|
[1].王洪昌 (2009),國立交通大學,晶圓代工技術發展之分析 網址 : https://ir.nctu.edu.tw/bitstream/11536/39830/1/551101.pdf
[2].經濟部投資業務處,網址 : http://www.fcu.edu.tw/wSite/publicfile/Attachment/f1264145544976.pdf
[3].薛丁仁、林志鴻,未來領先技術導向-三維矽穿孔技術(3D TSV)網址 : http://www.ndl.org.tw/docs/publication/20_3/pdf/F1.pdf
[4].理財網,矽穿孔TSV封裝,網址 : https://www.moneydj.com/KMDJ/Wiki/wikiViewer.aspx?keyid=7e9d34dd-3293-499d-b3fd-1f92935ccf51
[5].Doering R. and Nishi Y., Handbook of semiconductor manufacturing tech technology, CRC Press, 14, 68-77 (2007).
[6].Li Y., Microelectronic applications of chemical mechanical planarization, Wiley Interscience, New Jersey (2007).
[7].Kang Y.J., Kang B.K., and Park J.G., Effect of slurry pH on poly silicon CMP, International Conference on Planarization/CMP Technology, Dresden (2007).
[8].Amanokura J., Mabuchi K., Sakurada T., Nomura Y., Habiro M., and Akahoshi H., Development of planarity improved abrasive-free copper CMP slurry and practical non-selective barrier CMP slurry based on electrochemical study, International Conference on Planarization/CMP Technology, Dresden (2007). [9].Kim H. J., Choi J.K., Hong M.K., and Lee K., Contact behavior and chemical mechanical polishing (CMP) performance of hole-type polishing pad, ECS Journal of Solid State Science and Technology, 1(4), 204-209 (2012).
[10].Hooper B.J., Byrne G., and Galligan S., Pad conditioning in chemical mechanical polishing, Journal of Materials Processing Technology, 123(1), 107-113 (2002).
[11].Yang J.C., Kim H., Lee C.G., Lee H.D., and Kim T., Optimization of CMP pad surface by laser induced micro hole, Journal of the Electrochemical Society, 158(1), 15-20 (2011).
[12].Zhou Z.Z., Yuan J.L., Lv B.H., and Zheng J.J., Study on pad conditioning parameters in silicon wafer CMP process, Key Engineering Materials, 359-360, 309-313 (2008).
[13].John M. and Chris D., Polishing pad surface characterization in chemical mechanical planarization, Journal of Materials Processing Technology, 153-154(10), 666-673 (2004).
[14].Yair E.E., Abelev E., Rabkin E., and Starosvetsky D., The compatibility of copper CMP slurries with CMP requirements, The Electrochemical Society, 150(9), 646-652 (2003).
[15].Crooks J.E. and Donnellan J.P., Kinetics and mechanism of the reaction between carbon dioxide and amines in aqueous solution, Journal of the Chemical Society-Perkin Translation, 2, 331-333 (1989).
[16].Li Z., Borucki L., Koshiyama I., and Philipossian A., Effect of slurry flow rate on tribological, thermal, and removal rate attributes of copper CMP, Journal of the Electrochemical Society, 151(7), 482-487 (2004).
[17].Jordan K., Michael S., Patrick C., Patrick L., and Jason J., Role of abrasive type and media surface energy on nanoparticle adsorption, International Conference on Planarization/CMP Technology, France (2012).
[18].Schade V.T., Connor P., Levy P., and Keleher J.J., Abrasive nanoparticle/filtermedia interactions-international conference on planarization technologies, International Conference on Planarization/CMP Technology, Korea (2011).
[19].Little R.J., Versteeg G.F., and Swaaij W.P., Solubility and diffusivity data for the absorption of COS, CO2 and N2O in amine solutions, Journal of Chemical & Engineering Data, 37(1), 49-55 (1992).
[20].Borucki L., A novel slurry injection system for CMP, Advances in Chemical Mechanical Planarization, 397-415 (2016).
[21].Pate K. and Safier P., Chemical metrology methods for CMP quality, Advances in Chemical Mechanical Planarization, 299-325 (2016).
[22].Penta N.K., 9-Abrasive-free and ultra-low abrasive chemical mechanical polishing processes, Advances in Chemical Mechanical Planarization, 213-227 (2016).
