|
1.Airo, A.M., et al., Expression of flavivirus capsids enhance the cellular environment for viral replication by activating Akt-signalling pathways. Virology, 2018. 516: p. 147-157. 2.Amberg, S.M., et al., NS2B-3 proteinase-mediated processing in the yellow fever virus structural region: in vitro and in vivo studies. Journal of virology, 1994. 68(6): p. 3794-3802. 3.Asia, W.R.O.f.S.-E., Comprehensive Guidelines for Prevention and Control of Dengue and Dengue Haemorrhagic Fever Revised and expanded edition, WHO, Editor. 2011. 4.Balinsky, C.A., et al., Nucleolin interacts with the dengue virus capsid protein and plays a role in formation of infectious virus particles. J Virol, 2013. 87(24): p. 13094-106. 5.Bell, B., E. Scheer, and L. Tora, Identification of hTAF(II)80 delta links apoptotic signaling pathways to transcription factor TFIID function. Mol Cell, 2001. 8(3): p. 591-600. 6.Bhatt, S., et al., The global distribution and burden of dengue. Nature, 2013. 496(7446): p. 504-7. 7.Brady, O.J., et al., Refining the global spatial limits of dengue virus transmission by evidence-based consensus. PLoS Negl Trop Dis, 2012. 6(8): p. e1760. 8.Brou, C., et al., Distinct TFIID complexes mediate the effect of different transcriptional activators. The EMBO journal, 1993. 12(2): p. 489-499. 9.Bryant, F.R., Construction of a recombinase-deficient mutant recA protein that retains single-stranded DNA-dependent ATPase activity. J Biol Chem, 1988. 263(18): p. 8716-23. 10.Burke, T.W. and J.T. Kadonaga, The downstream core promoter element, DPE, is conserved from Drosophila to humans and is recognized by TAFII60 of Drosophila. Genes & development, 1997. 11(22): p. 3020-3031. 11.Chambers, T.J., et al., Flavivirus Genome Organization, Expression, and Replication. Annual Review of Microbiology, 1990. 44(1): p. 649-688. 12.Chang, C.J., et al., The heterogeneous nuclear ribonucleoprotein K (hnRNP K) interacts with dengue virus core protein. DNA Cell Biol, 2001. 20(9): p. 569-77. 13.Chang, S.F., et al., Retrospective serological study on sequential dengue virus serotypes 1 to 4 epidemics in Tainan City, Taiwan, 1994 to 2000. J Microbiol Immunol Infect, 2008. 41(5): p. 377-85. 14.Chang, S.F., et al., Laboratory-Based Surveillance and Molecular Characterization of Dengue Viruses in Taiwan, 2014. Am J Trop Med Hyg, 2016. 94(4): p. 804-11. 15.Chen, J.-L., et al., Assembly of recombinant TFIID reveals differential coactivator requirements for distinct transcriptional activators. Cell, 1994. 79(1): p. 93-105. 16.Chen, W.J., et al., [A study on transovarial transmission of dengue type 1 virus in Aedes aegypti]. Zhonghua Min Guo Wei Sheng Wu Ji Mian Yi Xue Za Zhi, 1990. 23(4): p. 259-70. 17.Chiang, C.M. and R.G. Roeder, Cloning of an intrinsic human TFIID subunit that interacts with multiple transcriptional activators. Science, 1995. 267(5197): p. 531-6. 18.Chu, P.W. and E.G. Westaway, Replication strategy of Kunjin virus: evidence for recycling role of replicative form RNA as template in semiconservative and asymmetric replication. Virology, 1985. 140(1): p. 68-79. 19.Cleaves, G.R., T.E. Ryan, and R.W. Schlesinger, Identification and characterization of type 2 dengue virus replicative intermediate and replicative form RNAs. Virology, 1981. 111(1): p. 73-83. 20.Colpitts, T.M., et al., Dengue virus capsid protein binds core histones and inhibits nucleosome formation in human liver cells. PLoS One, 2011. 6(9): p. e24365. 21.Conaway, J.W., et al., Control of elongation by RNA polymerase II. Trends in Biochemical Sciences, 2000. 25(8): p. 375-380. 22.Devaiah, B.N., et al., Novel functions for TAF7, a regulator of TAF1-independent transcription. The Journal of biological chemistry, 2010. 285(50): p. 38772-38780. 23.Dikstein, R., S. Ruppert, and R. Tjian, TAFII250 Is a Bipartite Protein Kinase That Phosphorylates the Basal Transcription Factor RAP74. Cell, 1996. 84(5): p. 781-790. 