(100.25.42.117) 您好!臺灣時間:2021/04/21 17:30
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:李榮彬
研究生(外文):LI, RONG-BIN
論文名稱:轉錄因子TAF7 與登革熱病毒核心蛋白之結合影響 TAF7的胞內核質分布與病毒的複製
論文名稱(外文):Interaction Between Transcriptional Factor TAF7 And Core Protein Of Dengue Virus Can Affect The Cytoplasmic And Nuclear Distribution Of TAF7 And The Viral Replication
指導教授:陳浩仁
指導教授(外文):CHEN, HAU-REN
口試委員:吳惠南江明格
口試委員(外文):WU, HUEY-NANCHIANG, MING-KO
口試日期:2019-01-21
學位類別:碩士
校院名稱:國立中正大學
系所名稱:生命科學系分子生物研究所
學門:生命科學學門
學類:生物科技學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:58
中文關鍵詞:登革熱核心蛋白核質分布病毒斑點試驗病毒複製
外文關鍵詞:Dengue virus coreTAF7Plaque assayVirus production
相關次數:
  • 被引用被引用:0
  • 點閱點閱:55
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:2
登革熱是目前世界上非常嚴重的蟲媒傳染疾病,目前尚無疫苗與有效的治療方式。在先前文獻中已經證實登革熱的核心蛋白(core)擁有三段入核訊號,可以在細胞質、細胞核、甚至是在核仁中被發現。目前在病毒的複製或是致病機轉中,核心蛋白在細胞核以及核仁中的功能為何至今仍不清楚。先前本實驗室透過了酵母菌雙雜合系統、共免疫沉澱法等方式已經證實了登革熱的核心蛋白與宿主的轉錄因子 TAF7 之間會有交互作用,並且得知兩者交互作用的功能區域。令人驚訝的是,我們發現了當共同表達兩者時, TAF7 會從細胞質中轉移到細胞核中,而 TAF7 本身是沒有入核訊號的。因此,我提出一個假設,認為登革熱的核心蛋白會帶著 TAF7 一同進到細胞核中。為了證實這個假設,我在 HeLa 細胞中同時表達全長的 TAF7 蛋白以及完整或是具缺失不同片段的核心蛋白,透過免疫染色以螢光顯微鏡觀察並計算TAF7入核比例。從結果中可以發現:相較於同時表達全長的 TAF7 和全長的核心蛋白時,若同時表達全長的 TAF7 和無交互作用功能區域的核心蛋白時,TAF7 在細胞質的比例有明顯上升的趨勢。另外,為了得知核心蛋白將 TAF7 帶進細胞核中是否會影響病毒的複製,我透過慢病毒系統在 HEK293T 以及 HuH 7 細胞弱化降低 TAF7 的表現量,並透過西方墨點法以及即時定量核酸聚合酶連鎖反應去確認表現量確實降低。之後透過病毒斑點試驗以檢測 TAF7 的表現量是否影響病毒的複製能力。結果中顯示在降低 TAF7 的表現量後,病毒的複製能力在兩種不同的細胞株以及兩種不同來源的病毒株中都可以提高病毒的效價會。這結果或許對於將來在登革熱的致病機轉上能夠有更進一步的了解,也有助於未來在登革熱的藥物的開發。
Dengue fever is one of the most important arthropod-borne diseases. Previous study demonstrates that the core protein has three nuclear location signals (NLS), and can be detected not only in the cytoplasm, but also in the nucleus, or even in the nucleolus. The functions of core protein in the nucleus/nucleolus and the roles in virus production/pathogenesis still remain unclear. From previous results of our laboratory, we identified human host factor TAF7 as the interacting protein of core from yeast two-hybrid screening, confirmed the interaction and mapped the interaction regions of core protein and TAF7. Surprisingly, we observed the distribution of TAF7 between cytoplasm and nucleus was changed in the presence of the full-length core protein. Since the core protein has NLS signals but TAF7 does not, we hypothesized that core protein might facilitate TAF7 to be translocated into the nucleus. In this study, I co-expressed both full-length, the N- or the C- terminus truncated core and full-length TAF7 in HeLa cells, and evaluated the distribution of TAF7 by confocal microscope. The results showed the distribution of TAF7 were changed when co-expressed both bull-length, the N- or C- terminus truncated core and full-length TAF7. In addition, in order to understand whether the TAF7 is important for virus production, the lenti-virus system has been used for knockdown TAF7 in HEK293T and Huh7 cells through Western blot and qRT-PCR test. DENV-2 strains PL046 and 16681 were used to infect the stable knocked-down HEK293T cells and transient HuH7 cells, and the viral titer after infection by plaque assay was used to evaluate the effect of TAF7 on virus production. The virus production was increased in TAF7 knockdown cells if challenged with different strain DENV. These results may be helpful in understanding the molecular mechanism of viral pathogenesis and in developing the drugs for dengue diseases in the future.