[23].Luan X.D., Liu Y.L., Wang C.W., and Liu G.L., Stability of weakly alkaline barrier slurry with the high selectivity, Microelectronic Engineering, 130, 28-34 (2014).
[24].Testa F., Coetsier C., Carretier E., Ennahali M., Laborie E., and Moulin P., Recycling a slurry for reuse in chemical mechanical planarization of tungsten wafer: Effect of chemical adjustments and comparison between static and dynamic experiments, Microelectronic Engineering, 113, 114-122 (2014).
[25].Basim G.B., Adler J.J., Mahajan U., Singh R.K., and Moudgilz B.M., Effect of particle size of chemical mechanical polishing slurries for enhanced polishing with minimal defects, Journal of the Electrochemical Society, 147(9), 3523-3528 (2000).
[26].Paul E., Frank K., Vlasta B., Jian Z., Fred S., and Robert V., A model of copper CMP, Journal of the Electrochemical Society, 152(4), 322-328 (2005).
[27].Paul E., A model of chemical mechanical polishing, Journal of the Electrochemical Society, 355-358 (2001).
[28].Desmond T., Aqueous potential-pH equilibriain copper-benzotriazole systems, Journal of the Electrochemical Society, 145(3), 42-45 (1998).
[29].Serdar A. and Fiona M., The role of glycine in the chemical mechanical planarization of copper, Journal of the Electrochemical Society, 149(6), 352-361 (2002).
[30].Paul E., Kaufman F., Brusic V., and Zhang J., A model of copper CMP, Journal of the Electrochemical Society, 322-328 (2005).
[31].Hariharaputhiran M., Zhang J., Ramarajan S., Keleher J.J., Yuzhuo M., and Babua S.V., Hydroxyl radical formation in H2O2-amino acid mixtures and chemical mechanical polishing of copper, Journal of the Electrochemical Society, 147(10), 3820-3826 (2000).
[32].Carpio R., Farkas J., and Jairath R., Initial study on copper CMP slurry chemistries, Thin Solid Films, 266(2), 238-244 (1995).
[33].Krishnan A., Xie C., Kumar N., Curry J., Duane D., and Murarka S.P., In proceedings of the 9th international VLSI multilevel, Interconnection Conference, USA (1992).
[34].Kaanta C.W., Bombardier S.G., Cote W.J., Hill W.R., Kerszykowski G., Landis H.S., Poindexter D.J., Pollard C.W., Ross G.H., Ryan J.G., Wolff S., and Cronnin J.E., Dual damascene: a ULSI wiring technology, VLSI Multilevel Interconnection Conference, 1991, Proceedings, Eighth International IEEE, 144-152 (1991).
[35].Babu S.V., Li Y., Hariharaputhiran M., Ramarajan S., Zhang J., Her Y.S., and Prendergast J.E., Investigation of Cu and Ta polishing using hydrogen peroxide, glycine and ametallic catalyst, Proceedings of the 15th VLSI multilevel Interconnection Conference, 443-448 (1998).
[36].Fayolle M. and Romagna F., Copper CMP evaluation: planarization issues, Microelectronic Engineering, 37-38, 135-141 (1997).
[37].Ng D., Huang P.Y., Jeng Y.R., and Liang H., Nanoparticle removal mechanisms during post-CMP cleaning, Electrochemical and Solid-State, 10(8), 227-231 (2007).
[38].Choi S., Doyle F.M., and Dornfeld D., A model of material removal and post process surface topography for copper CMP, Procedia Engineering, 19, 73-80 (2011).
[39]. Ikeda H.and Akagami Y., Highly efficient polishing technology for glass substrates using tribo-chemical polishing with electrically controlled slurry, Journal of Manufacturing Processes, 15(1), 102-107 (2013).
[40].Hoffmann M.R., Martin S.T., Choi W., and Bahnemann D.W., Environmental applications of semiconductor photocatalysis, Chemical Reviews, 95(1), 69-96 (1995).
[41].Busnaina A.A., Lin H., Moumen N., Feng J.W., and Taylor J., Particle adhesion and removal mechanisms in post-CMP cleaning process, IEEE Transactions on Semiconductor Manufacturing, 15(4), 374-382 (2002).
[42].Du T., Tamboli D., Desai V.,Seal S.,Mechanism of Copper Removal during CMP in Acidic H2O2 Slurry, Journal of the Electrochemical Society, 230-235 (2004).
