跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/23 07:46
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蔡榮庭
研究生(外文):JUNG-TING TASI
論文名稱:以TiO2做為觸媒載體用於高溫質子交換膜燃料電池之研究
論文名稱(外文):Evaluation of TiO2 as support in Pt-TiO2 catalyst for High Temperature Proton Exchange Membrane Fuel Cells
指導教授:林秀麗林秀麗引用關係
指導教授(外文):Hsiu-Li Lin
口試委員:余子隆鄭欽獻
口試委員(外文):Tz-Lung YuChin-Shian Jeng
口試日期:2018-06-29
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:61
中文關鍵詞:高溫質子交換膜燃料電池二氧化鈦觸媒載體耐久性
外文關鍵詞:High temperature proton exchange membrane fuel cellTiO2support of catalystdurability
相關次數:
  • 被引用被引用:0
  • 點閱點閱:210
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究製備不同重量比之觸媒Pt-TiO2 (Pt含量25、35、43 wt. %, Pt/TiO2)。以此觸媒、碳紙(SGL 35BC)與PBI-epoxy膜材製備膜電極組 (MEA, membrane electrode assemblies),並與對照組Pt-C (Pt-碳粒載體) 做比較。質子交換膜以遠紅外光譜儀與熱重分析儀進行檢測;膜電極組以穿透式電子顯微鏡 (TEM)、X光繞射儀分析 (XRD)、X射線光電子能譜儀 (XPS)與循環伏安法 (CV),以此評估MEA耐久性與觸媒最佳重量比例。
在160 ℃進行40 h燃料電池測試,無背壓,濕度0 % RH,燃料 H2/air。數據顯示,Pt-TiO2-35 wt. %有最高的初始電流密度,經過40小時連續運作中,Pt-TiO2-35 wt. %有較優的耐腐蝕表現。而Pt-TiO2衰退的幅度皆小於Pt-C,以此鑑定載體TiO2耐腐蝕優於載體C。
Pt-TiO2 nanocomposite catalysts in different Pt:TiO2 weight ratios (Pt weight ration were 25, 35, 43%) were synthesized in this study. Carbon paper (SGL 35BC) and PBI-epoxy membrane were used in Membrane electrode assemblies (MEAs) preparation. Electrodes in MEAs were prepared with various catalysts. Characterization of the membrane and catalysts were performed with FTIR, TGA, CV, TEM, XRD and XPS. MEAs were evaluated with unit cell test.
It was found that the unit cell performance of Pt-TiO2-35 wt. % had the highest initial current density at 160 ℃, 0 %RH, with H2/air. The performance decay of Pt-TiO2-35 wt. % were less than that of commercial Pt-C catalyst after 40 hours operation, so the corrosion resistance of TiO2 is better than that of Carbon. Finally, TiO2 support had excellent corrosion resistance at high-temperature proton exchange membrane fuel cell.