Abstract (Chinese version) I
Abstract II
Index IV
Introduction 1
1. Dengue Diseases 1
1.1 Dengue virus 1
1.2 Dengue virus core protein 5
2. Human TBP-associated factors (hTAFs) 7
2.1 hTAFs 7
2.2 TAF7s 8
1. Materials 10
1.1 Bacterial 10
1.2 Cell lines 10
1.3 Virus 11
1.4 Medium 12
1.5 Primers 12
1.6 Plasmids 12
1.7 Chemicals and Reagents 13
1.8 Antibodies 13
2. Methods 15
2.1 DNA preparation 15
2.2 E.coli transformation 17
2.3 Cell culture 17
2.4 Transfection 18
2.5 Immunofluorescence assay 18
2.6 SDS-PAGE 19
2.7 Western blot 20
2.8 RNA extraction 21
2.9 qRT-PCR 21
2.10 Lenti-virus production 22
2.11 Lenti-virus infection 23
2.12 Virus infection 23
2.13 Plaque assay 24
2.14 TCID50 25
2.15 Virus amplification 25
Result 27
1. Interaction between TAF7 and core protein of dengue virus can affect the distribution of TAF7 27
2. Lenti-virus knockdown system was established 28
3. TAF7 knockdown increased the DENV production 28
4. Overexpression of the full-length TAF7 and central region-deleted TAF7 (Δ180-230) do not affect the viral production 30
Discussion 31
1. The nuclear location signal of DENV core protein 31
2. The amount of TAF7 was limited in host cell 32
3. The relationship of TAF7 and core interaction how to affect the dengue virus infection 32
4. Virion plaque size harvested from Huh7 cells is smaller than that harvested from HEK293T cells 34
References 35
Tables and Figures 42
Appendix 58

1.Airo, A.M., et al., Expression of flavivirus capsids enhance the cellular environment for viral replication by activating Akt-signalling pathways. Virology, 2018. 516: p. 147-157.
2.Amberg, S.M., et al., NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: in vitro and in vivo studies. Journal of virology, 1994. 68(6): p. 3794-3802.
3.Asia, W.R.O.f.S.-E., Comprehensive Guidelines for Prevention and Control of Dengue and Dengue Haemorrhagic Fever Revised and expanded edition, WHO, Editor. 2011.
4.Balinsky, C.A., et al., Nucleolin interacts with the dengue virus capsid protein and plays a role in formation of infectious virus particles. J Virol, 2013. 87(24): p. 13094-106.
5.Bell, B., E. Scheer, and L. Tora, Identification of hTAF(II)80 delta links apoptotic signaling pathways to transcription factor TFIID function. Mol Cell, 2001. 8(3): p. 591-600.
6.Bhatt, S., et al., The global distribution and burden of dengue. Nature, 2013. 496(7446): p. 504-7.
7.Brady, O.J., et al., Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis, 2012. 6(8): p. e1760.
8.Brou, C., et al., Distinct TFIID complexes mediate the effect of different transcriptional activators. The EMBO journal, 1993. 12(2): p. 489-499.
9.Bryant, F.R., Construction of a recombinase-deficient mutant recA protein that retains single-stranded DNA-dependent ATPase activity. J Biol Chem, 1988. 263(18): p. 8716-23.
