跳到主要內容

臺灣博碩士論文加值系統

(34.204.198.73) 您好!臺灣時間:2024/07/21 14:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:傅冠綺
研究生(外文):Kuan-Chi Fu
論文名稱:高溫型質子電子混合導體之製備及其性質研究
論文名稱(外文):Preparation and Characterization of High Temperature Mixed Proton-electron Conductors
指導教授:洪逸明
指導教授(外文):I-Ming Hung
口試委員:李勝偉張仍奎
口試委員(外文):Sheng-Wei LeeJeng-Kuei Chang
口試日期:2018-07-20
學位類別:碩士
校院名稱:元智大學
系所名稱:化學工程與材料科學學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:87
中文關鍵詞:氫傳輸膜陶瓷複合材料混合導體氫通量
外文關鍵詞:Hydrogen permeationDual phase compositeMixed conductivityCeramic membranes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:178
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
氫質子傳輸薄膜 (Hydrogen Transport Membrane, HTM)可用於燃料電池的前端,利用其所生產氫氣或高純度氫氣,供給氫能源之燃料電池產生電能。此HTM為一陶瓷材料,需具有高氫通量以符合分離純化氫氣之需求,其關鍵為尋找一個合適的質子與電子導體複合材料。本研究分別利用檸檬酸-EDTA複合法製備Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ (SCZY)與Y0.08Sr0.92TiO3-δ (YST)粉末,與固相反應法製備Y1.0Ba1.0Co2O5+δ (YBCO),以不同重量比例混合SCZY/YBCO及SCZY/ YST製備出質子電子混合導體之陶瓷複合材。探討燒結溫度及氣氛對陶瓷複合材結構、導電率及氫通量之影響。
從XRD圖譜中可觀察到,SCZY/YBCO陶瓷複合材隨著燒結溫度上升,機械強度也隨燒結溫度提高而增加,但有Ce0.503Y0.497O1.751、SrCoO2.29第二相產生。由SEM圖片觀察與阿基米德法計算,經1250 ℃燒結後,顯示結構緻密,其孔隙率值約為0.5 %。於空氣中之導電率量測得知,隨量測溫度上升至900 ℃的過程中導電率呈現先升後下降趨勢,於800 ℃工作溫度下,其導電率為13.44 S/cm。氫通量量測結果顯示, 經1250 ℃燒結之SCZY/YBCO試樣,其氫通量可達3.83 ml/min cm2。從氫質子傳輸薄膜的SEM圖像可以看出,膜的厚度約為50 μm,且緻密層與支撐層之間具有良好的連接性。
從XRD圖譜中可觀察到,SCZY/YST陶瓷複合材在空氣中隨著燒結溫度上升相無明顯變化,但於氫氣氣氛下燒結,有Sr4Ti3O10、Ce4O7、Zr0.52Ti0.5O2、Ce2O3以及Ce7O12雜相產生。由SEM圖片觀察與阿基米德法計算,在4%氫氣氣氛下經1350 ℃燒結後,顯示結構緻密,其孔隙率值約為4.87 %。於空氣中之導電率量測得知,隨量測溫度上升至800 ℃的過程中導電率隨著溫度上升而提高,於800 ℃工作溫度下,其導電率為2.44 × 10-2 S/cm。
In this study, hydrogen permeation through dense different weight percent of Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y1.0Ba1.0Co2O5+δ and Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y0.08Sr0.92TiO3-δ composite ceramics membranes in which Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ (SCZY) used as a proton conductor; Y1.0Ba1.0Co2O5+δ(YBCO) and Y0.08Sr0.92TiO3-δ (YST) used as an electron conductor. SCZY and YST are prepared by citrate-EDTA complexing method and YBCO is prepared by solid state reaction method. To investigate the basic properties and electrochemical properties of SCZY/YBCO and SCZY/YST, X-ray diffraction (XRD), Field Emission Scanning Electron Microscope (FE-SEM) and Thermal Mechanical Analyzer (TMA) are conducted.
The XRD pattern shows the SCZY/YBCO sintered at 1250℃ has second phases of Ce0.503Y0.497O1.751 and SrCoO2.29. The relative sintering density of SCZY/YBCO sintered at 1250 ℃ is as high as 99.5 %. The conductivity of the sintered SCZY/YBCO disk measured at different temperatures in air by 4-probe DC method. The conductivity of SCZY/YBCO in air increased as the sintered temperature increased. The conductivity of SCZY/YBCO is 13.44 S/cm at 800 ℃ in air. In hydrogen flux testing, the flux of SCZY/YBCO is 3.83 ml/min·cm2 at 800 ℃. From the SEM images of the HTM derives, the thickness of the membrane is about 50 μm and it shows well adhesion between dense layer and support layer.