摘 要 I
目錄 III
第一章 序論 1
1-1前言 1
1-2質子交換膜燃料電池簡介 4
1-3高溫及低溫質子交換膜燃料電池比較 5
1-3-1低溫質子交換膜燃料電池 5
1-3-2高溫型質子交換膜燃料電池 5
1-4質子交換膜燃料電池之膜電極組 (Membrane electrode assemblies, MEAs) 7
1-5 質子交換膜介紹 9
1-5-1 聚苯並咪唑(Polybenzimidazole,PBI)簡介 9
1-6 PBI合成 11
1-7 PBI-Epoxy 交聯 13
1-8觸媒層介紹 14
1-8-1 觸媒載體介紹 14
1-8-2 TiO2 載體之相關文獻回顧 17
1-9 研究目的 24
第二章實驗 25
2-1 實驗架構 25
2-2 藥品 26
2-3 儀器設備 27
2-4 實驗步驟 28
2-4-1 PBI 合成 28
2-4-2 PBI-Epoxy (PBI-ex) 摻合膜材製備 29
2-4-3 Pt/TiO2 觸媒製備 29
2-4-4電極製備 29
2-4-5 膜電極組 (MEA)製備 30
2-5 PBI霍式紅外線光譜儀(FTIR)化學結構鑑定 30
2-6 PBI-ex膜材TGA熱穩定性分析 30
2-7 Pt-TiO2 觸媒 TEM檢測 30
2-8 Pt-TiO2 觸媒 XRD 檢測 30
2-9 Pt-TiO2 觸媒 XPS 檢測 31
2-10 電極循環伏安法(Cyclic voltammetry, CV)測試 31
2-10-1循環伏安法測試原理與其應用(三極法測試) 31
2-10-2 循環伏安法於燃料電池觸媒電極活性評估 32
2-10-3 電極Pt觸媒活性面積計算 34
2-10-4 循環伏安法測試步驟 35
2.11 質子交換膜燃料電池(PEMFC)單電池測試 36
2.11.1單電池組裝 36
2.11.2單電池性能測試步驟 36
第三章 結果與討論 38
3.1 PBI 質子交換膜分析鑑定 38
3.1.1霍式紅外光譜(FTIR)結構分析鑑定 38
3.1.2 PBI-Epoxy膜材熱重分析 40
3.2 Pt-TiO2 觸媒分析鑑定 41
3.2.1 Pt-TiO2 觸媒 TEM檢測 41
3.2.2 Pt-TiO2 觸媒 XRD檢測 43
3.2.3 Pt-TiO2 觸媒 XPS檢測 46
3.3觸媒電極檢測 50
3.3.1 CV 循環伏安法測試 50
3.4 單電池檢測 54
第四章 結論 57
第五章 參考文獻 58
[1] 衣寶廉,黃朝榮,燃料電池-原理與應用,五南圖書(2005)
[2] V.A. Sethuraman, A.Z. Weber, J.W. Weidner, FUEL CELLS – PROTON-EXCHANGE MEMBRANE FUEL CELLS, Cells (2009) 817-827
[3] J.A. Asensio, S. Borros, P.G. Romero, Proton-conducting membranes based on poly(2,5-benzimidazole) (ABPBI) and phosphoric acid prepared by direct acid casting , Journal of Membrane Science 241 (2004) 89-93
[4] J. Lobato, P. Cañizares, M.A. Rodrigo, J.J. Linares, J.A. Aguilar, Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC, Journal of Membrane Science 306 (2007) 47-55
[5] C. Wannek, W. Lehnert, J. Mergel, Membrane electrode assemblies for high-temperature polymer electrolyte fuel cells based on poly(2,5-benzimidazole) membranes with phosphoric acid impregnation via the catalyst layers, Journal of Power Sources 192 (2009) 258-266
[6] Y.F. Zhai, H.M. Zhang, Y. Zhang, D.M. Xing, A novel H3PO4/Nafion-PBI composite membrane for enhanced durability of high temperature PEM fuel cells, Journal of Power Sources 169 (2007) 259–264
[7] D.F. Cheddie, N.D.H. Munroe, Three dimensional modeling of high temperature PEM fuel cells, Journal of Power Sources 160 (2006) 215-223
[8] J. Chen, H. Liu, Y. Huang, Z. Yin, High-rate roll-to-roll stack and lamination of multilayer structured membrane electrode assembly, Journal of Manufacturing Processes 23 (2016) 175-182.
