跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/03/16 05:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:沈剛維
研究生(外文):SHEN, GANG-WEI
論文名稱:Ansa-Metallocene載體觸媒之合成與具備長支鏈聚乙烯之聚合反應條件探討
論文名稱(外文):Syntheses of Ansa-Metallocene Supported Catalysts: Polymerization Conditions for the Generation of Long-chain-branched Ethylene Polymers
指導教授:蔡敬誠
指導教授(外文):TSAI, JING-CHERNG
口試委員:何榮銘蔣酉旺黃智峯
口試委員(外文):HO, RONG-MINGCHIANG, YEO-WANHUANG, CHIH-FENG
口試日期:2019-07-18
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:103
中文關鍵詞:MetalloceneAnsa-Metallocene載體觸媒形態控制長支鏈聚乙烯
外文關鍵詞:MetalloceneAnsa-Metallocenesupported catalystmorphology controllong-chain-branched polyethylene
相關次數:
  • 被引用被引用:0
  • 點閱點閱:201
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
具有架橋結構之Metallocene觸媒(Ansa-Metallocene)在與助觸媒MAO(Methylaluminoxane)活化的條件下,可以在乙烯單體之聚合反應中直接產生長支鏈結構之聚乙烯,而長支鏈聚乙烯的形成可以改變聚乙烯在溶融態下之物理機械強度,使聚乙烯具備較優異的塑模成型性,因此可有效擴展LLDPE的應用空間。然而,直接以Metallocene與MAO(Methylaluminoxane)系統下進行Homogeneous聚合,將造成反應器積垢、輸送管線堵管之現象。因此,將Metallocene承載於適當擔體,以控制聚合時的產物形態是重要的研究課題。
本研究先合成solid MAO用以乘載Ansa-Metallocene,並成功合成擔體觸媒,但此觸媒產生不佳的聚乙烯型態。於是我們於本研究中發展出新的擔體,用以合成新的ansa-Metallocene擔體觸媒系統,此觸媒成功使聚乙烯產生長支鏈,並使之擁有良好的型態與極佳的聚合活性。
本研究透過SEM確定擔體與聚乙烯型態、3D GPC(Triple Detection GPC)確定高分子具有長支鏈,Malvern Mastersizer確定粒徑分佈,我們由以上之儀器作為本次研究的分析方式。最後的分析結果顯示,我們成功透過產生新的擔體並合成出ansa-Metallocene觸媒系統,並在乙烯單體的聚合過程中產生具有長支鏈和型態控制的聚乙烯,而同時此觸媒也擁有絕佳的乙烯聚合反應活性。

Ansa-Metallocene/Methylaluminoxane catalysts are able to mediate ethylene (α-olefins) polymerization to provide various densities of PEs with long-chain-branching architecture. The presence of long-chain-branches in PE can elevate the mechanical strength in melting state and improve viscoelastic property of polymer that offer new applications for PE industry.
Despite Metallocene-catalyst-mediated polyolefin polymerization by using homogeneous processes offer high catalyst activity, the polymerization process may encounter problems such as reactor and pipeline fouling because of the lack of morphology control in the resulting ethylene polymers. Therefore, efforts to provide morphology control through using a supported catalyst system is an extremely important issue for industrial research.
In previous research, we demonstrated that non-ansa-Metallocene catalysts supported on silica gel offered great morphology control and polymerization activity. However, efforts to synthesize supported ansa-metallocene catalysts did not give satisfactory results as a reduction in catalyst activity and poor morphology control in the resulting PE were observed. In order to circumvent these problems, a new support system was used for anchoring ansa-Metallocene catalysts. Our results demonstrated that the new support system offers PE production with excellent catalyst activity, provides the production of PE with long-chain-branching structure and produces PE polymers with good morphology control (morphology of PE polymer was evaluated by using SEM; the content of long-chain-branched PE was determined through 3D-GPC).