10.Burke, T.W. and J.T. Kadonaga, The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII60 of Drosophila. Genes & development, 1997. 11(22): p. 3020-3031.
11.Chambers, T.J., et al., Flavivirus Genome Organization, Expression, and Replication. Annual Review of Microbiology, 1990. 44(1): p. 649-688.
12.Chang, C.J., et al., The heterogeneous nuclear ribonucleoprotein K (hnRNP K) interacts with dengue virus core protein. DNA Cell Biol, 2001. 20(9): p. 569-77.
13.Chang, S.F., et al., Retrospective serological study on sequential dengue virus serotypes 1 to 4 epidemics in Tainan City, Taiwan, 1994 to 2000. J Microbiol Immunol Infect, 2008. 41(5): p. 377-85.
14.Chang, S.F., et al., Laboratory-Based Surveillance and Molecular Characterization of Dengue Viruses in Taiwan, 2014. Am J Trop Med Hyg, 2016. 94(4): p. 804-11.
15.Chen, J.-L., et al., Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell, 1994. 79(1): p. 93-105.
16.Chen, W.J., et al., [A study on transovarial transmission of dengue type 1 virus in Aedes aegypti]. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi, 1990. 23(4): p. 259-70.
17.Chiang, C.M. and R.G. Roeder, Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science, 1995. 267(5197): p. 531-6.
18.Chu, P.W. and E.G. Westaway, Replication strategy of Kunjin virus: evidence for recycling role of replicative form RNA as template in semiconservative and asymmetric replication. Virology, 1985. 140(1): p. 68-79.
19.Cleaves, G.R., T.E. Ryan, and R.W. Schlesinger, Identification and characterization of type 2 dengue virus replicative intermediate and replicative form RNAs. Virology, 1981. 111(1): p. 73-83.
20.Colpitts, T.M., et al., Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells. PLoS One, 2011. 6(9): p. e24365.
21.Conaway, J.W., et al., Control of elongation by RNA polymerase II. Trends in Biochemical Sciences, 2000. 25(8): p. 375-380.
22.Devaiah, B.N., et al., Novel functions for TAF7, a regulator of TAF1-independent transcription. The Journal of biological chemistry, 2010. 285(50): p. 38772-38780.
23.Dikstein, R., S. Ruppert, and R. Tjian, TAFII250 Is a Bipartite Protein Kinase That Phosphorylates the Basal Transcription Factor RAP74. Cell, 1996. 84(5): p. 781-790.
24.DuBridge, R.B., et al., Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Molecular and Cellular Biology, 1987. 7(1): p. 379-387.
25.Dunphy, E.L., et al., Requirement for TAF(II)250 acetyltransferase activity in cell cycle progression. Mol Cell Biol, 2000. 20(4): p. 1134-9.
26.Dvir, A., J.W. Conaway, and R.C. Conaway, Mechanism of transcription initiation and promoter escape by RNA polymerase II. Current Opinion in Genetics & Development, 2001. 11(2): p. 209-214.
27.Dynlacht, B.D., T. Hoey, and R. Tjian, Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell, 1991. 66(3): p. 563-76.
28.Freiman, R.N., et al., Requirement of tissue-selective TBP-associated factor TAFII105 in ovarian development. Science, 2001. 293(5537): p. 2084-7.
29.Gegonne, A., et al., TFIID component TAF7 functionally interacts with both TFIIH and P-TEFb. Proc Natl Acad Sci U S A, 2008. 105(14): p. 5367-72.
30.Gegonne, A., J.D. Weissman, and D.S. Singer, TAFII55 binding to TAFII250 inhibits its acetyltransferase activity. Proc Natl Acad Sci U S A, 2001. 98(22): p. 12432-7.
31.Gegonne, A., et al., TAF7: a possible transcription initiation check-point regulator. Proc Natl Acad Sci U S A, 2006. 103(3): p. 602-7.
32.Green, M.R., TBP-associated factors (TAFIIs): multiple, selective transcriptional mediators in common complexes. Trends in Biochemical Sciences, 2000. 25(2): p. 59-63.
