(54.236.58.220) 您好!臺灣時間:2021/03/09 16:47
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:莊峻翔
研究生(外文):Chun-Hsiang Chuang
論文名稱:運用文件探勘分析虛擬實境的技術發展機會
論文名稱(外文):Exploring technological opportunities by text mining: Application on virtual reality
指導教授:曾芳美曾芳美引用關係
指導教授(外文):Fang-Mei Tseng
口試委員:吳佳虹王明妤
口試委員(外文):Chia-Hung WuMing-Yeu Wang
口試日期:2017-06-01
學位類別:碩士
校院名稱:元智大學
系所名稱:經營管理碩士班(國際企業學程)
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:51
中文關鍵詞:虛擬實境技術機會科技前瞻文件探勘科學與技術之比較專利科學領域
外文關鍵詞:Virtual RealityTechnology opportunitiesText MiningCompare with Science and TechnologyPatentScience field
相關次數:
  • 被引用被引用:0
  • 點閱點閱:84
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:1
近幾年虛擬實境的議題發展快速,不少科技大廠與新創公司紛紛進駐市場,在科技蓬勃發展的情況下,虛擬實境的發展仍遇到一些瓶頸,如: 價格太高、硬體功能不足、應用軟體缺乏、無完整平台、相關硬體缺乏的問題。因此本研究之目的為探討上述問題關鍵技術的瓶頸以探索未來的技術發展機會。
由於虛擬實境的領域範圍廣泛,為了不使研究範圍跨越過多學科與技術,因此本研究藉由虛擬實境產業相關資料分析並運用質性(Quality)方法限縮領域。運用技術機會分析加入文件探勘的方法將虛擬實境的子領域「顯示互動層」以學術論文與專利比較尋求虛擬實境的技術發展機會。學術論文與專利蒐集到的有效文獻分別為1444篇與640篇。
研究結果發現硬體的發展仍是現階段的主要發展方向,而硬體設備的發展主要與顯示互動領域相關,根據虛擬實境顯示互動技術的發展,發現有三項重要的技術發展機會,分別為「觸覺與力回饋技術」、「動作捕捉技術」與「語音與手勢輸入技術」。本研究探討三項技術發展機會後,認為虛擬實境未來的技術發展將以「觸覺與力回饋」作為未來的主要發展機會。
In the recent years, the issue of virtual reality has developed quickly. Many of big technological firms continuously entry the market. In this situation, the market still meets some problems including the higher price, incomplete function of hardware, scarcity of applicative software, none of complete interface and lack of related hardware. Therefore, the target of this research is exploring key technologies of previous problems and finds out the directions for future development.
Due to the field of virtual reality is too big, research limits the field by relevant data of virtual reality and quality method. Using technology opportunity analysis to join the text mining analyze the sub-domain of virtual reality "display and interaction field", then exploring the technology development by comparing with science and patent. The effective thesis are 1444 and 640 by science thesis and patents.
The result of research shows hardware development is the main direction of development. According to virtual reality’s technological development field, finding three important opportunities: (a) tactile and force feedback technology, (b) motion capture technology, and (c) the voice and gesture technology. After discussion three development opportunities, the research consider the main development opportunity will be tactile and feedback in the recently future.
