|
1. R. D. Miller, editor. Miller's Anesthesia. Elsevier, 6th edition, 2005.
2. S. P. Desai, M. S. Desai, R. Maddi, and G. E. Battit. A tale of two paintings: Depictions of the first public demonstration of ether anesthesia. Anesthesiology, 2007.
3. F. D. Moore. John Collins warren and his act of conscience - a brief narrative of the trial and triumph of a great surgeon. Annals of Surgery, 1999.
4. J. Enderle, S. Blanchard, and J. Bronzino, editors. Introduction to Biomedical Engineering. Elsevier Academic Press, 2nd edition, 2005.
5. H. Merskey and N. Bogduk, editors. Part III: Pain Terms, a Current List with Definitions and Notes on Usage. Classification of Chronic Pain. IASP Task Force on Taxonomy. IASP Press, 2nd edition, 1994.
6. W. F. Gannong, editor. Review of Medical Physiology. Lange Medical Books/McGraw-Hill, 22nd edition, 2005.
7. R. A. Rhoades and D. R. Bell, editors. Medical Physiology Principles for Clinical Medicine. Lippincott Williams and Wilkins, 3rd edition, 2009.
8. A. Guyton and J. E. Hall, editors. Textbook of Medical Physiology. Elsevier Saunders, 11th edition, 2006.
9. L. Brunton, K. Parker, D. Blumenthal, I. Buxton. “Goodman and Gilman's Manual of Pharmacology and Therapeutics.” McGraw Hill Medical, 12th edition, 2008.
10. INFARMED. Folheto informativo. Remifentanil ultiva, 2006.
11. T. W. Latson, D. O'flaherty. "Effects of surgical stimulation on autonomic reflex function: assessment by changes in heart rate variability." British Journal of Anaesthesia BJA, vol. 70, no. 3, pp. 301-305, 1993.
12. V. Pichot, J. M. Gaspoz, S. Molliex, A. Antoniadis, T. Busso, F. Roche, F. Costes, L. Quintin, J. R. Lacour, J. C. Barthélémy. "Wavelet transform to quantify heart rate variability and to assess its instantaneous changes." Journal of applied physiology, vol. 86, no. 3, 1081-1091, 1999.
13. M. Jeanne, R. Logier, J. D. Jonckheere, B. Tavernier. “Heart rate variability during total intravenous anesthesia: effects of nociception and analgesia.” Autonomic Neuroscience, vol. 147, no. 1, pp. 91-96, 2009.
14. A. J. Camm, M. Malik, J. T. Bigger, G. Breithardt, S. Cerutti, R. J. Cohen, P. Coumel et al. "Heart rate variability: standards of measurement, physiological interpretation and clinical use. Task Force of the European Society of Cardiology and the North American Society of Pacing and Electrophysiology." Circulation 93, no. 5, pp. 1043-1065, 1916.
15. M. L. Guen, M. Jeanne, K. Sievert, M. A. Moubarik, T. Chazot, P. A. Laloe, J. F. Dreyfus, M. Fischler. “The analgesia nociception index: a pilot study to evaluation of a new pain parameter during labor,” International Journal of Obstetric Anesthesia, vol. 21, no. 2, pp. 146-151, 2012.
16. M. Jeanne, C. Clement, J. D. Jonckheere, R. Logier, B. Tavernier. “Variations of the analgesia nociception index during general anaesthesia for laparoscopic abdominal surgery.” Journal of Clinical Monitoring Computing, vol. 26, no. 4, pp. 289-294, 2012.
17. R. Logier, J. Dejonckheere, A. Dassonneville. “An efficient algorithm for R–R interval series filtering.” Engineering in Medicine and Biology Society, Proceedings of the 26th annual international conference of the IEEE, vol. 2, pp. 3937-3940, 2004.
18. E. D. Ubeyli, “Recurrent neural networks employing Lyapunov exponents for analysis of ECG signals. Expert Systems with Applications,” vol. 37, pp. 1192–1199, 2010.
19. E. D. Ubeyli, “Combining recurrent neural networks with eigenvector methods for classification of ECG beats,” Digital Signal Processing, vol. 19, pp. 320–329, 2009.