The XRD pattern shows the SCZY/YST sintered at 1350 ℃, 1400 ℃ and 1450 ℃ in air were remained stable, but sintered at 1350 ℃ in 4 % H2/Ar has second phases of Sr4Ti3O10, Ce4O7, Zr0.52Ti0.5O2, Ce2O3 and Ce7O12. The relative sintering density of SCZY/YST sintered at 1350℃ in 4% H2/Ar is as high as 95 %. The conductivity of the sintered SCZY/YST disk measured at different temperatures in 12.5 % H2/Ar by 2-probe DC method. The conductivity of all SCZY/YST samples increased as the sintered temperature increased. The conductivity of SCZY/YST sintered at 1350℃ in 4% H2/Ar is 2.14 × 10-2 S/cm at 800 ℃ in 12.5 % H2/Ar.
總目錄
摘要…………. I
Abstract…. II
致謝………. IV
總目錄…… V
圖目錄…… VII
表目錄…… XI
第一章、緒論 1
第二章、文獻回顧 5
2.1純化氫氣薄膜簡介 5
2.2高溫型氫質子傳輸薄膜(Hydrogen Transport Membrane, HTM) 7
2.2.1燃煤淨化技術 9
2.2.2質子傳輸薄膜(HTM)原理 14
2.2.3先進質子傳輸薄膜發展 20
2.3高溫型質子導體材料 23
2.3.1鈣鈦礦結構(Perovskite) 24
2.3.2雙鈣鈦礦結構(Double Perovskite) 27
2.3.3質子導體 29
第三章、研究動機與目的 31
第四章、實驗方法與步驟 32
4.1實驗藥品 32
4.2粉末及試片製備 33
4.2.1粉體製備 33
4.2.2試片製作 38
4.2.3氫通量試片製作 39
4.3材料性質分析 40
4.3.1X光繞射分析(X-ray diffraction, XRD) 40
4.3.2場發掃描式電子顯微鏡(FE-SEM) 40
4.3.3孔隙率量測 40
4.3.4熱機械分析(TMA) 41
4.3.5導電率量測 41
4.3.6氫通量測試 42
第五章、結果與討論 43
5.1 XRD結構分析 43
5.2 微結構分析 49
5.3 熱膨脹分析 61
5.4 導電率分析 67
5.5 氫通量測試 75
5.6 YBCO穩定性測試 80
第六章、結論 82
參考文獻 84


圖目錄
Figure 2.1 The flow chart of hydrogen production from gas steam reforming reaction or partial oxidation of fossil fuels[6]. 8
Figure 2.2 IGCC (Integrated Gasification Combined Cycle). 11
Figure 2.3 IGFC-CC(Integrated Gasification Fuel Cell Combined Cycle). 13
Figure 2.4 The working principle of HTM. 15
Figure 2.5 The working principle of (a)Internal-assisted and (b) External short circuit-assisted HTM. 22
Figure 2.6 Perovskite(ABO3) structure. 26
Figure 2.7 Double Perovskite(AA’BO6) structure[13]. 28
Figure 2.8 Proton conductivities of various oxides. Ceramics with Perovskite structure are shown by bold lines[15, 16]. 30
Figure 4.1 The experiment procedure of Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ powders synthesis by the citric acid-EDTA complexing method. 35
Figure 4.2 The experiment procedure of Y1.0Ba1.0Co2O5+δ powders synthesis by the Solid state reaction. 36
Figure 4.3 The experiment procedure of Y0.08Sr0.92TiO3-δ powders synthesis by the citric acid-EDTA complexing method. 37
Figure 5.1 XRD patterns of the (a) SCZY sintered at 1450 ℃, (b) YBCO sintered at 1000 ℃, SCZY/YBCO sintered at (c) 1100 ℃, (d) 1150 ℃, (e) 1200 ℃ and (f) 1250 ℃ for 6 h. 44
Figure 5.2 XRD patterns of the (a) SCZY sintered at 1450 ℃, (b) YST sintered at 1200 ℃, SCZY/YST sintered at (c) 1350 ℃ (4% H2), (d) 1350 ℃, (e) 1400 ℃ and (f) 1450 ℃ for 5 h. 47
Figure 5.3 The SEM micrographs of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y1.0Ba1.0Co2O5+δ ceramic disk sintered at 1100 ℃ for 6 h, (a) low magnification and (b) high magnification. 51
Figure 5.4 The SEM micrographs of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y1.0Ba1.0Co2O5+δ ceramic disk sintered at 1150 ℃ for 6 h, (a) low magnification and (b) high magnification. 52
Figure 5.5 The SEM micrographs of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y1.0Ba1.0Co2O5+δ ceramic disk sintered at 1200 ℃ for 6 h, (a) low magnification and (b) high magnification. 53
Figure 5.6 The SEM micrographs of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y1.0Ba1.0Co2O5+δ ceramic disk sintered at 1250 ℃ for 6 h, (a) low magnification and (b) high magnification. 54
Figure 5.7 The SEM micrographs of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/ Y0.08Sr0.92TiO3-δ ceramic disk sintered at 1350 ℃ for 5 h in 4 % H2, (a) low magnification and (b) high magnification. 57
Figure 5.8 The SEM micrographs of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/ Y0.08Sr0.92TiO3-δ ceramic disk sintered at 1350 ℃ for 5 h in air, (a) low magnification and (b) high magnification. 58