目錄
書名頁..................................................i
論文口試委員審定書......................................ii
授權書...............................................iii
中文摘要...............................................iv
英文摘要................................................v
誌謝.................................................vi
目錄..................................................vii
表目錄..................................................ix
圖目錄...................................................x
第一章 緒論 1
第一節 研究背景與動機 1
第二節 研究目的 3
第三節 論文結構與研究流程 4
第二章 文獻探討 5
第一節 技術機會分析 5
第二節 文件探勘 9
第三章 虛擬實境產業概述 12
第一節 虛擬實境定義 12
第二節 市場面 13
第三節 技術面 18
第四章 研究方法 23
第一節 研究流程 23
第二節 確認目標領域 25
第三節 資料收集 26
第四節 文件探勘 27
第五節 技術機會的確認 29
第五章 研究結果 30
第一節 資料收集結果 30
第二節 文件探勘結果 33
第三節 科學與技術領域之比較 40
第四節 討論 42
第六章 結論與建議 44
第一節 研究結論 44
第二節 理論與實務貢獻 45
第三節 研究限制 46
第四節 後續研究之建議 46
中文文獻
林忠亮 & 王明妤 (2013),基於科學與技術缺口發掘技術機會: 以生質丁醇為例. 科技管理學刊, 18(4), 29-59。
曹雨(2016)。虛擬實境狂潮:從購物、教育到醫療,VR/AR商機即將顛覆未來的 十大產業!,初版。臺北市:商周出版:家庭傳媒城邦分公司發行
徐育群(2017)。2017美國CES展會觀察-VR產品。資訊工業策進會。
才華有限實驗室(2016)。VR來了!第一本虛擬實境專書:VR發展史、當紅產品 介紹、未來應用解析,第一版。臺北市:寫樂文化。
拓墣產業研究院(2016)。VR廠商的發展策略與未來布局。拓墣產業研究院。2017 年5月23日。取自 http://www.topology.com.tw/DataContent/scan/
數位時代(2016) 。VR 市場有什麼機會?Google 總部產品經理揭示 VR 生態系 及發展策略。數位時代。2017年5月15日。取自 https://www.bnext.com.tw/ext_rss/view/id/1386773
林志勇等(2006)編著。認識虛擬實境,初版。臺北市:全華。
王寒等(2016)編著。虚拟现实:引领未来的人机交互革命,第1版。北京:機械 工業出版社。
新清士、林佑純 & 劉亭言(2017)譯。VR大衝擊:虛擬實境即將攻占社交、影音、 遊戲、電商……你如何贏在先機?。臺北市;[新北市樹林區]:商業周刊出 版:高見文化總經銷。
艾瑞咨询(2016)。2015年中国VR/AR市场研究报告。2017年3月5日。取自 http://www.imxdata.com/archives/950
科技政策與資訊中心-科技產業資訊室(iKnow)整理(2016)。六大VR廠商聯盟加速 虛擬實境應用市場。2017年5月23日,取自 http://iknow.stpi.narl.org.tw/Post/Read.aspx?PostID=13025

英文文獻
Chi, H., Kalaimannan, E., & Hubbard, D. (2016). Integrate Text Mining into Computer and Information Security Education.
Daim, T. U., Shibata, N., Kajikawa, Y., & Sakata, I. (2011). Detecting potential technological fronts by comparing scientific papers and patents. Foresight, 13(5), 51-60.
de Miranda Santo, M., Coelho, G. M., dos Santos, D. M., & Fellows Filho, L. (2006). Text mining as a valuable tool in foresight exercises: A study on nanotechnology. Technological Forecasting and Social Change, 73(8), 1013-1027.
Deerwester, S., Dumais, S. T., Furnas, G. W., Landauer, T. K., & Harshman, R. (1990). Indexing by latent semantic analysis. Journal of the American society for information science, 41(6), 391.
Emura, S., & Tachi, S. (1994). Compensation of time lag between actual and virtual spaces by multi-sensor integration. Paper presented at the Multisensor Fusion and Integration for Intelligent Systems, 1994. IEEE International Conference on MFI'94.
Feldman, R., & Dagan, I. (1995). Knowledge Discovery in Textual Databases (KDT). Paper presented at the KDD.
Feldman, R., & Sanger, J. (2007). The text mining handbook: advanced approaches in analyzing unstructured data: Cambridge university press.
Foley, J. D., & Van Dam, A. (1982). Fundamentals of interactive computer graphics (Vol. 2): Addison-Wesley Reading, MA.
Foster, I., & Kesselman, C. (2003). What is the Grid. A three point checklist, 20.
Guo, J., Wang, X., Li, Q., & Zhu, D. (2016). Subject–action–object-based morphology analysis for determining the direction of technological change. Technological Forecasting and Social Change, 105, 27-40.
Hofmann, T. (1999). Probabilistic latent semantic indexing. Paper presented at the Proceedings of the 22nd annual international ACM SIGIR conference on Research and development in information retrieval.