24.DuBridge, R.B., et al., Analysis of mutation in human cells by using an Epstein-Barr virus shuttle system. Molecular and Cellular Biology, 1987. 7(1): p. 379-387. 25.Dunphy, E.L., et al., Requirement for TAF(II)250 acetyltransferase activity in cell cycle progression. Mol Cell Biol, 2000. 20(4): p. 1134-9. 26.Dvir, A., J.W. Conaway, and R.C. Conaway, Mechanism of transcription initiation and promoter escape by RNA polymerase II. Current Opinion in Genetics & Development, 2001. 11(2): p. 209-214. 27.Dynlacht, B.D., T. Hoey, and R. Tjian, Isolation of coactivators associated with the TATA-binding protein that mediate transcriptional activation. Cell, 1991. 66(3): p. 563-76. 28.Freiman, R.N., et al., Requirement of tissue-selective TBP-associated factor TAFII105 in ovarian development. Science, 2001. 293(5537): p. 2084-7. 29.Gegonne, A., et al., TFIID component TAF7 functionally interacts with both TFIIH and P-TEFb. Proc Natl Acad Sci U S A, 2008. 105(14): p. 5367-72. 30.Gegonne, A., J.D. Weissman, and D.S. Singer, TAFII55 binding to TAFII250 inhibits its acetyltransferase activity. Proc Natl Acad Sci U S A, 2001. 98(22): p. 12432-7. 31.Gegonne, A., et al., TAF7: a possible transcription initiation check-point regulator. Proc Natl Acad Sci U S A, 2006. 103(3): p. 602-7. 32.Green, M.R., TBP-associated factors (TAFIIs): multiple, selective transcriptional mediators in common complexes. Trends in Biochemical Sciences, 2000. 25(2): p. 59-63. 33.Gubler, D.J., Dengue and Dengue Hemorrhagic Fever. Clinical Microbiology Reviews, 1998. 11(3): p. 480-496. 34.Guermah, M., et al., The TBN Protein, which Is Essential for Early Embryonic Mouse Development, Is an Inducible TAFII Implicated In Adipogenesis. Molecular Cell, 2003. 12(4): p. 991-1001. 35.Hahn, S., Structure and mechanism of the RNA polymerase II transcription machinery. Nat Struct Mol Biol, 2004. 11(5): p. 394-403. 36.Hasan, S., et al., Dengue virus: A global human threat: Review of literature. J Int Soc Prev Community Dent, 2016. 6(1): p. 1-6. 37.Henchal, E.A. and J.R. Putnak, The dengue viruses. Clin Microbiol Rev, 1990. 3(4): p. 376-96. 38.Ho, T.S., et al., Clinical and laboratory predictive markers for acute dengue infection. J Biomed Sci, 2013. 20: p. 75. 39.Holstege, F.C., et al., Dissecting the regulatory circuitry of a eukaryotic genome. Cell, 1998. 95(5): p. 717-28. 40.Howcroft, T.K., et al., Distinct transcriptional pathways regulate basal and activated major histocompatibility complex class I expression. Mol Cell Biol, 2003. 23(10): p. 3377-91. 41.Huang, J.H., et al., Laboratory-based dengue surveillance in Taiwan, 2005: a molecular epidemiologic study. Am J Trop Med Hyg, 2007. 77(5): p. 903-9. 42.Irie, K., et al., Sequence analysis of cloned dengue virus type 2 genome (New Guinea-C strain). Gene, 1989. 75(2): p. 197-211. 43.Jones, C.T., et al., Flavivirus capsid is a dimeric alpha-helical protein. J Virol, 2003. 77(12): p. 7143-9. 44.Khromykh, A.A., et al., Coupling between replication and packaging of flavivirus RNA: evidence derived from the use of DNA-based full-length cDNA clones of Kunjin virus. Journal of virology, 2001. 75(10): p. 4633-4640. 45.killington, H., TCID50 calculator. Virology Methods Manual, 1996: p. 374. 46.Kloet, S.L., et al., Phosphorylation-dependent regulation of cyclin D1 and cyclin A gene transcription by TFIID subunits TAF1 and TAF7. Mol Cell Biol, 2012. 32(16): p. 3358-69. 47.Kuhn, R.J., et al., Structure of dengue virus: implications for flavivirus organization, maturation, and fusion. Cell, 2002. 108(5): p. 717-25. 48.Kumar, R., et al., Dengue Virus Capsid Interacts with DDX3X-A Potential Mechanism for Suppression of Antiviral Functions in Dengue Infection. Front Cell Infect Microbiol, 2017. 7: p. 542. 49.Lee, T.I., et al., Redundant roles for the TFIID and SAGA complexes in global transcription. Nature, 2000. 405(6787): p. 701-4. 50.Leurent, C., et al., Mapping key functional sites within yeast TFIID. The EMBO journal, 2004. 23(4): p. 719-727. 