跳到主要內容

臺灣博碩士論文加值系統

(44.213.60.33) 您好!臺灣時間:2024/07/22 16:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:周弘基
研究生(外文):Hung-Chi Chou
論文名稱:應用在穿戴式裝置高速無線網路之印刷偶極天線
論文名稱(外文):Design of Printed Dipole Antenna for High-Speed Wireless Network Wearable Applications
指導教授:邱政男邱政男引用關係
指導教授(外文):Cheng-Nan Chiu
口試委員:鄧聖明吳俊德
口試委員(外文):Sheng-Ming DengChun-Te Wu
口試日期:20180705
學位類別:碩士
校院名稱:元智大學
系所名稱:通訊工程學系
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:106
語文別:中文
論文頁數:57
中文關鍵詞:穿戴式裝置電磁能隙天線
外文關鍵詞:wearable applicationselectromagnetic bandgapantenna
相關次數:
  • 被引用被引用:0
  • 點閱點閱:251
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在無線通訊中,天線將扮演非常重要的角色,無線傳遞需要透過天線來完成訊號的傳送與接收。在科技快速的發展下,穿戴式電子產品在市場上出現的頻率也越來越高。許多電子產品的操作頻率是2.4 GHz頻帶範圍內,例如使用藍芽傳輸系統、802.11b、802.11g和802.11n規格的無線區域網路,過多的使用者使得通訊的品質下降,本論文將針對802.11ac所規範的5 GHz頻帶去做天線之設計。
本論文提出以印刷偶極天線結合電磁能隙結構實現穿戴式裝置天線之應用。為了要有較高的傳輸速率,遂使用兩支天線去探討MIMO天線架構,並透過增加電流迴路來減少天線之間的耦合,MIMO天線的隔離度在頻帶內皆低於-15dB。全篇採用全波模擬軟體ANSYS HFSS,來模擬與設計天線架構。天線特性藉由實作量測驗證,量測之天線操作頻率範圍介於5.1至5.9 GHz,並在無反射天線實驗室進行量測,天線之前後比大於12 dB並且具有良好輻射場型。
In wireless communication, the antenna plays a very important role. The wireless transmission needs to complete the transmission and reception of signals through the antenna. With the rapid development of science and technology, wearable electronic products have become more frequent in the market. Many electronic products operate at frequency in the 2.4 GHz band, such as WLAN which uses the specification of 802.11b, 802.11g, and 802.11n, Bluetooth system. To many users have degraded the quality of communications. This thesis will design the antenna for the 5 GHz band specified by 802.11ac.
This thesis proposes the application of a printed dipole antenna combined with an electromagnetic bandgap structure to implement a wearable device antenna. In order to have a higher transmission rate, use two antennas to explore the MIMO antenna architecture and reduce the coupling between the antennas by increasing the current loop. The isolation of the MIMO antenna is lower than –15 dB in the frequency band. The full article uses full wave solver ANSYS HFSS to simulate and design the antenna architecture. Antenna characteristic are verified by actual measurement. The measured antenna operating frequency range is from 5.1 to 5.9 GHz and measured in a non-reflective antenna chamber. The front to back ratio is greater than 12 dB and has a good radiation pattern.
摘要 i
ABSTRACT iii
致謝 v
目錄 vi
圖目錄 viii
表目錄 xii
第一章 序論 1
1.1 研究動機 1
1.2 文獻回顧 5
1.3 論文架構 8
第二章 電磁能隙(EBG)結構設計與分析 9
2.1 電磁能隙結構原理 9
2.2 蘑菇狀(Mushroom-like)電磁能隙結構設計 13
第三章 天線結構設計與分析 18
3.1 印刷天線基本理論 18
3.2 覆背式電磁能隙印刷偶極天線設計 30
第四章 MIMO天線設計與分析 41
4.1 MIMO天線結構及原理 41
4.2 MIMO天線隔離度設計 44
第五章 實驗驗證 46
第六章 結論 54
參考文獻 55
[1]M. A. B. Abbasi, S. Nikolaou, M. A. Antoniades, and M. N. Stevanovic, “Compact EBG-Backed Planar Monopole for BAN Wearable Applications," IEEE Trans. Antennas Propagat., vol. 65, no. 2, pp. 453-463, Feb. 2017.
[2]H. R. Raad, A. I. Abbosh, H. M. Al-Rizzo and D. G. Rucker, “Flexible and Compact AMC Based Antenna for Telemedicine Applications,” IEEE Trans. Antennas Propagat., vol. 61, pp. 524-531, Feb. 2013.