33.Gubler, D.J., Dengue and Dengue Hemorrhagic Fever. Clinical Microbiology Reviews, 1998. 11(3): p. 480-496.
34.Guermah, M., et al., The TBN Protein, which Is Essential for Early Embryonic Mouse Development, Is an Inducible TAFII Implicated In Adipogenesis. Molecular Cell, 2003. 12(4): p. 991-1001.
35.Hahn, S., Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol, 2004. 11(5): p. 394-403.
36.Hasan, S., et al., Dengue virus: A global human threat: Review of literature. J Int Soc Prev Community Dent, 2016. 6(1): p. 1-6.
37.Henchal, E.A. and J.R. Putnak, The dengue viruses. Clin Microbiol Rev, 1990. 3(4): p. 376-96.
38.Ho, T.S., et al., Clinical and laboratory predictive markers for acute dengue infection. J Biomed Sci, 2013. 20: p. 75.
39.Holstege, F.C., et al., Dissecting the regulatory circuitry of a eukaryotic genome. Cell, 1998. 95(5): p. 717-28.
40.Howcroft, T.K., et al., Distinct transcriptional pathways regulate basal and activated major histocompatibility complex class I expression. Mol Cell Biol, 2003. 23(10): p. 3377-91.
41.Huang, J.H., et al., Laboratory-based dengue surveillance in Taiwan, 2005: a molecular epidemiologic study. Am J Trop Med Hyg, 2007. 77(5): p. 903-9.
42.Irie, K., et al., Sequence analysis of cloned dengue virus type 2 genome (New Guinea-C strain). Gene, 1989. 75(2): p. 197-211.
43.Jones, C.T., et al., Flavivirus capsid is a dimeric alpha-helical protein. J Virol, 2003. 77(12): p. 7143-9.
44.Khromykh, A.A., et al., Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. Journal of virology, 2001. 75(10): p. 4633-4640.
45.killington, H., TCID50 calculator. Virology Methods Manual, 1996: p. 374.
46.Kloet, S.L., et al., Phosphorylation-dependent regulation of cyclin D1 and cyclin A gene transcription by TFIID subunits TAF1 and TAF7. Mol Cell Biol, 2012. 32(16): p. 3358-69.
47.Kuhn, R.J., et al., Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 2002. 108(5): p. 717-25.
48.Kumar, R., et al., Dengue Virus Capsid Interacts with DDX3X-A Potential Mechanism for Suppression of Antiviral Functions in Dengue Infection. Front Cell Infect Microbiol, 2017. 7: p. 542.
49.Lee, T.I., et al., Redundant roles for the TFIID and SAGA complexes in global transcription. Nature, 2000. 405(6787): p. 701-4.
50.Leurent, C., et al., Mapping key functional sites within yeast TFIID. The EMBO journal, 2004. 23(4): p. 719-727.
51.Lin, C.C., et al., Characteristic of dengue disease in Taiwan: 2002-2007. Am J Trop Med Hyg, 2010. 82(4): p. 731-9.
52.Liu, Y., et al., Dengue virus subgenomic RNA induces apoptosis through the Bcl-2-mediated PI3k/Akt signaling pathway. Virology, 2014. 448: p. 15-25.
53.Ma, L., et al., Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci U S A, 2004. 101(10): p. 3414-9.
54.Markoff, L., B. Falgout, and A. Chang, A conserved internal hydrophobic domain mediates the stable membrane integration of the dengue virus capsid protein. Virology, 1997. 233(1): p. 105-17.
55.Martin, J., R. Halenbeck, and J. Kaufmann, Human transcription factor hTAF(II)150 (CIF150) is involved in transcriptional regulation of cell cycle progression. Molecular and cellular biology, 1999. 19(8): p. 5548-5556.
56.Mason, P.W., Maturation of Japanese encephalitis virus glycoproteins produced by infected mammalian and mosquito cells. Virology, 1989. 169(2): p. 354-64.
57.McBride, W.J. and H. Bielefeldt-Ohmann, Dengue viral infections; pathogenesis and epidemiology. Microbes Infect, 2000. 2(9): p. 1041-50.