摘要 I
Abstract III
目錄 V
圖目錄 IX
表目錄 XII
第一章、緒論 1
1.1、前言 1
1.2、原理與文獻探討 3
1.2.1、聚烯烴介紹(LDPE HDPE LLDPE ULDPE LCBPE) 3
1.2.1.1、LDPE 5
1.2.1.2、HDPE 7
1.2.1.3、LLDPE 7
1.2.1.4、ULDPE 8
1.2.1.5、LCBPE 8
1.2.1.6、各性質聚乙烯(LDPE LLDPE LCBPE)比較 9
1.2.2、Ziegler-Natta觸媒 10
1.2.2.1、結構與性質 11
1.2.3、Metallocene 觸媒 12
1.2.3.1、結構與性質 13
1.2.4、MAO 助觸媒 14
1.2.4.1、MAO 活化Metallocene反應機制 14
1.2.4.2、Metallocene/MAO觸媒系統聚合機制 16
1.2.4.3、Ansa-Metallocene觸媒與LCB反應機制 18
1.2.4.4、Metallocene/MAO系統鏈轉移現象 20
1.2.5、Silica與 MAO之結合 22
1.2.5.1、Silica之除水 22
1.2.5.2、Silica與MAO之結合反應 23
1.2.6、觸媒載體 24
1.2.6.1、二氧化矽載體Metallocene觸媒技術 25
1.2.6.2、Solid MAO擔體 26
1.2.6.3、Super acid support 28
1.2.7、工業界之聚烯烴製程介紹 28
1.2.7.1、淤漿製程(slurry process) 28
1.2.7.2、氣相製程(gas-phase process) 30
1.2.7.3、溶液製程(solution process) 31
1.3、研究動機與目的 32
1.3.1、實驗構想 32
1.3.2、觸媒挑選 33
1.3.3、sMAO 34
1.3.4、solid-MAO/無機固態擔體 34
1.3.5、實驗製程修改 35
第二章、實驗部分 37
2.1、 實驗相關器材 37
2.1.1、藥品清單 37
2.1.2、器材清單 42
2.2、分析儀器簡介 44
2.2.1、3D GPC 44
2.2.2、SEM 45
2.2.3、NMR 46
2.2.4、差示掃描量熱法(DSC) 46
2.3、實驗步驟 48
2.3.1、溶劑純化步驟 48
2.3.1.1、甲苯純化 49
2.3.1.2、己烷純化 50
2.3.1.3、正庚烷純化 50
2.3.1.4、己烯純化 50
2.3.2、sMAO擔體研究部分 51
2.3.2.1、sMAO合成步驟 51
2.3.2.2、Metallocene觸媒載體化步驟 51
2.3.3、solid-MAO/無機固態擔體部分 52
2.3.3.1、無機固態擔體的前處理 52
2.3.3.2、solid-MAO/無機固態擔體合成步驟 52
2.3.3.3、Metallocene觸媒載體化步驟 54
2.3.4、聚合步驟 55
2.3.4.1、單聚步驟 55
2.3.4.2、共聚步驟 56
2.3.4.3、產物收集 57
第三章、結果與討論 58
3.1、Ansa-Metallocene 均相觸媒 59
3.1.1、觸媒活性測試 59
3.1.2、3D-GPC圖譜說明 60
3.1.3、3D-GPC檢測 64
3.1.4、Solution聚合乙烯之SEM圖 66
3.2、sMAO擔體測試 68
3.2.1、sMAO合成條件探討 68
3.2.2、sMAO載體觸媒活性分析 69
3.2.3、sMAO型態 71
3.2.4、sMAO系統結論 73
3.3、solid-MAO/無機固態擔體測試 74
3.3.1、solid-MAO/無機固態擔體合成條件探討 74
3.3.2、solid-MAO/無機固態擔體型態 75
3.3.3、solid-MAO/無機固態擔體觸媒活性分析 80
3.3.4、Ansa-Metallocene載體觸媒之聚乙稀分析 82
3.3.5、各觸媒對於solid-MAO/無機固態擔體之優劣分析 90
3.3.6、solid-MAO/無機固態擔體系統之共聚研究 90
第四章、結論 99
第五章、參考文獻 101

1.Eckstein, A.; Suhm, J.; Friedrich, C.; Maier, R. D.; Sassmannshausen, J.; Bochmann, M.; Mülhaupt, R., Determination of Plateau Moduli and Entanglement Molecular Weights of Isotactic, Syndiotactic, and Atactic Polypropylenes Synthesized with Metallocene Catalysts. Macromolecules 1998, 31 (4), 1335-1340.
