., Zhang J., Ramarajan S., Keleher J.J., Yuzhuo M., and Babua S.V., Hydroxyl radical formation in H2O2-amino acid mixtures and chemical mechanical polishing of copper, Journal of the Electrochemical Society, 147(10), 3820-3826 (2000).

[32].Carpio R., Farkas J., and Jairath R., Initial study on copper CMP slurry chemistries, Thin Solid Films, 266(2), 238-244 (1995).

[33].Krishnan A., Xie C., Kumar N., Curry J., Duane D., and Murarka S.P., In proceedings of the 9th international VLSI multilevel, Interconnection Conference, USA (1992).

[34].Kaanta C.W., Bombardier S.G., Cote W.J., Hill W.R., Kerszykowski G., Landis H.S., Poindexter D.J., Pollard C.W., Ross G.H., Ryan J.G., Wolff S., and Cronnin J.E., Dual damascene: a ULSI wiring technology, VLSI Multilevel Interconnection Conference, 1991, Proceedings, Eighth International IEEE, 144-152 (1991).



[35].Babu S.V., Li Y., Hariharaputhiran M., Ramarajan S., Zhang J., Her Y.S., and Prendergast J.E., Investigation of Cu and Ta polishing using hydrogen peroxide, glycine and ametallic catalyst, Proceedings of the 15th VLSI multilevel Interconnection Conference, 443-448 (1998).

[36].Fayolle M. and Romagna F., Copper CMP evaluation: planarization issues, Microelectronic Engineering, 37-38, 135-141 (1997).

[37].Ng D., Huang P.Y., Jeng Y.R., and Liang H., Nanoparticle removal mechanisms during post-CMP cleaning, Electrochemical and Solid-State, 10(8), 227-231 (2007).

[38].Choi S., Doyle F.M., and Dornfeld D., A model of material removal and post process surface topography for copper CMP, Procedia Engineering, 19, 73-80 (2011).

[39]. Ikeda H.and Akagami Y., Highly efficient polishing technology for glass substrates using tribo-chemical polishing with electrically controlled slurry, Journal of Manufacturing Processes, 15(1), 102-107 (2013).

[40].Hoffmann M.R., Martin S.T., Choi W., and Bahnemann D.W., Environmental applications of semiconductor photocatalysis, Chemical Reviews, 95(1), 69-96 (1995).



[41].Busnaina A.A., Lin H., Moumen N., Feng J.W., and Taylor J., Particle adhesion and removal mechanisms in post-CMP cleaning process, IEEE Transactions on Semiconductor Manufacturing, 15(4), 374-382 (2002).

[42].Du T., Tamboli D., Desai V.,Seal S.,Mechanism of Copper Removal during CMP in Acidic H2O2 Slurry, Journal of the Electrochemical Society, 230-235 (2004).

[43].Wu C.W., Liu Y.L., Tian J.Y., Gao B.H., and Niu X.H., A study on the comparison of CMP performance between a novel alkaline slurry and a commercial slurry for barrier removal, Microelectronic Engineering, 98, 29-33 (2012).

[44].Bhat T.R. and Krishnamurthy M., Spectrophotometric studies on protonated, ammino and hydroxo complexes of copper (II), nickel (II) and cobalt (II) versenates, Journal of Inorganic and Nuclear Chemistry, 25(9), 1147-1154 (1963).

[45].Gorantla V.R.K., Goia D., Matijevic E., and Babu S.V., Roleof amine and carboxyl functional groups of complexing agents in slurries for chemical mechanical polishing of copper, Journal of the Electrochemical Society. 152(12), 912-916 (2005).

[46].Hsu L.C., Lin Y.M., Wu C.L., Lee W.K., Liu Y.C., Chiu C.P., Hsu H.K, Wang C.Y., Huang C.C., and Lin C.F., Effects of copper CMP and post clean process on VRDB and TDDB at 28 nm and advanced technology node, Reliability Physics Symposium (IRPS), 2015 IEEE International, 31-34 (2015).

[47].Kim H.J., Bohra G., Yang H., Ahn S.G., Qin L., and Koli D., Study of the cross contamination effect on post CMP in situ cleaningprocess, Microelectronic Engineering, 136, 36-41 (2015).

[48].Huey S., Chandrasekaran B., Bennett D., Tsai D., Xu K., Qian J., Dhandapani S., David J., Swedek B., and Karuppiah L, CMP process control for advanced CMOS device integration, ECS Transactions, 44(1), 543-552 (2012).

[49].Sun M.B., Gao B.H., Wang C.W., Miao T.G., Duan B., and Tan B.M., Non-ionic surfactant on particles removal in post-CMP cleaning, Journal of Semiconductors, 36(2), 156-160 (2015).

[50].Venkatesh R.P., Kwon T.Y., Prasad Y.N., Ramanathan S., and Park J.G., Characterization of TMAH based cleaning solution for post Cu-CMP application, Microelectronic Engineering, 102, 74-80 (2013).

[51].Li S.H., Liu J., Tran C., Tan E.H., Li Q., and Yan R., Cu corrosion during post-CMP clean-cause and prevention, ECS Transactions, 44(1), 573-577 (2012).

[52].Gu X., Nemoto T., Teramoto A., Hasebe R., Ito T., and Ohmi T., Damage-Free post-CMP cleaning solution for low-k fluorocarbonon advanced interconnects, Solid State Phenomena, 145-146, 381-384 (2009).

[53].Krishnan M., Nalaskowski J.W., and Cook L.M., Chemical mechanical planarization: slurry chemistry, materials, and mechanisms, Chemical Reviews, 110(1), 178-204 (2010).

[54].Yair E.E. and David S., Review on copper chemicalmechanical polishing (CMP) and post-CMP cleaning in ultra large system integrated-An electrochemical perspective, Electrochimica Acta, 52(5), 1825-1838 (2007).

[55].Sun T., Zhuang Y., Li W., and Philipossian A., Investigation of eccentric PVA brush behaviors in post-Cu CMP cleaning, Microelectronic Engineering, 100, 20-24 (2012).

[56].Qi Z., Lu W., and Lee W., A novel design of brush scrubbing in post-CMP cleaning, International Journal of Machine Tools and Manufacture, 85, 30-35 (2014).

[57].Busnaina A.A., Lin H., Moumen N., Feng J.W., and Taylor J., Particle adhesion and removal mechanisms in post-CMPcleaning processes, IEEE Transactions on Semiconductor Manufacturing, 15(4), 374-382 (2002).

[58].Miao Y.X., Wang S.L., Wang C.W., Liu Y.L., Sun M.B., and Chen Y., Effect of chelating agent on benzotriazole removal during post copperchemical mechanical polishing cleaning, Microelectronic Engineering, 130, 18-23 (2014).

[59].Gelman D., Starosvetsky D., and Yair E.E., Copper corrosion mitigation by binary inhibitor compositions of potassium sorbate and benzotriazole, Corrosion Science, 82, 271-279 (2014).
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