20. R. Salloum, C. C. J. Kuo, “ECG-based biometrics using recurrent neural networks,” Acoustics, Speech and Signal Processing (ICASSP), IEEE International conference on, pp. 2062-2066, 2017.
21. M. Cheng, W. J. Sori, F. Jiang, A. Khan, S. Liu. “Recurrent Neural Network Based Classification of ECG Signal Features for Obstruction of Sleep Apnea Detection.” 2017 IEEE International Conference on Computational Science and Engineering (CSE) and IEEE International Conference on Embedded and Ubiquitous Computing (EUC), vol. 2, pp. 199-202.
22. A. Graves, A. R. Mohamed, G. Hinton. "Speech recognition with deep recurrent neural networks." In Acoustics, speech and signal processing (ICASSP), 2013 IEEE international conference, pp. 6645-6649, 2013.
23. K. Cho, B. V. Merriënboer, C. Gulcehre, D. Bahdanau, F. Bougares, H. Schwenk, & Y. Bengio. “Learning phrase representations using RNN encoder-decoder for statistical machine translation.” arXiv preprint arXiv: 1406.1078, 2014.
24. A. M. Sullivan, H. Xia, J. C. McBride, X Zhao, “Reconstruction of Missing Physiological Signals Using Artificial Neural Networks,” Computing in Cardiology, IEEE, pp. 317−320, 2010.
25. J. P. M. Menezes, G. A. Barreto, “Long-term time series prediction with the NARX network: An empirical evaluation,” Neurocomputing, vol. 71, no. 16, pp. 3335–3343, 2008.
26. T. Ledowski, W. S. Tiong, C. Lee, B. Wong, T. Fiori, N. Parker. “Analgesia nociception index: evaluation as a new parameter for acute postoperative pain,” British Journal of Anaesthesia, vol. 111, pp. 627-629, 2013.
27. R. Logier, M. Jeanne, J. De jonckheere, A. Dassonneville, M. Delecroix, B. Tavernier – “PhysioDoloris: a monitoring device for Analgesia / Nociception balance evaluation using heart rate variability analysis.” Engineering Medicine Biology Society, Annual International Conference of IEEE, pp. 1194-1197, 2011.
28. M. Jeanne, R. Logier, J. De Jonckheere, B. Tavernier. “Validation of a graphic measurement of heart rate variability to assess analgesia/nociception balance during general anesthesia.” Annual International Conference of the IEEE, Engineering Medicine and Biological Society, pp. 1840-1843, 2009.
29. M. Delecroix, M. Jeanne, A. Keribedj, N. Couturier, and R. Logier. "Automated analgesic drugs delivery guided by vagal tone evaluation: Interest of the Analgesia Nociception Index (ANI)." In Engineering in Medicine and Biology Society (EMBC), 2013 35th Annual International Conference of the IEEE, pp. 1952-1955, 2013.
30. G. N. Fatma, E. D. Übeyli, I. Güler. "Recurrent neural networks employing Lyapunov exponents for EEG signals classification." Expert systems with applications, vol. 29, no. 3, pp. 506-514, 2005.
31. C. Z. Lipton, D. C. Kale, C. Elkan, R. Wetzel. “Learning to diagnose with LSTM recurrent neural networks.” Published as a conference paper at ICLR 2016.
32. W. Xie, A. Noble, A. Zisserman, “Layer recurrent neural networks,” ICLR 2017.
33. D. Howard, M. Beale, M. Hagan. "Neural network toolbox™ 6." User’s guide, pp. 37-55, 2008.
34. S. Chen, S. Billings, & P. Grant, “Non-linear system identification using neural networks,” International Journal of Control, vol. 51, no. 6, pp. 1191– 1214, 1990.
35. M. Jeanne, R. Logier, J. De Jonckheere, B. Tavernier. “Validation of a graphic measurement of heart rate variability to assess analgesia/ nociception balance during general anesthesia.” Engineering in Medicine and Biology Society. EMBC. Annual International Conference of IEEE, pp. 1840–1843, 2009.
|