[43].Wu C.W., Liu Y.L., Tian J.Y., Gao B.H., and Niu X.H., A study on the comparison of CMP performance between a novel alkaline slurry and a commercial slurry for barrier removal, Microelectronic Engineering, 98, 29-33 (2012).
[44].Bhat T.R. and Krishnamurthy M., Spectrophotometric studies on protonated, ammino and hydroxo complexes of copper (II), nickel (II) and cobalt (II) versenates, Journal of Inorganic and Nuclear Chemistry, 25(9), 1147-1154 (1963).
[45].Gorantla V.R.K., Goia D., Matijevic E., and Babu S.V., Roleof amine and carboxyl functional groups of complexing agents in slurries for chemical mechanical polishing of copper, Journal of the Electrochemical Society. 152(12), 912-916 (2005).
[46].Hsu L.C., Lin Y.M., Wu C.L., Lee W.K., Liu Y.C., Chiu C.P., Hsu H.K, Wang C.Y., Huang C.C., and Lin C.F., Effects of copper CMP and post clean process on VRDB and TDDB at 28 nm and advanced technology node, Reliability Physics Symposium (IRPS), 2015 IEEE International, 31-34 (2015).
[47].Kim H.J., Bohra G., Yang H., Ahn S.G., Qin L., and Koli D., Study of the cross contamination effect on post CMP in situ cleaningprocess, Microelectronic Engineering, 136, 36-41 (2015).
[48].Huey S., Chandrasekaran B., Bennett D., Tsai D., Xu K., Qian J., Dhandapani S., David J., Swedek B., and Karuppiah L, CMP process control for advanced CMOS device integration, ECS Transactions, 44(1), 543-552 (2012).
[49].Sun M.B., Gao B.H., Wang C.W., Miao T.G., Duan B., and Tan B.M., Non-ionic surfactant on particles removal in post-CMP cleaning, Journal of Semiconductors, 36(2), 156-160 (2015).
[50].Venkatesh R.P., Kwon T.Y., Prasad Y.N., Ramanathan S., and Park J.G., Characterization of TMAH based cleaning solution for post Cu-CMP application, Microelectronic Engineering, 102, 74-80 (2013).
[51].Li S.H., Liu J., Tran C., Tan E.H., Li Q., and Yan R., Cu corrosion during post-CMP clean-cause and prevention, ECS Transactions, 44(1), 573-577 (2012).
[52].Gu X., Nemoto T., Teramoto A., Hasebe R., Ito T., and Ohmi T., Damage-Free post-CMP cleaning solution for low-k fluorocarbonon advanced interconnects, Solid State Phenomena, 145-146, 381-384 (2009).
[53].Krishnan M., Nalaskowski J.W., and Cook L.M., Chemical mechanical planarization: slurry chemistry, materials, and mechanisms, Chemical Reviews, 110(1), 178-204 (2010).
[54].Yair E.E. and David S., Review on copper chemicalmechanical polishing (CMP) and post-CMP cleaning in ultra large system integrated-An electrochemical perspective, Electrochimica Acta, 52(5), 1825-1838 (2007).
[55].Sun T., Zhuang Y., Li W., and Philipossian A., Investigation of eccentric PVA brush behaviors in post-Cu CMP cleaning, Microelectronic Engineering, 100, 20-24 (2012).
[56].Qi Z., Lu W., and Lee W., A novel design of brush scrubbing in post-CMP cleaning, International Journal of Machine Tools and Manufacture, 85, 30-35 (2014).
[57].Busnaina A.A., Lin H., Moumen N., Feng J.W., and Taylor J., Particle adhesion and removal mechanisms in post-CMPcleaning processes, IEEE Transactions on Semiconductor Manufacturing, 15(4), 374-382 (2002).
[58].Miao Y.X., Wang S.L., Wang C.W., Liu Y.L., Sun M.B., and Chen Y., Effect of chelating agent on benzotriazole removal during post copperchemical mechanical polishing cleaning, Microelectronic Engineering, 130, 18-23 (2014).
[59].Gelman D., Starosvetsky D., and Yair E.E., Copper corrosion mitigation by binary inhibitor compositions of potassium sorbate and benzotriazole, Corrosion Science, 82, 271-279 (2014).
|