Figure 5.9 The SEM micrographs of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/ Y0.08Sr0.92TiO3-δ ceramic disk sintered at 1400 ℃ for 5 h in air, (a) low magnification and (b) high magnification. 59
Figure 5.10 The SEM micrographs of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/ Y0.08Sr0.92TiO3-δ ceramic disk sintered at 1450 ℃ for 5 h in air, (a) low magnification and (b) high magnification. 60
Figure 5.11 Thermal expansion curve of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y1.0Ba1.0Co2O5+δ samples sintered at different temperatures. 62
Figure 5.12 Thermal expansion curve of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/ Y0.08Sr0.92TiO3-δ samples sintered at different temperatures and atmosphere. 65
Figure 5.13 Conductivity of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y1.0Ba1.0Co2O5+δ samples sintered at different temperatures for 6 h. 68
Figure 5.14 Arrhenius plots of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y1.0Ba1.0Co2O5+δ samples sintered at different temperatures for 6 h. 69
Figure 5.15 Conductivity of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y0.08Sr0.92TiO3-δ samples sintered at different temperatures for 5 h. 72
Figure 5.16 Arrhenius plots of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y0.08Sr0.92TiO3-δ samples sintered at different temperatures for 5 h. 73
Figure 5.17 The hydrogen permeation of Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ sintered at 1450 ℃ and Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y1.0Ba1.0Co2O5+δ sintered at 1250 ℃ measurement at several different temperatures. 76
Figure 5.18 The cross section of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y1.0Ba1.0Co2O5+δ hydrogen transport membrane before hydrogen flux test, (a) low magnification and (b) high magnification. 77
Figure 5.19 The cross section of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y1.0Ba1.0Co2O5+δ hydrogen transport membrane after hydrogen flux test, (a) low magnification and (b) high magnification. 78
Figure 5.20 XRD patterns of the (a)YBCO sintered at 1250 ℃, YBCO bulks after reduction reaction at (b)250 ℃, (c)400 ℃ and (d)850 ℃ in 4 % H2/Ar atmosphere for 3 h. 81


表目錄
Table 1.1 Operating conditions in fuel cells[1]. 3
Table 2.3 Hydrogen desorption energy for different metal materials. 18
Table 2.4 Activation energies for bulk diffusion of hydrogen. 19
Table 4.1 Experimental drugs and supplies. 32
Table 5.1 Lattice parameter and unit cell volume of Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y1.0Ba1.0Co2O5+δ sintered at different temperatures. 45
Table 5.2 Lattice parameter and unit cell volume of Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y0.08Sr0.92TiO3-δ sintered at different temperatures and atmosphere. 48
Table 5.3 Relative density of Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y1.0Ba1.0Co2O5+δ sintered at various temperatures. 50
Table 5.4 Relative density of Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/ Y0.08Sr0.92TiO3-δ sintered at various temperatures. 56
Table 5.5 Coefficient of thermal expansion (CTE) of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y1.0Ba1.0Co2O5+δ samples sintered at different temperatures. 63
Table 5.6 Coefficient of thermal expansion (CTE) of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y0.08Sr0.92TiO3-δ samples sintered at different temperatures. 66
Table 5.7 Activation energy of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y1.0Ba1.0Co2O5+δ samples sintered at different temperatures for 6 h. 70
Table 5.8 Activation energy of the Sr(Ce0.6Zr0.4)0.9Y0.1O3-δ/Y0.08Sr0.92TiO3-δ samples sintered at different temperatures for 5 h. 74
Table 5.9 Hydrogen permeation rates through ceramic-ceramic composite hydrogen separation membranes. 79
[1] C. Zuo, T.H. Lee, S.E. Dorris, U. Balachandran, M. Liu, "Composite Ni–Ba(Zr0.1Ce0.7Y0.2)O3 membrane for hydrogen separation", Journal of Power Sources, vol. 159, pp. 1291-1295, 2006.
