跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/14 23:25
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳明儒
研究生(外文):Ming-Ju Wu
論文名稱:半導體雷射動態於非同調光回饋擾動下之研究
論文名稱(外文):Nonlinear characteristics of semiconductor laser subject to optical incoherent feedback
指導教授:阮于珊
指導教授(外文):Yu-Shan Juan
口試委員:許正治鄭致灝
口試委員(外文):Cheng-Chih HsuChih-Hao Cheng
口試日期:2018-7-5
學位類別:碩士
校院名稱:元智大學
系所名稱:光電工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:63
中文關鍵詞:非線性半導體雷射動態光回饋非同調光回饋
外文關鍵詞:nonlinear semiconductor laser dynamic statesoptical feedbackincoherent feedback
相關次數:
  • 被引用被引用:0
  • 點閱點閱:282
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文中我們採用非同調光學回饋的方式抑制迴圈雜訊,將光訊號於實驗中產生偏振後造成的相位差回饋至雷射中藉以降低雜訊,同時我們也成功地將非線性動態訊號之線寬變得更窄。藉由調變可變參數,光回饋強度(Optical Feedback Strength)、光延遲時間(Optical Delay Time)、以及雷射光注入電流得到了各種豐富的動態,並於頻域的分析下可以證實本系統對於穩定週期一動態有良好的抑制效果,在傳統的光回饋系統下加上了本系統的光回饋方式可以發現到週期一的主振動頻率旁之側鋒值有明顯的抑制現象,除此之外同時也發現了震盪頻率的線寬由119KHz縮小至23KHz,使得光回饋系統較以往來得更加穩定。而非同調系統的架設係由法拉第旋轉器以及偏振片的組合使得回饋光的偏振角度進行旋轉從而產生非同調光回饋。
此外,在混沌動態方面我們也做了相關研究,藉由時域、頻域、相位圖、自相關軌跡、波峰旁辦強度以及頻寬計算等方式進行多方面的研究。而研究中發現,透過不同的可調整參數之間的配合可以有效的改變頻寬。最後,利用非同調光回饋方式對一般常見的光回饋方式進行比較,探討兩種光回饋系統下兩者在混沌態的混沌程度以及頻寬上的差異程度,從而得知出非同調光回饋系統在混沌態下的表現。
In this paper, the polarization rotated feedback is purposed to be an alternative approach that possesses the characteristic of improving the signal quality compared to optical feedback. We focused on the generation of P1 states and on the performance of the noise reduction of the P1 states by utilizing incoherent optical feedback. And the observed linewidth of the P1 states had greatly reduced from 119KHz to 23KHz by applying incoherent optical feedback was presented in the results.
However, the stability of the states generated is the most important issue to be solved and improved. For the P1 states, the non-ignored noise generated from delay loop frequency causes the unwanted frequency spikes in electrical power spectrum. The corresponding amplitude fluctuations and timing jitter in time domain of the P1 states is also observed.
The polarization rotated feedback system is built up by optical feedback systems under the orthogonally polarized feedback. The optical components that we used in the scheme for generating of the polarization rotated feedback are Faraday rotator (FR) and polarizer to provide the incoherent optical feedback. When adjusting three controllable parameters, such as optical delay time, optical feedback strength, and bias current of the semiconductor laser, rich dynamics is obtained compared to those observed in traditional feedback system.
Moreover, noise reduction of the P1 states caused by the delay loop frequencies in feedback scheme is realized by applying the orthogonally polarized feedback to the already-generated P1 states by the traditional scheme. To explore the quality of the generated P1 states, the measurements of the amplitude of side peaks, the spectral linewidths, and amplitude variation of P1 states under traditional optical feedback and polarization rotated feedback in both frequency and time domain observed by electrical power spectrum and oscilloscopes are examined and analyzed, respectively. As a result, effective noise reduction in P1 states is achieved while applying a polarization rotated feedback with fine tuning the feedback strength level and loop delay time. Furthermore, single-side band (SSB) phase noise of the spectral linewidth is investigated and compared in both schemes.
In addition, the complexity and bandwidth of the chaotic oscillation states are calculated and studied experimentally. Mappings of various dynamical regimes in both systems are also obtained and compared. Besides, the chaotic states had been analyzed by autocorrelation, PSL, time domain, power spectrum and phase portrait in the study during the experiment process.
第一章 緒論 1
第二章 同調與非同調光回饋系統之模擬以及實驗架構 5
2.1 一般光回饋系統之理論模型 5
2.2 非同調光回饋系統之理論模型 10
2.3 非同調與一般光回饋系統之動態比較 16
2.4 非同調光回饋系統與光電回饋系統之比較 21
第三章 非同調光回饋半導體雷射產生之週期一震盪態特性與研究 25
3.1 實驗環境下一般光回饋系統與非同調光回饋系統之動態分布 25
3.2 光回饋與非同調光回饋之週期一震盪態分布與線寬分析 27
3.3光回饋與非同調光回饋之週期一震盪態主震盪頻率分布及強度探討 38
第四章 非同調光回饋半導體雷射產生之混沌態特性與研究 46
4.1非同調光回饋系統之混沌態 46
4.2調變延遲時間與雷射電流參數產生之非同調光回饋系統之混沌態比較分析 52
第五章 結論 56
[1] X. J. Meng, T. Chau, and M. C. Wu, “Experimental demonstration of modulation bandwidth enhancement in distributed feedback lasers with external light injection,” Electronics Letters, 34(21), 2031-2032, 1998.