Huang, Y., Zhang, Y., Ma, J., Porter, A. L., Wang, X., & Guo, Y. (2016). Generating Competitive Technical Intelligence Using Topical Analysis, Patent Citation Analysis, and Term Clumping Analysis Anticipating Future Innovation Pathways Through Large Data Analysis (pp. 153-172): Springer.
Kim, C., Choe, S., Choi, C., & Park, Y. (2008). A systematic approach to new mobile service creation. Expert Systems with Applications, 35(3), 762-771.
Lee, C., Kang, B., & Shin, J. (2015). Novelty-focused patent mapping for technology opportunity analysis. Technological Forecasting and Social Change, 90, 355-365.
Lee, C., Park, H., & Park, Y. (2013). Keeping abreast of technology-driven business model evolution: A dynamic patent analysis approach. Technology Analysis & Strategic Management, 25(5), 487-505.
Lee, H. P., Hong, D.-P., Han, E., Kim, S. H., & Yun, I. (2016). Analysis of the characteristics of expressway traffic information propagation using Twitter. KSCE Journal of Civil Engineering, 20(7), 2587-2597.
Lee, S., Yoon, B., & Park, Y. (2009). An approach to discovering new technology opportunities: Keyword-based patent map approach. Technovation, 29(6), 481-497.
Liang, H., Wang, J.-J., Xue, Y., & Cui, X. (2016). IT outsourcing research from 1992 to 2013: A literature review based on main path analysis. Information & Management, 53(2), 227-251.
Lowe, M., King, A., Lovett, E., & Papakostas, T. (2004). Flexible tactile sensor technology: bringing haptics to life. Sensor review, 24(1), 33-36.
Luck, M., & Aylett, R. (2000). Applying artificial intelligence to virtual reality: Intelligent virtual environments. Applied Artificial Intelligence, 14(1), 3-32.
Ma, T., Porter, A. L., Guo, Y., Ready, J., Xu, C., & Gao, L. (2013). A technology opportunities analysis model: applied to dye-sensitised solar cells for China. Technology Analysis & Strategic Management, 26(1), 87-104. doi:10.1080/09537325.2013.850155
Magerman, T., Van Looy, B., & Song, X. (2009). Exploring the feasibility and accuracy of Latent Semantic Analysis based text mining techniques to detect similarity between patent documents and scientific publications. Scientometrics, 82(2), 289-306. doi:10.1007/s11192-009-0046-6
Mohler, J. L. (2001). Using interactive multimedia technologies to improve student understanding of spatially-dependent engineering concepts. Paper presented at the Proceeding of the International Conference on Computer Geometry and Graphics (Graphicon 2001).
Moro, S., Cortez, P., & Rita, P. (2015). Business intelligence in banking: A literature analysis from 2002 to 2013 using text mining and latent Dirichlet allocation. Expert Systems with Applications, 42(3), 1314-1324.
Nakamura, H., Sasaki, H., Shibata, N., Kajikawa, Y., Sakata, I., & Suzuki, S. (2010). Science and technology map analysis of a multi-disciplinary field-case study of aerospace engineering. Paper presented at the Industrial Engineering and Engineering Management (IEEM), 2010 IEEE International Conference on.
Narin, F., Hamilton, K. S., & Olivastro, D. (1997). The increasing linkage between US technology and public science. Research policy, 26(3), 317-330.
Ogawa, T., & Kajikawa, Y. (2015). Assessing the industrial opportunity of academic research with patent relatedness: A case study on polymer electrolyte fuel cells. Technological Forecasting and Social Change, 90, 469-475.
Papadimitriou, C. H., Tamaki, H., Raghavan, P., & Vempala, S. (1998). Latent semantic indexing: A probabilistic analysis. Paper presented at the Proceedings of the seventeenth ACM SIGACT-SIGMOD-SIGART symposium on Principles of database systems.
Porter, A. L. (2009). Tech mining for future-oriented technology analyses. Futures Research Methodology.