[2] S.M. Haile, "Fuel cell materials and components", Acta Materialia, vol. 51, pp. 5981-6000, 2003.
[3] L. Yan, W. Sun, L. Bi, S. Fang, Z. Tao, W. Liu, "Influence of fabrication process of Ni–BaCe0.7Zr0.1Y0.2O3−δ cermet on the hydrogen permeation performance", Journal of Alloys and Compounds, vol. 508, pp. L5-L8, 2010.
[4] Z. Zhu, W. Sun, L. Yan, W. Liu, W. Liu, "Synthesis and hydrogen permeation of Ni–Ba(Zr0.1Ce0.7Y0.2)O3−δ metal–ceramic asymmetric membranes", International Journal of Hydrogen Energy, vol. 36, pp. 6337-6342, 2011.
[5] S.K. Ryi, J.S. Park, K.R. Hwang, C.B. Lee, S.W. Lee, "Module configuration in CO2 capture using Pd-based composite membranes", International Journal of Hydrogen Energy, vol. 36, pp. 13769-13775, 2011.
[6] J.W. Phair, S.P.S. Badwal, "Review of proton conductors for hydrogen separation", Ionics, vol. 12, pp. 103-115, 2006.
[7] N. Ito, M. Iijima, K. Kimura, S. Iguchi, "New intermediate temperature fuel cell with ultra-thin proton conductor electrolyte", Journal of Power Sources, vol. 152, pp. 200-203, 2005.
[8] J. Burley, J. Mitchell, S. Short, D. Miller, Y. Tang, "Structural and Magnetic Chemistry of NdBaCo2O5+δ", Journal of Solid State Chemistry, vol. 170, pp. 339-350, 2003.
[9] C. Martin, A. Maignan, D. Pelloquin, N. Nguyen, B. Raveau, "Magnetoresistance in the oxygen deficient LnBaCo2O5.4 (Ln=Eu, Gd) phases", Applied Physics Letters, vol. 71, pp. 1421, 1997.
[10] I. Troyanchuk, N. Kasper, D. Khalyavin, H. Szymczak, R. Szymczak, M. Baran, "Phase Transitions in the Gd0.5Ba0.5CoO3 Perovskite", Physical Review Letters, vol. 80, pp. 3380, 1998.
[11] E. Suard, F. Fauth, V. Caignaert, I. Mirebeau, G. Baldinozzi, "Charge ordering in the layered Co-based perovskite HoBaCo2O5", Physical Review B, vol. 61, pp. 11871, 2000.
[12] S. Kwon, J. Park, B. Min, "Charge and orbital ordering and spin-state transition driven by structural distortion in YBaCo2O5", Physical Review B, vol. 62, pp. 14637-14970, 2000.
[13] Q. Zhou, F. Wang, Y. Shen, T. He, "Performances of LnBaCo2O5+x–Ce0.8Sm0.2O1.9 composite cathodes for intermediate-temperature solid oxide fuel cells", Journal of Power Sources, vol. 195, pp. 2174-2181, 2010.
[14] T. Hibino, A. Hashimoto, M. Suzuki, M. Sano, "A Solid Oxide Fuel Cell Using Y-Doped BaCeO3 with Pd-Loaded FeO Anode and Ba0.5Pr0.5CoO3 Cathode at Low Temperatures", Journal of The Electrochemical Society, vol. 149, pp. A1503, 2002.
[15] Y. Kawamura, T. Arita, K. Isobe, W. Shu, T. Yamanishi, "Enhancement of pumping performance of electrochemical hydrogen pump by modified electrode", Fusion Engineering and Design, vol. 83, pp. 625-633, 2008.
[16] H. Matsumoto, T. Suzuki, H. Iwahara, "Automatic regulation of hydrogen partial pressure using a proton conducting ceramic based on SrCeO3", Solid State Ionics, vol. 116, pp. 99-104, 1999.
[17] S. Yamanaka, M. Katsura, "Desorption behavior of hydrogen and water from Yb-doped SrCeO3", Journal of Membrane Science, vol. 275, pp. 730-732, 1998.
