(44.192.112.123) 您好!臺灣時間:2021/03/07 17:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:蕭祥佑
研究生(外文):Hsiang-Yu Hsiao
論文名稱:光彈式葡萄糖濃度量測之研究
論文名稱(外文):Study on Glucose Concentration Measurement using Photoelasticity
指導教授:許正治許正治引用關係吳乾埼
指導教授(外文):Cheng-Chih HsuChyan-Chyi Wu
口試委員:李朱育
口試委員(外文):Ju-Yi Lee
口試日期:106-09-15
學位類別:碩士
校院名稱:元智大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2017
畢業學年度:106
語文別:中文
論文頁數:62
中文關鍵詞:光彈調制葡萄糖濃度量測
外文關鍵詞:photoelastic modulationglucoseconcentration measurement
相關次數:
  • 被引用被引用:0
  • 點閱點閱:75
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究使用共光程外差干涉術架構進行葡萄糖溶液濃度量測。利用共光程外差干涉術中當光束經過待測物時,會因待測物體本身物理性質而產生相位延遲變化,將此訊號與參考訊號源相位變化進行比較。由於該系統具有不受環境擾動與機械振動的影響之特性,因能有效提升系統量測準確性。此外,本研究於外差光源端分別使用光彈調製及電光調製兩種儀器進行外差光源調製,透過量測多個不同濃度葡萄糖溶液,藉以比較兩者於共光程外差干涉術在葡萄糖濃度量測的特性差異。利用光彈調制不損失光源能量的特性,改善量測系統的訊雜比,增進量測數據的精準度。
In this study, we demonstrated common-path heterodyne interferometry to measure glucose concentration. In this system, when experimental light source through the sample, the phase delay will be occured due to the physical properties. This signal can be compared with reference signal to get phase difference. Because the system has the characteristics of environmental impact and mechanical vibration, it can effectively improve the measurement accuracy. Beside, we used photo-elastic modulator and electro-optic modulator to make up the heterodyne light source to measure the difference of glucose concentration measurement respectively. Based on the characteristic of photoelastic modulation does not lose light energy, it can improve the measurement system noise ratio and the accuracy of measurement data.
中文摘要 i
Abstract ii
謝 誌 iii
符號表 iv
目 錄 viii
表目錄 x
圖目錄 xi
第1章 緒 論 1
1.1 前 言 1
1.2 文獻回顧 3
1.2.1 旋光量測 3
1.2.2 近紅外光譜 6
1.2.3 拉曼光譜 7
1.2.4 光學同調斷層掃描 8
1.3 研究動機 9
1.4 研究目的 10
第2章 量測原理 11
2.1 光學干涉術 11
2.2 外差干涉術 12
2.3 電光調制外差干涉量測原理 17
2.4 光彈調制外差干涉量測原理 22
第3章 實驗與結果 28
3.1 實驗流程 28
3.2 實驗架構 29
3.2.1 葡萄糖溶液調配 29
3.2.2 量測儀器與元件整理 29
3.2.3 電光晶體調制外差光源之量測系統 31
3.2.4 光彈調制器調制外差光源之量測系統 31
3.3 實驗結果 31
3.3.1 使用電光調制器進行外差光源調制量測 31
3.3.2 使用光彈調制器進行外差光源調制量測 38
第4章 誤差分析 46
4.1 偏振旋轉誤差 46
4.2 偏振混合誤差 49
4.3 非正向入射產生的誤差 52
4.3.1 非正向入射造成的光程差 52
4.3.2 非正向入射造成的量測誤差 56
第5章 結論與未來展望 58
5.1 結 論 58
5.2 未來展望 59
參考文獻 60
[1]http://www.who.int/mediacentre/factsheets/fs310/en/.
[2] R.J. McNichols, and G.L. Cote, Optical glucose sensing in biological fluids: an overview, JBO, 5 (2000) 5-16.
[3] 行政院衛生福利部, http://dep.mohw.gov.tw/DOS/cp-1735-3241-113.html.
[4] G.L. Coté, M.D. Fox, and R.B. Northrop, Noninvasive optical polarimetric glucose sensing using a true phase measurement technique, IEEE Transactions on biomedical engineering, 39 (1992) 752-756.
[5] D.J. Caldwell, and H. Eyring, theory of optical activity, (1971).
[6] W.H. Brown, B.L. Iverson, E. Anslyn, and C.S. Foote, Organic Chemistry, Cengage Learning, 2017.
[7] B. Rabinovitch, W. March, and R.L. Adams, Noninvasive glucose monitoring of the aqueous humor of the eye: Part I. Measurement of very small optical rotations, Diabetes Care, 5 (1982) 254-258.