[2] S. Bauer, O. Brox, J. Kreissl, B. Sartorius, M. Radziunas, J. Sieber, H. J. Wu and F. Henneberger, ‘‘Nonlinear dynamics of semiconductor lasers with active optical feedback,’’ Physical Review E, 69(1), 016206-1 – 016206-10, 2004.
[3] C. H. Lee and S. Y. Shin, “Self-pulsing, spectral bistability, and chaos in a semiconductor laser diode with optoelectronic feedback,” Applied Physics Letters, 62(9), 922-924, 1993.
[4] S. C. Chan, “Analysis of an optically injected semiconductor laser for microwave generation,” IEEE Journal of Quantum Electron, 46(3), 421-428, 2010.
[5] S.D. Cohen, A. Aragoneses, D. Rontani, M. C. Torrent, C. Masoller, D. J. Gauthier, “Multidimensional subwavelength position sensing using a semiconductor laser with optical feedback.” Optics Letters, 38(21), 4331-4333, (2013).
[6] C. H. Chu, S. L. Lin, S. C. Chan and S. K. Hwang, “All-optical modulation format conversion using nonlinear dynamics of semiconductor lasers,“ IEEE Journal of Quantum Electron, 48(11), 1389-13926, 2012.
[7] G. D. VanWiggeren and R. Roy, “Optical communication with chaotic waveforms,” Physical Review Letters, 81(16), 3547–3550, 1998.
[8] I. Reidler, Y. Aviad, M. Rosenbluh, and I. Kanter, “Ultrahigh-speed random number generation based on a chaotic semiconductor laser,” Physical Review Letters, 103(2), 024102-1 – 024102-4, 2009.
[9] E.C. Burrows and K.-Y. Liou, “ High resolution laser LIDAR utilising two-section distributed feedback semiconductor laser as a coherent source,” IET, 577 – 579, 1990.
[10] N Shibasaki, A Uchida, S Yoshimori and P Davis, “ Characteristics of chaos synchronization in semiconductor lasers subject to polarization-rotated optical feedback,” IEEE Journal of Quantum Electron, 42(3), 342-350, 2006.
[11] J. Mork, J. Mark, and B. Tromborg, “Route to chaos and competition between relaxation oscillations for a semiconductor laser with optical feedback,” Physical Review Letter, 65(16), 1999-2002, 1990.
[12] J. Ohtsubo, “Chaos synchronization and chaotic masking in semiconductor lasers with optical feedback,” IEEE Journal of Quantum Electron, 38(9), 1141-1154, 2002.
[13] E. V. Grigorieva, H. Haken, and S. A. Kaschenko, “Theory of quasi-periodicity in model of lasers with delayed optoelectronic feedback,” Optics Communications, 165(4), 279-292, 1999.
[14] R. Lang and K. Kobayashi, “External optical feedback effects on semiconductor injection laser properties,” IEEE Journal of Quantum Electron, QE-16(3), 347-355, 1980.
[15] T. C. Damen and M. A. Duguay, “Optoelectronic regenerative pulser,” Electronics Letters, 16(5), 166-167, 1980.
[16] J. Sacher, D. Baums, P. Panknin, W. Elsasser and E. 0. Gobel, “Intensity instabilities of semiconductor lasers under current modulation, external light injection, and delayed feedback,” Physical Review A, 45(3), 1893-1905, 1992.
[17] J. Mork, B. Tromborg, and J. Mark, “Chaos in semiconductor lasers with optical feedback: theory and experiment,” IEEE Journal of Quantum Electron, 28(1), 93-108, 1992.
[18] C. H. Lee, K. H. Cho, and S. Y. Lee, “Optical short-pulse generation using diode lasers with negative optoelectronic feedback,” Optics Letters, 13(6), 464-466, 1988.
[19] B. Tromborg, J. Mørk, and V. Velichansky, “On mode coupling and low-frequency fluctuations in external-cavity laser diodes,” IEEE Journal of Quantum Electron, 50(5), 831-851, 1997.
[20] G. Huyet, S. Balle, M. Guidici, C. Green, G. Giacomelli, J. R. Tredicce, “Low frequency fluctuations and multimode operation of a semiconductor laser with optical feedback,” Optics Communications, 149(4), 341-347, 1998.
[21] J. G. Wu, G. Q. Xia, and Z. M. Wu, “Suppression of time delay signatures of chaotic output in a semiconductor laser with double optical feedback,” Optics Express, 17(22), 20124-20133, 2009.