[18] C. Zhang, S. Li, X. Liu, X. Zhao, D. He, H. Qiu, Q. Yu, S. Wang, L. Jiang, "Low temperature synthesis of Yb doped SrCeO3 powders by gel combustion process", International Journal of Hydrogen Energy, vol. 38, pp. 12921-12926, 2013.
[19] D. Medvedev, A. Murashkina, E. Pikalova, A. Demin, A. Podias, P. Tsiakaras, "BaCeO3: Materials development, properties and application", Progress in Materials Science, vol. 60, pp. 72-129, 2014.
[20] X. Meng, J. Song, N. Yang, B. Meng, X. Tan, Z.-F. Ma, K. Li, "Ni–BaCe0.95Tb0.05O3−δ cermet membranes for hydrogen permeation", Journal of Membrane Science, vol. 401-402, pp. 300-305, 2012.
[21] K.D. Kreuer, "Proton-Conductuing Oxides", Annual Review of Materials Research, vol. 33, pp. 333, 2003.
[22] T. Norby, Y. Larring, "Concentration and transport of protons in oxides", Current Opinion in Solid State and Materials Science, vol. 2, pp. 593-599, 1997.
[23] H. Iwahara, T. Esaka, H. Uchida, N.Maeda, "Proton conduction in sintered oxides and its application to steam electrolysis for hydrogen production", Solid State Ionics, vol. 3–4, pp. 359–363, 1981.
[24] N. Fukatsu, N. Kurita, K. Koide, "Hydrogen sensor for molten metals usable up to 1500 K", Solid State Ionics, vol. 113–115, pp. 219–227, 1998.
[25] S. Cheng, V. Gupta, J. Lin, "Synthesis and hydrogen permeation properties of asymmetric proton-conducting ceramic membranes", Solid State Ionics, vol. 176, pp. 2653-2662, 2005.
[26] H. Iwahara, T. Esaka, H. Uchida, T. Yamauchi, K. Ogaki, "High temperature type protonic conductor based on SrCeO3 and its application to the extraction of hydrogen gas", Solid State Ionics, vol. pp. 1003-1007, 1986.
[27] M. Matsuka, R.D. Braddock, I.E. Agranovski, "Numerical study of hydrogen permeation flux in ytterbium doped strontium cerate and thulium doped strontium cerate (II)", Mathematics and Computers in Simulation, vol. 79, pp. 2713-2723, 2009.
[28] P. Sawant, S. Varma, B.N. Wani, S.R. Bharadwaj, "Synthesis, stability and conductivity of BaCe0.8−xZrxY0.2O3−δ as electrolyte for proton conducting SOFC", International Journal of Hydrogen Energy, vol. 37, pp. 3848-3856, 2012.
[29] N. Sata, H. Matsuta, Y. Akiyama, "Fabrication of proton conductingthin films of SrZrO3 and SrCeO3 and their fundamental characterization", Solid State Ionics, vol. 97, pp. 437-441, 1997.
[30] L. Gómez, V. Galeano, A. Gómez, C. Paucar, O. Morán, "Thermoelectric response of oxygen nonstoichiometric YBaCo2O5+δ cobaltites synthesized via non-ion selective EDTA-citrate-metal complexing", Ceramics International, vol. 42, pp. 13368-13377, 2016.
[31] E. Rebollo, C. Mortalò, S. Escolástico, S. Boldrini, S. Barison, J.M. Serra, M. Fabrizio, "Exceptional hydrogen permeation of all-ceramic composite robust membranes based on BaCe0.65Zr0.20Y0.15O3−δ and Y- or Gd-doped ceria", Energy & Environmental Science, vol. 8, pp. 3675-3686, 2015.
[32] W.A. Rosensteel, S. Ricote, N.P. Sullivan, "Hydrogen permeation through dense BaCe0.8Y0.2O3−δ-Ce0.8Y0.2O2−δ composite-ceramic hydrogen separation membranes", International Journal of Hydrogen Energy, vol. 41, pp. 2598-2606, 2016.
[33] S. Escolástico, C. Solís, C. Kjølseth, J.M. Serra, "Outstanding hydrogen permeation through CO2-stable dual-phase ceramic membranes", Energy Environ. Sci., vol. 7, pp. 3736-3746, 2014.
[34] J.S. Fish, S. Ricote, R. O'Hayre, N. Bonanos, "Electrical properties and flux performance of composite ceramic hydrogen separation membranes", Journal of Materials Chemistry A, vol. 3, pp. 5392-5401, 2015.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top