|
1. Rikukawa M., Sanui K., “Proton-conducting polymer electrolyte membranes based on hydrocarbon polymers”, Prog. Polym. Sci., 25, 1463-1502, 2000 2. 黃朝榮,“燃料電池”,五南出版社,台北,2009 3. Wainright J. S., Wang J. T., Savinell R. F., Litt M. H., “Acid-doped polybenzimidazoles: A new polymer electrolyte”, J. Electrochem. Soc., 142, 121-123, 1995. 4. Sorensen B., Hydrogen and fuel cells- Emerging technologies and applications, Elsevier Academic Press, 2005, Chapter 2. 5. Wang J. T., Savinell R. F., Wainright J., Litt M. H., Yu H., “A H2/O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte”, Electrochim. Acta., 41, 193-197, 1996. 6. S. Kim, T. D. Myles, H. R. Kunz, D. Kwak, Y. Wang, R. Maric, The effect of binder content on the performance of a high temperature polymer electrolyte membrane fuel cell produced with reactive spray deposition technology, Electrochimica Acta., 177, 190-200, 2015 7. Wainright J. S., Wang J. T., Savinell R. F., Litt M. H., “Acid-doped polybenzimidazoles: A new polymer electrolyte”, J. Electrochem. Soc., 142, 121-123, 1995. 8. Wainright J. S., Wang J. T., Savinel R. F., “A direct methanol fuel cell using acid-doped polybenzimidazole as polymer electrolyte”, J. Electrochem., 26, 751-756, 1996. 9. Wang J. T., Savinell R. F., Wainright J., Litt M. H., Yu H., “A H2/O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte”, Electrochim. Acta., 41, 193-197, 1996.
10. Wang J. T., Savinell R. F., Wainright J., M. Litt, H. Yu, “H2/O2 fuel cell using acid doped polybenzimidazole as polymer electrolyte” Electrochim. Acta., 41, 193-197, 1996. 11. Lin H. L., Chou Y. C., S. W. Lai,, Yu T. L., “Poly(benzimidazole)-epoxide crosslink membranes for high temperature proton exchange membrane fuel cells” J. of Hydrogen Energy, 37, 382-392, 2012. 12. Jung D. H., Cho S. Y., Peck D. H., Shin D. R., Kim J. S., “Performance evaluation jf a Nafion/silicon oxide hybrid membranes for DMFCs”. J. Power sources, 106, 173-177, 2002. 13. Rodges M. P., Shi Z., Hold Crolt S., “Transport properties of composite membranes containing silicone oxide and Nafion”. J. Membr. Sci., 325, 346-356, 2008. 14. Xu W., Lu T., Liu C., Xing w., “Low methanol permeable composite Nafion /silica/PWA membranes for low temperature DMFCs”. Electrochem. Acta., 50, 3280-3285, 2005. 15. Tay S. W., Zhang X., Liu Z., Hong L., Chan S. H., “Composite Nafion membrane embedded with hybrid nanofillers for promoting DMFC performance”. J. Membr. Sci., 321, 139-145, 2007. 16. Kumar G. G., Kim A. R., Nahm K. S., Elizabeth R., “Nafion membranes modified with silica-sulfuric acid for the elevated temperature and lower humidity operation of PEMFC”. Int. J. Hydrogen Energy, 34, 9788-9794, 2009. 17. He. R., Li. Q., Xian G., Bjermm N. J., “Proton conductivity of H3PO4 doped PBI and its composite with inorganic proton conductors”. J. Membr. Sci., 226, 169-184, 2003. 18. Staiti P., “Proton conductive membranes based on silicontungstic acid/silica and PBI”. Mater. Leff., 47, 241-246, 2001. 19. Labato J., Canzares P., Rodrigo M. A., Vbeda D., Pinar F. J., “A novel titanium PBI-based composite membrane for high temp PEMFCs”. J. Membr. Sci., 369, 105-111, 2011. 20. Yu T. L., “ Overview of Electrochemical polymer electrolyte membranes”. Ed.by Fang J., Qiao J., Wilkinson D. P., Zhang J., CRC press, 2015, Chap.1. 21. Ossiander T., Henzl C., Gleich S., Schonberger F., Volk P., Welch M., Scheu C., “Influence of the size and shape of silica nanoparticles on the properties and degradation of a PBI-based high temperater PEM”. J. Membr. Sci, 454, 12-19, 2014. 22. Lin H. L., Tang T. H., Hu C. R., Yu T. L., “Poly/Silica-ehtyl- phosphoric acid hybrid membranes for PEMFCs” J. Power. Sources, 201, 72-80, 2012. 23. Jiang S. P., “Functionalized mesoporous structured inorganic materials as high temperature proton exchange membranes for fuel cells”. J. Mater. Chem. A, 2, 7637–7655, 2014. 24. Aili D., Zhang J., Jakobsen M., Zhu H., Yang T., Liu J., Forsyth M., Pan C., Jensen J. O., Cleemann L. N., Jiang S. P., “Exceptional durability enhancement of PA/PBI based polymer electrolyte membrane fuel cells for high temperature operation at 2000C ”. J. Mater. Chem. A, 4, 4019–4024, 2016. 