[3]B. S. Abirami, and E. F. Sundarsingh, “EBG-Backed Flexible Printed Yagi-Uda Antenna for On-Body Communication,” IEEE Trans. Antennas Propagat., vol. 65, pp. 3762-3765, Jul. 2017.
[4]V. J. R. De Luis, F. Capolino, and F. De Flaviis, “Low Profile Fully Planar Folded Dipole Antenna on a High Impedance Surface,” IEEE Trans. Antennas Propagat., vol. 60, pp. 51-62, Jan. 2012.
[5]S. Agneessens, and H. Rogier, “Compact Half Diamond Dual-Band Textile HMSIW On-Body Antenna,” IEEE Trans. Antennas Propagat., vol. 62, pp. 2374–2381, May 2014.
[6]S. Yun, D.-Y. Kim, and S. Nam, “Folded Cavity-Backed Crossed-Slot Antenna,” IEEE Antennas and Wireless Propagat. Lett., vol. 14, pp. 36-39, Sep. 2014.
[7]W. S. T. Rowe, and R. B. Waterhouse, “Reduction of backward radiation for CPW fed aperture stacked patch antennas on small ground planes,” IEEE Trans. Antennas Propagat., vol. 51, pp. 1411–1413, Jun. 2003.
[8]E. Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics” Phys. Rev. Lett., 58, 2059, 1987.
[9]I. Khromova, I. Ederra, J. Teniente, R. Gonzalo, K. P. Esselle, “Evanescently Fed Electromagnetic Band-Gap Hoen Antennas and Arrays,” IEEE Trans. Antennas Propagat., vol. 60, pp. 2635-2644, Apr. 2012.
[10]D. Sievenpiper, L. Zhang, R. F. J. Broas, N. G. Alexopolus, and E. Yablonovitch, “High-impedance electromagnetic surfaces with a forbidden frequency band,” IEEE Trans. Microw. Theory Tech., vol. 47, pp. 2059-2074, Mar. 1999.
[11]F. -R. Yang, K. -P. Ma, Y. Qian, and T. Itoh, “Auniplanar compact photonic-bandgap (UC-PBG) structure and its applications for microwave circuit,” IEEE Trans. Microwave Theory Tech., vol. 47, pp. 1509-1514, Nov. 1999.
[12]C. A. Balanis, Antenna Theory Analysis and Design, 3rd ed. New York: Wiley 2005.
[13]R. Li, T. Wu, B. Pan, K. Lim, J. Laskar, M. M. Tentzeris, “Equivalent-Circuit Analysis of a Broadband Printed Dipole With Adjusted Integrated Balun and an Array for Base Station Applications,” IEEE Trans. Antennas Propagat., vol 57, pp. 2180-2184, May 2009.
[14]C.-Y. Shuai, and G.-M. Wang, “A Novel Planar Printed Dual-Band Magneto-Electric Dipole Antenna,” IEEE Access, vol. 5, pp. 10062-10067, Jun. 2017.
[15]S. X. Ta, H. Choo, and I. Park, “Broadband Printed-Dipole Antenna and Its Arrays for 5G Applications,” IEEE Antennas and Wireless Propagat. Lett., vol. 16, pp. 2183-2186, May 2017
[16]H. Wong, K. L. Lau, and K. M. Luk, “Design of dual-polarized L-probe patch antenna arrays with high isolation” IEEE Trans. Antennas Propag., vol. 52, no.1, pp. 45-52, Jan. 2004.
[17]X. Zhou, X. Quan and R. Li, “A Dual-Broadband MIMO Antenna System for GSM/UMTS/LTE and WLAN Handsets,” IEEE Antennas Wireless Propag. Lett., vol. 11, pp. 551-554, May 2012.
[18]J. N. Hwang and S. J. Chung, “Isolation Enhancement Between Two Packed Antennas With Coupling Element,” IEEE Antennas Wireless Propag. Lett., vol, 10, pp. 1263-1266, Nov. 2011.
[19]H. Li, S. Sun, B. Wang, F. Wu, “Design of Compact Single-Layer Textile MIMO Antenna for Wearable Applications,” IEEE Antennas and Propag. Society, vol, 66, pp. 3136-3141, Jun. 2018.
[20]R. Chandel, A. K. Gautam, K. Rambabu, “Tapered Fed Compact UWB MIMO-Diversity Antenna With Dual Band-Notched Characteristics,” IEEE Antennas and Propag. Society, vol, 66, pp. 1677-1684, Apr. 2018.
[21]S. R. Thummaluru, R. Kumar, R. K. Chaudhary, “Isolation Enhancement and Radar Cross Section Reduction of MIMO Antenna With Frequency Selective Surface,” IEEE Antennas and Propag. Society, vol 66, pp. 1595-1600, Mar. 2018.
電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top