[8] W.F. March, B. Rabinovitch, and R.L. Adams, Noninvasive glucose monitoring of the aqueous humor of the eye: Part II. Animal studies and the scleral lens, Diabetes Care, 5 (1982) 259-265.
[9] D.A. Cough, The composition and optical rotary dispersion of bovine aqueous humor, Diabetes Care, 5 (1982) 266-270.
[10] T.W. King, G.L. Coté, R.J. McNichols, and M.J. Goetz Jr, Multispectral polarimetric glucose detection using a single Pockels cell, Optical Engineering, 33 (1994) 2746-2753.
[11] J.S. Baba, B.D. Cameron, S. Theru, and G.L. Cote, Effect of temperature, pH, and corneal birefringence on polarimetric glucose monitoring in the eye, Journal of biomedical optics, 7 (2002) 321-328.
[12] C. Chou, C.-Y. Han, W.-C. Kuo, Y.-C. Huang, C.-M. Feng, and J.-C. Shyu, Noninvasive glucose monitoring in vivo with an optical heterodyne polarimeter, Appl. Opt., 37 (1998) 3553-3557.
[13] J. Tenhunen, H. Kopola, and R. Myllylä, Non-invasive glucose measurement based on selective near infrared absorption; requirements on instrumentation and spectral range, Measurement, 24 (1998) 173-177.
[14] P.S. Jensen, J. Bak, S. Ladefoged, and S. Andersson-Engels, Determination of urea, glucose, and phosphate in dialysate with Fourier transform infrared spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 60 (2004) 899-905.
[15] 王孟亮, 拉曼光譜學及其在生化上的應用, 科學月刊, 167 (1983).
[16] A.J. Berger, I. Itzkan, and M.S. Feld, Feasibility of measuring blood glucose concentration by near-infrared Raman spectroscopy, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 53 (1997) 287-292.
[17] A.J. Berger, T.-W. Koo, I. Itzkan, G. Horowitz, and M.S. Feld, Multicomponent blood analysis by near-infrared Raman spectroscopy, Applied Optics, 38 (1999) 2916-2926.
[18] A.M. Enejder, T.-W. Koo, J. Oh, M. Hunter, S. Sasic, M.S. Feld, and G.L. Horowitz, Blood analysis by Raman spectroscopy, Optics letters, 27 (2002) 2004-2006.
[19] K.V. Larin, M.S. Eledrisi, M. Motamedi, and R.O. Esenaliev, Noninvasive blood glucose monitoring with optical coherence tomography, Diabetes Care, 25 (2002) 2263-2267.
[20] K.V. Larin, M. Motamedi, T.V. Ashitkov, and R.O. Esenaliev, Specificity of noninvasive blood glucose sensing using optical coherence tomography technique: a pilot study, Physics in Medicine and Biology, 48 (2003) 1371.
[21] G.E. Sommargren, Optical heterodyne profilometry, Applied Optics, 20 (1981) 610-618.
[22] C. Chou, Y.-C. Huang, C.-M. Feng, and M. Chang, Amplitude sensitive optical heterodyne and phase lock-in technique on small optical rotation angle detection of chiral liquid, Japanese journal of applied physics, 36 (1997) 356.
[23] C.-M. Feng, Y.-C. Huang, J.-G. Chang, M. Chang, and C. Chou, A true phase sensitive optical heterodyne polarimeter on glucose concentration measurement, Optics communications, 141 (1997) 314-321.
[24] J.-Y. Lin, K.-H. Chen, and D.-C. Su, Improved method for measuring small optical rotation angle of chiral medium, Optics communications, 238 (2004) 113-118.
[25] 李朱育, 外差干涉術在量測 s 與 p 偏光間相位差變化的應用, 光學工程, (2000) 26-31.
[26] J. De Freitas, and M. Player, Importance of rotational beam alignment in the generation of second harmonic errors in laser heterodyne interferometry, Measurement Science and Technology, 4 (1993) 1173.
[27] C.-M. Wu, and R.D. Deslattes, Analytical modeling of the periodic nonlinearity in heterodyne interferometry, Applied Optics, 37 (1998) 6696-6700.
[28] W. Hou, and G. Wilkening, Investigation and compensation of the nonlinearity of heterodyne interferometers, Precision engineering, 14 (1992) 91-98.
[29] M.-H. Chiu, J.-Y. Lee, and D.-C. Su, Refractive-index measurement based on the effects of total internal reflection and the uses of heterodyne interferometry, Applied Optics, 36 (1997) 2936-2939.
[30] A. Ghatak, OPTICS, 4th ed., The McGraw-Hill Companies, 2009.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