25. Zeng J., He B., Lamb K., De Marco R., Shen P. K., Jiang S. P., “Phosphoric acid functionalized pre-sintered meso-silica for high temperature proton exchange membrane fuel cells”. Chem. Commun., 49, 4655-4657, 2013. 26. Zeng J., Shen P. K., Lu S., Xiang Y., Li L., De Marco R., Jiang S. P., “Correlation between proton conductivity thermal stability and structural symmetries in novel HPW-meso-silica nano composite membranes and their performance in DMFCs”. J. Membr. Sci., 397- 398, 92-101, 2012. 27. Lu J., Tang H., Lu S., Wu H., Jiang S. P., “ A novel inorganic PEM based on self-assembled HPW-meso-silica for DMFCs”. J. Mater. Che., 21, 6668-6676, 2011. 28. Shabanikia A., Javanbakht M., Amoli H. S., Hooshyari K., Enhessari M., “Polybenzimidazole/strontium cerate nanocomposites with enhanced proton conductivity for proton exchange membrane fuelcells operating at high temperature” Electrochimica Acta., 154, 370-378, 2015 29. Suryani., Chang Y. N., Lai J. Y., Liu Y. L., “Polybenzimidazole (PBI)- functionalized silica nanoparticles modified PBI nanocomposite membranes for proton exchange membranes fuel cells” J. Membr. Sci., 403-404, 1-7, 2012 30. Linlin M., Mishra A. K., Kim N. H., Lee J. H., “Poly(2,5- benzimidazole)/silica nanocomposite membranes for high temperature proton exchange membrane fuel cell” J. Membr. Sci., 411-412, 91-98, 2012. 31. Li. Q., Jenson. J. O, Savinell. R. F., Bjerrum. N. J., “High temperature proton exchange membranes based on polybenzimidazoles for fuel cells”, Polym. Sci., 34, 449-477, 2009. 32. Devrim Y., Devrim H., Eroglu I., “Polybenzimidazole/SiO2 hybrid membranes for high temperature proton exchange membrane fuel cells ” , J. of Hydrogen Energy, 41, 1-9, 2016 33. 蔡宜祐,乙基磷酸接枝聚矽氧化物高溫質子交換膜燃料電池, 碩士論文,元智大學化學工程與材料科學學系(2017) 34. Okamoto M., Fujigaya T., Nakashima N., “Individual dissolution of single-walled carbon nanotubes by using polybenzimidazole, and highly effective reinforcement of their composite films”, Adv. Funct. Mater., 18, 1776-1782, 2008. 35. Qu L., Dai L., “Substrate-enhanced electroless deposition of metal nanoparticles on carbon nanotubes”, J. Am. Chem. Soc., 127, 10806-10807, 2005. 36. Ostrander J. W., Mamedov A. A., Kotov N. A., “Two modes of linear Layer-by-Layer growth of nanoparticle-polylectrolyte multilayers and different interactions in the Layer-by-layer deposition”, J. Am. Chem. Soc., 123, 1101-1110, 2001. 37. Zhou J., Zhou X., Sun X., Li R., Murphy M., Ding Z., Sham T. K., “Interaction between Pt nanoparticles and carbon nanotubes-An X- ray absorption near edge structures (XANES) study”, Chem. Phys. Lett., 437, 229-232, 2007. 38. Wunderlich W., “Growth model for plasma-CVD growth of carbon nano-tubes on Ni sheets”, Diamond Relat. Mater., 16, 369-378, 2007. 39. Baughman R. H., Zakhidov A. A., de Heer W. A., “Carbon nanotubes-the route toward applications”, Science, 297, 787-793, 2002. 40. Hu C. P., Keller N., Roddatis V. V., Mestl G., Schlögl R., Ledoux M. J., “Large scale synthesis of carbon nanofibers by catalytic decomposition of ethane on nickel nanoclusters decorating carbon nanotubes”, Phys. Chem. Phys., 4, 514-521, 2005.
41. Kaewai D., Lin H. L., Yu T. L., “Influence of PyPBI film thickness of CNT supported Pt on fuel cell applications, Fiel cells”, 15, 361-374, 2015 42. Kaewai D., Lin H. L., Liu Y. C., Yu T. L., Pt on PyPBI wraped CNT supports for high temperature PEMFCs, Int. J. Hydrogen Energy, 41, 10430, 2016 43. Okamoto M., Fujigaya T., Nakashima N., “Design of an assembly of poly (benzimidazole), carbon nanotubes, and Pt nanoparticles for a fuel-cell electrocatalyst with an ideal interfacial nanostructure”, 5, 735-740, 2009. 44. Fujigaya T., Nakashima N., “Fuel cell electrocatalyst using polybenzimidazole-modified Carbon nanotubes As Support Materials”, Adv. Mater., 25, 1666-1681, 2013. 45. 劉宇宸,應用於高溫質子交換膜燃料電池之 Pt/PyPBI-CNT 觸 媒製備,碩士論文,元智大學化學工程與材料科學學系(2015) 46. Asensio J. A., Borros S., Pedro G. R., “Proton-conducting polymers based on benzimidazoles and sulfonated benzimidezoles’’, J of Polym. Sci. : Part A: Polym. Che., 40, 3703-3710, 2002.
|