[22] D. Rontani, A. Locquet, M. Sciamanna, and D. S. Citrin, “Loss of time-delay signature in the chaotic output of a semiconductor laser with optical feedback,” Optics Letters, 32(20), 2960-2962, 2007.
[23] O. Nilsson, S. Saito, and Y. Yamamoto, “Oscillation frequency, linewidth reduction and frequency modulation characteristics for a diode laser with external grating feedback,” Electronics Letters, 17(17), 589-591, 1981.
[24] D. Luo, S. Y. Yan, X. P. Xie, and W. Zhao, “Generation of 10-GHz duty-cycle tunable square optical pulse in an SOA-based mode-locked fiber laser,” Laser Physics, 21(11), 1909-1913, 2011.
[25] Y. S. Juan and F. Y. Lin, “Microwave-frequency-comb generation utilizing a semiconductor laser subject to optical pulse injection from an optoelectronic feedback laser,” Optics Letters, 34(11), 1636-1638, 2009.
[26] C. Voumard, R. Salathe, and H. Weber, “Resonance amplifier model describing diode lasers coupled to short external resonators,” Applied Physics, 12(4), 369-378, 1977.
[27] K. Kobayashi, “Improvements in direct pulse code modulation of semiconductor lasers by optical feedback,” Transactions IECE Japan, E-59(12), 8-14, 1976.
[28] Y. Mitsuhashi, T. Morikawa, K. Sakurai, A. Seko, and J. Shimada, “Self-coupled optical pickup,” Optics Communications, 17(1), 95-97, 1976.
[29] K. H. Levin and C. L. Tang, “Optical switching and bistability in tunable lasers,” Applied Physics Letters, 34(6), 376-378, 1979.
[30] S. I. Turovets, J. Dellunde, and K. A. Shore, “Nonlinear dynamics of a laser diode subjected to both optical and electronic feedback,” Journal of the Optical Society of America B, 14(1), 200-208, 1997.
[31] J. S. Lawrence and D. M. Kane, “Injection locking suppression of coherence collapse in a diode laser with optical feedback,” Optics Communications, 167(1), 273-282, 1999.
[32] S. Tang and J. M. Liu, “Message encoding at 2.5 Gb/s through synchronization of chaotic pulsing semiconductor lasers,” Optics Letters, 26(23), 1843–1845, 2001.
[33] I. V. Koryukin, “Dynamics of a single-mode semiconductor laser with incoherent optical feedback,” Radiophysics and Quantum Electronics, 57(5), 385-391, 2014.
[34] M. R. Zhao, Z. M. Wu, T. Deng, Z. L. Zhou and G. Q. Xia, “Tunable and broadband microwave frequency combs based on a semiconductor laser with incoherent optical feedback,” Chin. Phys. B, 24(5), 054207-1-054207-6, 2015.
[35] S. Tang and J. M. Liu, “Chaotic pulsing and quasi-periodic route to chaos in a semiconductor laser with delayed optoelectronic feedback,” IEEE Journal of Quantum Electron, 37(3), 329-336, 2001.
[36] C. Salomon, D. Hils, and J. L. Hall, “Laser stabilization at the millihertz level,” Journal of the Optical Society of America B, 5(8), 1576-1587, 1988.
[37] V. Z. Tronciu, H. J. Wünsche, M. Wolfrum, and M Radziunas, “Semiconductor laser under resonant feedback from a Fabry–Perot resonator: Stability of continuous-wave operation,” Physical Review E., 73(4), 046205-1 – 046205-7, 2006.
[38] S. C. Chan and J. M. Liu, “Tunable Narrow-Linewidth Photonic Microwave Generation Using Semiconductor Laser Dynamics,” IEEE Journal of Quantum Electron, 10(5), 1025-1032, 2004.
[39] T. Heil, A. Uchida, P. Davis, and T. Aida “TE-TM dynamics in a semiconductor laser subject to polarization-rotated optical feedback,” Physical review, A 68, 033811, 2003.
[40] I. V. Koryukin, “Modeling a single-mode semiconductor laser with incoherent optical feedback,” Optical Society of America, 31(4), 873-877, 2014.
[41] Y. Takeuchi, R. shougrnji, and J. ohtsubo, “Chaos dynamics in semiconductor lasers with polarization-rotated optical feedback,” Optical review, 17(3), 144-151, 2010.
[42] Y. Takeuchi, R. shougrnji, and J. ohtsubo, “Chaotic dynamics in semiconductor lasers subjected polarization-rotated optical feedback,” applied physics letters, 93, 1-3(181105), 2008.
[43] H. Henry and F. Kazarinov, “Instability of Semiconductor Lasers Due to Optical Feedback from Distant Reflector,” IEEE Journal of Quantum Electronics, QE-2(2), 294-301, 1986.
[44] F. Y. Lin and J. M. Liu, “Nonlinear dynamics of a semiconductor laser with delayed negative optoelectronic feedback,” IEEE Journal of Quantum Electronics, 39(4), 562-568, 2003.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top