58.Mengus, G., et al., Human TAF(II)135 potentiates transcriptional activation by the AF-2s of the retinoic acid, vitamin D3, and thyroid hormone receptors in mammalian cells. Genes Dev, 1997. 11(11): p. 1381-95.
59.Metzger, D., et al., Mammalian TAF(II)30 is required for cell cycle progression and specific cellular differentiation programmes. Embo j, 1999. 18(17): p. 4823-34.
60.Mitchell, C.J. and B.R. Miller, Vertical transmission of dengue viruses by strains of Aedes albopictus recently introduced into Brazil. J Am Mosq Control Assoc, 1990. 6(2): p. 251-3.
61.Mizzen, C.A., et al., The TAFII250 Subunit of TFIID Has Histone Acetyltransferase Activity. Cell, 1996. 87(7): p. 1261-1270.
62.Mohan, W.S., Jr., et al., TAF10 (TAF(II)30) is necessary for TFIID stability and early embryogenesis in mice. Mol Cell Biol, 2003. 23(12): p. 4307-18.
63.Monath, T.P., Yellow fever. Medicine, 2005. 33(7): p. 21-23.
64.Mori, Y., et al., Nuclear localization of Japanese encephalitis virus core protein enhances viral replication. Journal of virology, 2005. 79(6): p. 3448-3458.
65.Mukhopadhyay, S., R.J. Kuhn, and M.G. Rossmann, A structural perspective of the flavivirus life cycle. Nat Rev Microbiol, 2005. 3(1): p. 13-22.
66.Murray, J.M., J.G. Aaskov, and P.J. Wright, Processing of the dengue virus type 2 proteins prM and C-prM. J Gen Virol, 1993. 74 ( Pt 2): p. 175-82.
67.Nagila, A., et al., Role of CD137 signaling in dengue virus-mediated apoptosis. Biochem Biophys Res Commun, 2011. 410(3): p. 428-33.
68.Netsawang, J., et al., Nuclear localization of dengue virus capsid protein is required for DAXX interaction and apoptosis. Virus Res, 2010. 147(2): p. 275-83.
69.Netsawang, J., et al., Dengue virus disrupts Daxx and NF-kappaB interaction to induce CD137-mediated apoptosis. Biochem Biophys Res Commun, 2014. 450(4): p. 1485-91.
70.Nowak, T., et al., Analyses of the terminal sequences of West Nile virus structural proteins and of the in vitro translation of these proteins allow the proposal of a complete scheme of the proteolytic cleavages involved in their synthesis. Virology, 1989. 169(2): p. 365-76.
71.Othman, S., N.A. Rahman, and R. Yusof, Induction of MHC Class I HLA-A2 promoter by dengue virus occurs at the NFkappaB binding domains of the Class I Regulatory Complex. Virus Res, 2012. 163(1): p. 238-45.
72.Pear, W.S., et al., Production of high-titer helper-free retroviruses by transient transfection. Proceedings of the National Academy of Sciences, 1993. 90(18): p. 8392-8396.
73.Pham, A.-D. and F. Sauer, Ubiquitin-Activating/Conjugating Activity of TAFII250, a Mediator of Activation of Gene Expression in Drosophila. Science, 2000. 289(5488): p. 2357-2360.
74.Pham, A.D., S. Muller, and F. Sauer, Mesoderm-determining transcription in Drosophila is alleviated by mutations in TAF(II)60 and TAF(II)110. Mech Dev, 1999. 84(1-2): p. 3-16.
75.Pugh, B.F. and R. Tjian, Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev, 1991. 5(11): p. 1935-45.
76.Raval, A., et al., Transcriptional coactivator, CIITA, is an acetyltransferase that bypasses a promoter requirement for TAF(II)250. Mol Cell, 2001. 7(1): p. 105-15.
77.Rice, C.M., et al., Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science, 1985. 229(4715): p. 726-33.
78.Rosen, L., Further observations on the mechanism of vertical transmission of flaviviruses by Aedes mosquitoes. Am J Trop Med Hyg, 1988. 39(1): p. 123-6.
