跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.87) 您好!臺灣時間:2025/02/13 04:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:黃亮諭
研究生(外文):HUANG, LIANG-YU
論文名稱:模板化無電電鍍法結合賈凡尼製換法製備金屬奈米網狀觸媒應用於氫化反應研究
論文名稱(外文):Fabrication and Hydrogenation Reaction Studies of Metallic Nanonetworks Catalyst via Templated Electroless Plating and Galvanic Replacement Syntheses
指導教授:蔡敬誠
指導教授(外文):TSAI, JING-CHERNG
口試委員:何榮銘蔣酉旺黃智峯
口試委員(外文):HO, RONG-MINGCHIANG, YEO-WANHUANG, CHIH-FENG
口試日期:2019-07-18
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:99
中文關鍵詞:氫化反應奈米金屬觸媒奈米多孔洞結構SBS
外文關鍵詞:Hydrogenation ReactionNano Mesoporous StructureNano Metallic CatalystNickelSBS
相關次數:
  • 被引用被引用:0
  • 點閱點閱:200
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
本研究利用清大何榮銘教授實驗室製備之奈米尺寸多孔洞氫化鎳觸媒,以模板化無電電鍍法結合賈凡尼製換法製備金屬奈米網狀觸媒,來進行氫化測試。本研究主要探討於氫化實驗的部分,利用不同的溫度和壓力去探討此氫化觸媒對單一雙鍵及芳香烴單體(環己烯、甲苯)的氫化能力,找到其最佳的氫化條件,並與商用的氫化鎳觸媒進行比較。亦嘗試利用賈凡尼置換法以摻雜Pd、Pt等貴重金屬來合成多金屬奈米觸媒,以求進一步提升觸媒活性,同時,也將奈米多孔洞鎳觸媒運用於氫化高分子(SBS、PB)及聚醯胺單體的測試。而在循環測試中亦可發現觸媒在多次實驗後仍保有良好的活性。此觸媒製備容易,成本低廉,且活性優於市售的商用鎳觸媒,未來以期尋求工業應用之可能。
This study aims to develop new nano-metallic catalyst systems for use as new hydrogenation catalysts. The nano catalyst was fabricated via template electoless plating developed by Professor Rong-Ming Ho’s group. The resulting nano catalyst were found to have a high surface area, and have a networking structure which should offer high reaction surface and high abrasion resistant for use in various catalytic reaction. Accordingly, this study explores the possibility of using to mediate the hydrogenation of alkene and aromatic compounds in a batch reactor. Comparing with commercial Raney® Nickel, we found that the fabricated nanonetwork nickel catalyst has higher hydrogenation activity than commercial Raney® Nickel. The catalyst is able to maintain high catalytic activity after eight recycle test. Efforts to mediate to hydrogenation of unsaturated polymers (e.g. polybutadiene) by using the nanonetwork catalyst was also investigated in our lab . The results show that catalyst activity (conversion of double bonds) is strongly depending on the molecular weight of polymers. Furthermore, we also used this new catalyst to mediate hydrogenation of polyimide monomer, and found that the conversion and selectivity strongly depending on the temperature.
致謝 I
中文摘要: II
Abstract: III
目錄 V
圖目錄 IX
表目錄 XII
第一章、緒論: 1
1-1、前言[1] 1
1-2、氫化簡介 3
1-2-1、氫化反應分類[4] 3
1-2-2、氫化反應過程[7,8 ,9] 4
1-3、觸媒分類簡介[6] 7
1-3-1、雙金屬觸媒(Bimetallic catalysts)簡介 9
1-3-2、奈米金屬觸媒簡介(Nano catalysts) 10
1-4、苯乙烯- 丁二烯- 苯乙烯嵌段共聚物(Styrene-Butadiene-Styrene block copolymer,SBS)簡介[10,11,] 13
1-4-1、苯乙烯- 丁二烯- 苯乙烯嵌段共聚物(Styrene-Butadiene-Styrene block copolymer,SBS)之合成方式[12] 15