Porter, A. L., & Detampel, M. J. (1995). Technology opportunities analysis. Technological Forecasting and Social Change, 49(3), 237-255.
Porter, A. L., Jin, X.-Y., Gilmour, J. E., & Cunningham, S. (1994). Technology opportunities analysis: Integrating technology mo. SRA journal, 26(2), 21.
Quimbaya, A. P., Múnera, A. S., Rivera, R. A. G., Rodríguez, J. C. D., Velandia, O. M. M., Peña, A. A. G., & Labbé, C. (2016). Named Entity Recognition Over Electronic Health Records Through a Combined Dictionary-based Approach. Procedia Computer Science, 100, 55-61.
Salton, G. (1989). Automatic text processing: The transformation, analysis, and retrieval of. Reading: Addison-Wesley.
Salton, G., & Buckley, C. (1988). Term-weighting approaches in automatic text retrieval. Information processing & management, 24(5), 513-523.
Salton, G., Wong, A., & Yang, C.-S. (1975). A vector space model for automatic indexing. Communications of the ACM, 18(11), 613-620.
Schnars, U., & Jueptner, W. (2005). Digital holography: digital hologram recording, numerical reconstruction, and related techniques: Springer Science & Business Media.
Shibata, N., Kajikawa, Y., & Sakata, I. (2010). Extracting the commercialization gap between science and technology—Case study of a solar cell. Technological Forecasting and Social Change, 77(7), 1147-1155.
Shilling, R. D., & Shinn-Cunningham, B. (2002). Virtual auditory displays. Handbook of virtual environment technology, 65-92.
Singh, N., Hu, C., & Roehl, W. S. (2007). Text mining a decade of progress in hospitality human resource management research: Identifying emerging thematic development. International Journal of Hospitality Management, 26(1), 131-147. doi:10.1016/j.ijhm.2005.10.002
Song, K., Kim, K. S., & Lee, S. (2017). Discovering new technology opportunities based on patents: Text-mining and F-term analysis. Technovation, 60, 1-14.
Trappey, C. V., Wu, H.-Y., Taghaboni-Dutta, F., & Trappey, A. J. (2011). Using patent data for technology forecasting: China RFID patent analysis. Advanced Engineering Informatics, 25(1), 53-64.
Wang, J. (1995). Integration of eye-gaze, voice and manual response in multimodal user interface. Paper presented at the Systems, Man and Cybernetics, 1995. Intelligent Systems for the 21st Century., IEEE International Conference on.
Wang, M.-Y., Fang, S.-C., & Chang, Y.-H. (2015). Exploring technological opportunities by mining the gaps between science and technology: Microalgal biofuels. Technological Forecasting and Social Change, 92, 182-195.
Wang, X., Ma, P., Huang, Y., Guo, J., Zhu, D., Porter, A. L., & Wang, Z. (2017). Combining SAO semantic analysis and morphology analysis to identify technology opportunities. Scientometrics, 111(1), 3-24.
Wei, C.-P., Hu, P., & Dong, Y.-X. (2002). Managing document categories in e-commerce environments: an evolution-based approach. European journal of information systems, 11(3), 208-222.
Xin, L., Jiwu, W., Lucheng, H., Jiang, L., & Jian, L. (2010). Empirical research on the technology opportunities analysis based on morphology analysis and conjoint analysis. Foresight, 12(2), 66-76.
Yoon, B., Park, I., & Coh, B.-y. (2014). Exploring technological opportunities by linking technology and products: Application of morphology analysis and text mining. Technological Forecasting and Social Change, 86, 287-303.
Yoon, B., & Park, Y. (2005). A systematic approach for identifying technology opportunities: Keyword-based morphology analysis. Technological Forecasting and Social Change, 72(2), 145-160.
Yoon, B. U., Yoon, C. B., & Park, Y. T. (2002). On the development and application of a self–organizing feature map–based patent map. R&D Management, 32(4), 291-300.
Zipf, G. K. (1949). Human Behaviour and the Principle of Least-Effort. Cambridge MA edn: Addison-Wesley, Reading.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