51.Lin, C.C., et al., Characteristic of dengue disease in Taiwan: 2002-2007. Am J Trop Med Hyg, 2010. 82(4): p. 731-9. 52.Liu, Y., et al., Dengue virus subgenomic RNA induces apoptosis through the Bcl-2-mediated PI3k/Akt signaling pathway. Virology, 2014. 448: p. 15-25. 53.Ma, L., et al., Solution structure of dengue virus capsid protein reveals another fold. Proc Natl Acad Sci U S A, 2004. 101(10): p. 3414-9. 54.Markoff, L., B. Falgout, and A. Chang, A conserved internal hydrophobic domain mediates the stable membrane integration of the dengue virus capsid protein. Virology, 1997. 233(1): p. 105-17. 55.Martin, J., R. Halenbeck, and J. Kaufmann, Human transcription factor hTAF(II)150 (CIF150) is involved in transcriptional regulation of cell cycle progression. Molecular and cellular biology, 1999. 19(8): p. 5548-5556. 56.Mason, P.W., Maturation of Japanese encephalitis virus glycoproteins produced by infected mammalian and mosquito cells. Virology, 1989. 169(2): p. 354-64. 57.McBride, W.J. and H. Bielefeldt-Ohmann, Dengue viral infections; pathogenesis and epidemiology. Microbes Infect, 2000. 2(9): p. 1041-50. 58.Mengus, G., et al., Human TAF(II)135 potentiates transcriptional activation by the AF-2s of the retinoic acid, vitamin D3, and thyroid hormone receptors in mammalian cells. Genes Dev, 1997. 11(11): p. 1381-95. 59.Metzger, D., et al., Mammalian TAF(II)30 is required for cell cycle progression and specific cellular differentiation programmes. Embo j, 1999. 18(17): p. 4823-34. 60.Mitchell, C.J. and B.R. Miller, Vertical transmission of dengue viruses by strains of Aedes albopictus recently introduced into Brazil. J Am Mosq Control Assoc, 1990. 6(2): p. 251-3. 61.Mizzen, C.A., et al., The TAFII250 Subunit of TFIID Has Histone Acetyltransferase Activity. Cell, 1996. 87(7): p. 1261-1270. 62.Mohan, W.S., Jr., et al., TAF10 (TAF(II)30) is necessary for TFIID stability and early embryogenesis in mice. Mol Cell Biol, 2003. 23(12): p. 4307-18. 63.Monath, T.P., Yellow fever. Medicine, 2005. 33(7): p. 21-23. 64.Mori, Y., et al., Nuclear localization of Japanese encephalitis virus core protein enhances viral replication. Journal of virology, 2005. 79(6): p. 3448-3458. 65.Mukhopadhyay, S., R.J. Kuhn, and M.G. Rossmann, A structural perspective of the flavivirus life cycle. Nat Rev Microbiol, 2005. 3(1): p. 13-22. 66.Murray, J.M., J.G. Aaskov, and P.J. Wright, Processing of the dengue virus type 2 proteins prM and C-prM. J Gen Virol, 1993. 74 ( Pt 2): p. 175-82. 67.Nagila, A., et al., Role of CD137 signaling in dengue virus-mediated apoptosis. Biochem Biophys Res Commun, 2011. 410(3): p. 428-33. 68.Netsawang, J., et al., Nuclear localization of dengue virus capsid protein is required for DAXX interaction and apoptosis. Virus Res, 2010. 147(2): p. 275-83. 69.Netsawang, J., et al., Dengue virus disrupts Daxx and NF-kappaB interaction to induce CD137-mediated apoptosis. Biochem Biophys Res Commun, 2014. 450(4): p. 1485-91. 70.Nowak, T., et al., Analyses of the terminal sequences of West Nile virus structural proteins and of the in vitro translation of these proteins allow the proposal of a complete scheme of the proteolytic cleavages involved in their synthesis. Virology, 1989. 169(2): p. 365-76. 71.Othman, S., N.A. Rahman, and R. Yusof, Induction of MHC Class I HLA-A2 promoter by dengue virus occurs at the NFkappaB binding domains of the Class I Regulatory Complex. Virus Res, 2012. 163(1): p. 238-45. 72.Pear, W.S., et al., Production of high-titer helper-free retroviruses by transient transfection. Proceedings of the National Academy of Sciences, 1993. 90(18): p. 8392-8396. 73.Pham, A.-D. and F. Sauer, Ubiquitin-Activating/Conjugating Activity of TAFII250, a Mediator of Activation of Gene Expression in Drosophila. Science, 2000. 289(5488): p. 2357-2360. 74.Pham, A.D., S. Muller, and F. Sauer, Mesoderm-determining transcription in Drosophila is alleviated by mutations in TAF(II)60 and TAF(II)110. Mech Dev, 1999. 84(1-2): p. 3-16. 