1-5、聚醯亞胺(polyimide,簡稱PI)簡介[13]: 19
1-6、文獻回顧 22
1-6-1、Raney Nickel簡介 23
1-7、研究動機 25
第二章、實驗部分 26
2-1、實驗藥品 26
2-2、實驗設備與分析儀器 30
2-4、分析儀器原理 32
2-4-1、核磁共振分析儀(Nuclear Magnetic Resonance,NMR) 32
2-4-1、凝膠滲透層析儀(Gel Permeation Chromatography,GPC) 35
2-4-2、程溫還原分析(Temperature Programmed Reduction,TPR)[18] 37
2-5、實驗步驟 40
2-5-1氫化含雙鍵或芳香族單體:環己烯(cyclohexene)、甲苯(toluene)[3] 40
2-5-2、氫化聚醯胺之單體:對苯二胺 (p-phenylenediamine,PPD)、均苯四甲酸二酐(Pyromellitic dianhydride,PMDA)[5, 14,13,19]: 41
2-5-3、氫化高分子聚丁二烯(Polybutadiene,PB)、苯乙烯-丁二烯-苯乙烯三嵌段共聚物(Styrene-Butadiene-Styrene,SBS)[11]: 42
2-5-4、觸媒回收 43
第三章、實驗結果與討論 44
3-1、奈米中孔洞金屬鎳觸媒及摻雜貴金屬之雙金屬觸媒之製備[20] 44
3-1-1、奈米中孔洞金屬鎳觸媒之製備 44
3-1-2、摻雜貴金屬之雙金屬觸媒之製備[21,22,23] 46
3-2、氫化雙鍵及芳香族之單體 47
3-2-1氫化雙鍵、芳香族單體之反應條件[6, 24] 47
3-2-2、奈米多孔洞觸媒與商用觸媒於選擇性氫化之觸媒表現 48
3-2-3、奈米多孔洞觸媒與商用觸媒於芳香族單體氫化之觸媒表現 49
3-2-4、氫化雙鍵、芳香族單體之1H-NMR圖譜分析 50
3-2-5、觸媒持久性測試 52
3-3、觸媒對高分子的氫化測試 56
3-3-1、觸媒對高分子PB(Polybutadiene)之氫化測試 56
3-3-2、氫化PB(Polybutadiene)之1H-NMR圖譜分析 58
3-3-3、觸媒對高分子SBS(Styrene-butadiene-styrene triblock copolymer)之氫化測試 62
3-3-4、氫化SBS(Styrene-Butadiene-Styrene triblock copolymer)之1H-NMR圖譜分析 64
3-3-5、摻雜貴重金屬鈀(Pd)於奈米多孔鎳觸媒 68
3-3-6、摻雜貴重金屬鉑(Pt)於奈米多孔鎳觸媒 70
3-3-7、提升觸媒濃度對氫化反應之影響 74
3-3-8、提升反應時間對氫化反應之影響 76
3-3-9、高分子溶液(SBS solution)濃度對氫化反應之影響 79
3-4、氫化聚醯亞胺單體之測試 82
3-4-1、對苯二胺單體(para-Phenylenediamine,PPD)之氫化測試 82
3-4-2、氫化對苯二胺單體(para-Phenylenediamine,PPD)之1H-NMR圖譜分析 88
3-5、利用程溫還原(Temperature Programmed Reduction,TPR)方法活化觸媒 90
第五章、結論 95
參考文獻 97


1.Gary, J. H. a. H., G.E., Petroleum Refining Technology and Economics. . 1984.
2.Jang, E. S.; Jung, M. Y.; Min, D. B., Hydrogenation for Low Trans and High Conjugated Fatty Acids. Comprehensive Reviews in Food Science and Food Safety 2005, 4 (1), 22-30.
3.Lu, S.; Lonergan, W. W.; Bosco, J. P.; Wang, S.; Zhu, Y.; Xie, Y.; Chen, J. G., Low temperature hydrogenation of benzene and cyclohexene: A comparative study between γ-Al2O3 supported PtCo and PtNi bimetallic catalysts. Journal of Catalysis 2008, 259 (2), 260-268.
4.Zhang, J.; Zhao, C., Development of a Bimetallic Pd-Ni/HZSM-5 Catalyst for the Tandem Limonene Dehydrogenation and Fatty Acid Deoxygenation to Alkanes and Arenes for Use as Biojet Fuel. ACS Catalysis 2016, 6 (7), 4512-4525.
5.Caryl, S. Process for the preparation of hexahydro-para-phenylene diamine. US2175003, 1937.
6.Nadgeri, J., Studies on mono bimetallic and nano catalysts of nickel palladium and platinum metals and their applications in selective hydrogenation of acetylenic compounds and nitroaromatics of industrial relevance. 2011.
7.Grenoble, D. C.; Estadt, M. M.; Ollis, D. F., The chemistry and catalysis of the water gas shift reaction: 1. The kinetics over supported metal catalysts. Journal of Catalysis 1981, 67 (1), 90-102.