[9] M.Y. Jang, Y. Yamazaki, Preparation and characterization of composite membranes composed of zirconium tricarboxybutylphosphonate and polybenzimidazole for intermediate temperature operation, Journal of Power Sources 139 (2005) 2–8
[10] K.C. Brinker, I.M. Robinson, Polybenzimidazoles, US Pat. 2895948 (1959)
[11] H.A. Vogel, C.S. Marvel, Polybenzimidazoles II, Journal of Polymer Science 1 (1963) 1531-1541
[12] Y. Iwakura, K. Uno, Y. Imai, Polybenylenebenzimidazoles, Journal of Polymer Science 2 (1964) 2605-2615
[13] H.A. Vogel, C.S. Marvel, Polybenzimidazoles, new thermally stable polymers, Journal of Polymer Science 50 (1961) 511-539
[14] Y. Iwakura, K. Uno, Y. Imai, Polybenylenebenzimidazoles, Journal of Polymer Science 2 (1964) 2605-2615
[15] Y. Iwakura, K. Uno, Y. Imai, Polybenzimidazoles. II. Polyalkylenebenzimidazoles, Macromolecular Chemistry 77 (1964) 33-40
[16] M. Kawahara, M. Rikukawa, K. Sanui, N. Ogata, Synthesis and proton conductivity of sulfopropylated poly(benzimidazole) films, Solid State Ionics 136 (2000) 1193-1196
[17] R. He, Q. Li, G. Xiao, N.J. Bjerrum, Proton conductivity of phosphoric acid doped polybenzimidazole and its composites with inorganic proton conductors, Journal of Membrane Science 226 (2003) 169-184
[18] J. Lobato, P. Canizares, M.A. Rodrigo, Improved polybenzimidazole films for H3PO4-doped PBI-based high temperature PEMFC, Journal of Membrane Science 306 (2007) 47-55
[19] L. Xiao, H. Zhang, E. Scanlon, L.S. Ramanathan, E.W. Cho, D. Rogers, T. Apple, B.C. Benicewicz, High-Temperature Polybenzimidazole Fuel Cell Membranes via a Sol-Gel Process, Chem. Mater 17 (2005) 5328-5333
[20] H.L. Lin, Y.C. Chou, T.L. Yu, S.W. Lai, Poly(benzimidazole)-epoxide crosslink membranes for high temperature proton exchange membrane fuel cells, International Journal of Hydrogen Energy, 37 (2012) 383-392
[21] X. Yu, S. Ye, Recent advances in activity and durability enhancement of Pt/C catalytic cathode in PEMFC. Part II: Degradation mechanism and durability enhancement of carbon supported platinum catalyst, Journal of Power Sources 172 (2007) 145-154
[22] S. Sharma, B.G. Pollet, Support materials for PEMFC and DMFC electrocatalysts—A review, Journal of Power Sources 208 (2012) 96–119
[23] S.Y. Huang, P. Ganesan, S. Park, B.N. Popov, Development of a Titanium Dioxide-Supported Platinum Catalyst with Ultrahigh Stability for Polymer Electrolyte Membrane Fuel Cell Applications, Journal of the American Chemical Society 131 (2009) 13898-13899
[24] X. Liu, J. Chen, G. Liu, L. Zhang, H. Zhang, B. Yi, Enhanced long-term durability of proton exchange membrane fuel cell cathode by employing Pt/TiO2/C catalysts, Journal of Power Sources 195 (2010) 4098–4103
[25] S. von Kraemer, K. Wikander, G. Lindbergh, A. Lundblad, A.E.C. Palmqvist, Evaluation of TiO2 as catalyst support in Pt-TiO2/C composite cathodes for the proton exchange membrane fuel cell, Journal of Power Sources 180 (2008) 185–190
[26] P. Dhanasekaran , S. Vinod Selvaganesh1, L. Sarathi1, Santoshkumar D. Bhat1, Rutile TiO2 Supported Pt as Stable Electrocatalyst for Improved Oxygen Reduction Reaction and Durability in Polymer Electrolyte Fuel Cells, Electrocatalysis 7 (2016) 495–506
[27] J.A. Asensio, S. Borrós, G.R. Pedro, Proton-conducting polymers based on benzimidazoles and sulfonated benzimidezoles, Journal of Polymer Science: Part A: Polymer Chemistry 40 (2002) 3703-3710
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top