75.Pugh, B.F. and R. Tjian, Transcription from a TATA-less promoter requires a multisubunit TFIID complex. Genes Dev, 1991. 5(11): p. 1935-45. 76.Raval, A., et al., Transcriptional coactivator, CIITA, is an acetyltransferase that bypasses a promoter requirement for TAF(II)250. Mol Cell, 2001. 7(1): p. 105-15. 77.Rice, C.M., et al., Nucleotide sequence of yellow fever virus: implications for flavivirus gene expression and evolution. Science, 1985. 229(4715): p. 726-33. 78.Rosen, L., Further observations on the mechanism of vertical transmission of flaviviruses by Aedes mosquitoes. Am J Trop Med Hyg, 1988. 39(1): p. 123-6. 79.Rosen, L., et al., Comparative susceptibility of mosquito species and strains to oral and parenteral infection with dengue and Japanese encephalitis viruses. Am J Trop Med Hyg, 1985. 34(3): p. 603-15. 80.Samsa, M.M., et al., Dengue Virus Capsid Protein Usurps Lipid Droplets for Viral Particle Formation. PLOS Pathogens, 2009. 5(10): p. e1000632. 81.Sangiambut, S., et al., Multiple regions in dengue virus capsid protein contribute to nuclear localization during virus infection. Journal of General Virology, 2008. 89(5): p. 1254-1264. 82.Shu, P.-Y., et al., Fever screening at airports and imported dengue. Emerging infectious diseases, 2005. 11(3): p. 460-462. 83.Shu, P.-Y., et al., Application of the dengue virus NS1 antigen rapid test for on-site detection of imported dengue cases at airports. Clinical and vaccine immunology : CVI, 2009. 16(4): p. 589-591. 84.Shu, P.Y., et al., Molecular characterization of dengue viruses imported into Taiwan during 2003-2007: geographic distribution and genotype shift. Am J Trop Med Hyg, 2009. 80(6): p. 1039-46. 85.Singhi, S., N. Kissoon, and A. Bansal, Dengue and dengue hemorrhagic fever: management issues in an intensive care unit. J Pediatr (Rio J), 2007. 83(2 Suppl): p. S22-35. 86.Stadler, K., et al., Proteolytic activation of tick-borne encephalitis virus by furin. J Virol, 1997. 71(11): p. 8475-81. 87.Stocks, C.E. and M. Lobigs, Signal peptidase cleavage at the flavivirus C-prM junction: dependence on the viral NS2B-3 protease for efficient processing requires determinants in C, the signal peptide, and prM. Journal of virology, 1998. 72(3): p. 2141-2149. 88.Suthar, M.S., M.S. Diamond, and M. Gale, Jr., West Nile virus infection and immunity. Nat Rev Microbiol, 2013. 11(2): p. 115-28. 89.Tanese, N., B.F. Pugh, and R. Tjian, Coactivators for a proline-rich activator purified from the multisubunit human TFIID complex. Genes Dev, 1991. 5(12a): p. 2212-24. 90.Verrijzer, C.P., et al., Binding of TAFs to core elements directs promoter selectivity by RNA polymerase II. Cell, 1995. 81(7): p. 1115-25. 91.Walker, A.K., et al., Distinct requirements for C.elegans TAF(II)s in early embryonic transcription. Embo j, 2001. 20(18): p. 5269-79. 92.Wang, S.-H., et al., Intracellular localization and determination of a nuclear localization signal of the core protein of dengue virus. Journal of General Virology, 2002. 83(12): p. 3093-3102. 93.Welsch, S., et al., Composition and three-dimensional architecture of the dengue virus replication and assembly sites. Cell Host Microbe, 2009. 5(4): p. 365-75. 94.Westaway, E.G., et al., Flaviviridae. Intervirology, 1985. 24(4): p. 183-92. 95.Westaway, E.G., et al., Proteins C and NS4B of the flavivirus Kunjin translocate independently into the nucleus. Virology, 1997. 234(1): p. 31-41. 96.Wieczorek, E., et al., Function of TAF(II)-containing complex without TBP in transcription by RNA polymerase II. Nature, 1998. 393(6681): p. 187-91. 97.Yamit-Hezi, A. and R. Dikstein, TAFII105 mediates activation of anti-apoptotic genes by NF-kappaB. Embo j, 1998. 17(17): p. 5161-9. 98.Yamshchikov, V.F. and R.W. Compans, Processing of the intracellular form of the west Nile virus capsid protein by the viral NS2B-NS3 protease: an in vitro study. Journal of virology, 1994. 68(9): p. 5765-5771. 99.吳韋伸, 登革熱病毒核心蛋白與hTAF7交互作用之功能性研究, 生命科學系暨分子生物研究所暨生物醫學研究. 2009, 國立中正大學.
|