8.Riekert, L., A. J. B. Robertson, Catalysis of Gas Reactions by Metals. Logos Press Ltd., London 1970. 182 Seiten. Preis: 70s. Berichte der Bunsengesellschaft für physikalische Chemie 1971, 75 (1), 93-93.
9.Richard I. Masel, J. W. a. S., chemical kinetics and catalysts. 2002.
10.Zhao, Y.; Ning, N.; Hu, X.; Li, Y.; Chen, F.; Fu, Q., Processing temperature dependent mechanical response of a thermoplastic elastomer with low hard segment. Polymer 2012, 53 (19), 4310-4317.
11.Chiang, C.-H.; Tsai, J.-C., Hydrogenation of polystyrene-b-polybutadiene-b-polystyrene mediated by group (IV) metal metallocene complexes. Journal of Polymer Science Part A: Polymer Chemistry 2017, 55 (13), 2141-2149.
12.林福, 有機金屬茂觸媒應用於SIS橡膠氫化反應特性研究. 國立中正大學化學工程研究所碩士論文 2004.
13.Ma, H.; Cai, J., Catalytic hydrogenation of 1,4-phenylenediamine to 1,4-cyclohexanediamine. Russian Journal of Applied Chemistry 2014, 87 (3), 397-403.
14.Hasegawa, M.; Hirano, D.; Fujii, M.; Haga, M.; Takezawa, E.; Yamaguchi, S.; Ishikawa, A.; Kagayama, T., Solution-processable colorless polyimides derived from hydrogenated pyromellitic dianhydride with controlled steric structure. Journal of Polymer Science Part A: Polymer Chemistry 2013, 51 (3), 575-592.
15.趙許海、史海、王曉東、張濤,2018,1,2,4,5-環己烷四甲二酸的合成方法. 中華人民共和國國家知識財產局專利第108069978 A號
16.三菱瓦斯化學株式會社,2003,製備氫化多梭酸的方法和製備氫化芳族多酸酐的方法. 中華人民共和國國家知識財產局專利第1428324 A號
17.Longone, D. T., Derivatives of Pyromellitic Acid. 1,2,4,5-Tetrasubstituted Cyclohexanes. The Journal of Organic Chemistry 1963, 28 (7), 1770-1773.
18.吳寶旺, 二甲苯在鈀,鈀-鉑觸媒之催化氧化研究. 國立中正大學化學工程研究所碩士論文 2005.
19.Qiu, G.; Ma, W.; Jiao, Y.; Wu, L., Low-dielectric-constant aromatic homopolyimide and copolyimide derived from pyromellitic dianhydride, 4,4′-oxydianiline, 2,2-bis[4-(4-aminephenoxy)phenyl]propane, 1,4-bis(4-aminophenoxy)benzene, or 1,3-bis(4-aminophenoxy)benzene. Journal of Applied Polymer Science 2019, 136 (18), 47405.
20.Hsueh, H.-Y.; Huang, Y.-C.; Ho, R.-M.; Lai, C.-H.; Makida, T.; Hasegawa, H., Nanoporous Gyroid Nickel from Block Copolymer Templates via Electroless Plating. Advanced Materials 2011, 23 (27), 3041-3046.
21.Telkar, M. M.; Nadgeri, J. M.; Rode, C. V.; Chaudhari, R. V., Role of a co-metal in bimetallic Ni–Pt catalyst for hydrogenation of m-dinitrobenzene to m-phenylenediamine. Applied Catalysis A: General 2005, 295 (1), 23-30.
22.Liu, D.; Li, Y.; Kottwitz, M.; Yan, B.; Yao, S.; Gamalski, A.; Grolimund, D.; Safonova, O. V.; Nachtegaal, M.; Chen, J. G.; Stach, E. A.; Nuzzo, R. G.; Frenkel, A. I., Identifying Dynamic Structural Changes of Active Sites in Pt–Ni Bimetallic Catalysts Using Multimodal Approaches. ACS Catalysis 2018, 8 (5), 4120-4131.
23.Lu, P.; Toshima, N., Catalysis of Polymer-Protected Ni/Pd Bimetallic Nano-Clusters for Hydrogenation of Nitrobenzene Derivatives. 2000; Vol. 73, p 751-758.
24.Rioux, R. M.; Hsu, B. B.; Grass, M. E.; Song, H.; Somorjai, G. A., Influence of Particle Size on Reaction Selectivity in Cyclohexene Hydrogenation and Dehydrogenation over Silica-Supported Monodisperse Pt Particles. Catalysis Letters 2008, 126 (1), 10.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top