79.Rosen, L., et al., Comparative susceptibility of mosquito species and strains to oral and parenteral infection with dengue and Japanese encephalitis viruses. Am J Trop Med Hyg, 1985. 34(3): p. 603-15.
80.Samsa, M.M., et al., Dengue Virus Capsid Protein Usurps Lipid Droplets for Viral Particle Formation. PLOS Pathogens, 2009. 5(10): p. e1000632.
81.Sangiambut, S., et al., Multiple regions in dengue virus capsid protein contribute to nuclear localization during virus infection. Journal of General Virology, 2008. 89(5): p. 1254-1264.
82.Shu, P.-Y., et al., Fever screening at airports and imported dengue. Emerging infectious diseases, 2005. 11(3): p. 460-462.
83.Shu, P.-Y., et al., Application of the dengue virus NS1 antigen rapid test for on-site detection of imported dengue cases at airports. Clinical and vaccine immunology : CVI, 2009. 16(4): p. 589-591.
84.Shu, P.Y., et al., Molecular characterization of dengue viruses imported into Taiwan during 2003-2007: geographic distribution and genotype shift. Am J Trop Med Hyg, 2009. 80(6): p. 1039-46.
85.Singhi, S., N. Kissoon, and A. Bansal, Dengue and dengue hemorrhagic fever: management issues in an intensive care unit. J Pediatr (Rio J), 2007. 83(2 Suppl): p. S22-35.
86.Stadler, K., et al., Proteolytic activation of tick-borne encephalitis virus by furin. J Virol, 1997. 71(11): p. 8475-81.
87.Stocks, C.E. and M. Lobigs, Signal peptidase cleavage at the flavivirus C-prM junction: dependence on the viral NS2B-3 protease for efficient processing requires determinants in C, the signal peptide, and prM. Journal of virology, 1998. 72(3): p. 2141-2149.
88.Suthar, M.S., M.S. Diamond, and M. Gale, Jr., West Nile virus infection and immunity. Nat Rev Microbiol, 2013. 11(2): p. 115-28.
89.Tanese, N., B.F. Pugh, and R. Tjian, Coactivators for a proline-rich activator purified from the multisubunit human TFIID complex. Genes Dev, 1991. 5(12a): p. 2212-24.
90.Verrijzer, C.P., et al., Binding of TAFs to core elements directs promoter selectivity by RNA polymerase II. Cell, 1995. 81(7): p. 1115-25.
91.Walker, A.K., et al., Distinct requirements for C.elegans TAF(II)s in early embryonic transcription. Embo j, 2001. 20(18): p. 5269-79.
92.Wang, S.-H., et al., Intracellular localization and determination of a nuclear localization signal of the core protein of dengue virus. Journal of General Virology, 2002. 83(12): p. 3093-3102.
93.Welsch, S., et al., Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe, 2009. 5(4): p. 365-75.
94.Westaway, E.G., et al., Flaviviridae. Intervirology, 1985. 24(4): p. 183-92.
95.Westaway, E.G., et al., Proteins C and NS4B of the flavivirus Kunjin translocate independently into the nucleus. Virology, 1997. 234(1): p. 31-41.
96.Wieczorek, E., et al., Function of TAF(II)-containing complex without TBP in transcription by RNA polymerase II. Nature, 1998. 393(6681): p. 187-91.
97.Yamit-Hezi, A. and R. Dikstein, TAFII105 mediates activation of anti-apoptotic genes by NF-kappaB. Embo j, 1998. 17(17): p. 5161-9.
98.Yamshchikov, V.F. and R.W. Compans, Processing of the intracellular form of the west Nile virus capsid protein by the viral NS2B-NS3 protease: an in vitro study. Journal of virology, 1994. 68(9): p. 5765-5771.
99.吳韋伸, 登革熱病毒核心蛋白與hTAF7交互作用之功能性研究, 生命科學系暨分子生物研究所暨生物醫學研究. 2009, 國立中正大學.

電子全文 電子全文(網際網路公開日期:20240329)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