2.Baier, M. C.; Zuideveld, M. A.; Mecking, S., Post-Metallocenes in the Industrial Production of Polyolefins. Angewandte Chemie International Edition 2014, 53 (37), 9722-9744.
3.AsanumaY, T.; Nishimori; ItoN, M.; UchikawaT; Shiomura, Preparation of syndiotactic Polynesians by using metallocene catalysts. Polymer Bulletin 1991, 25 (5), 567-570.
4.Patel, R. M., Types and Basics of Polyethylene. In Handbook of Industrial Polyethylene and Technology, Spalding, M. A.; Chatterjee, A. M., Eds. 2017; pp 105-138.
5.Burdett, I. D.; Eisinger, R. S., Ethylene Polymerization Processes and Manufacture of Polyethylene. In Handbook of Industrial Polyethylene and Technology, 2017; pp 61-103.
6.Dobbin, C., An Industrial Chronology of Polyethylene. In Handbook of Industrial Polyethylene and Technology, Spalding, M. A.; Chatterjee, A. M., Eds. 2017; pp 1-23.
7.Kissin, Y. V., Catalysts for the Manufacture of Polyethylene. In Handbook of Industrial Polyethylene and Technology, Chatterjee, A. M.; Spalding, M. A., Eds. 2017; pp 25-60.
8.Liu, P.; Liu, W.; Wang, W.-J.; Li, B.-G.; Zhu, S., A Comprehensive Review on Controlled Synthesis of Long-Chain Branched Polyolefins: Part 3, Characterization of Long-Chain Branched Polymers. Macromolecular Reaction Engineering 2017, 11 (1), 1600012.
9.Zhou, Z.; Baugh, D.; Fontaine, P. P.; He, Y.; Shi, Z.; Mukhopadhyay, S.; Cong, R.; Winniford, B.; Miller, M., Long-Chain Branch Measurement in Substantially Linear Ethylene Polymers by 13C NMR with Halogenated Naphthalenes as Solvents. Macromolecules 2017, 50 (20), 7959-7966.
10.Liu, P.; Liu, W.; Wang, W.-J.; Li, B.-G.; Zhu, S., A Comprehensive Review on Controlled Synthesis of Long-Chain Branched Polyolefins: Part 1, Single Catalyst Systems. Macromolecular Reaction Engineering 2016, 10 (3), 156-179.
11.Liu, W.; Liu, P.; Wang, W.-J.; Li, B.-G.; Zhu, S., A Comprehensive Review on Controlled Synthesis of Long-Chain-Branched Polyolefins: Part 2, Multiple Catalyst Systems and Prepolymer Modification. Macromolecular Reaction Engineering 2016, 10 (3), 180-200.
12.Chen, E. Y.-X.; Marks, T. J., Cocatalysts for Metal-Catalyzed Olefin Polymerization:  Activators, Activation Processes, and Structure−Activity Relationships. Chemical Reviews 2000, 100 (4), 1391-1434.
13.Wilkinson, G.; Rosenblum, M.; Whiting, M. C.; Woodward, R. B., THE STRUCTURE OF IRON BIS-CYCLOPENTADIENYL. Journal of the American Chemical Society 1952, 74 (8), 2125-2126.
14.Miller, S. A.; Tebboth, J. A.; Tremaine, J. F., 114. Dicyclopentadienyliron. Journal of the Chemical Society (Resumed) 1952, (0), 632-635.
15.Kealy, T. J.; Pauson, P. L., A New Type of Organo-Iron Compound. Nature 1951, 168 (4285), 1039-1040.
16.Kaminsky, W., Highly active metallocene catalysts for olefin polymerization. Journal of the Chemical Society, Dalton Transactions 1998, (9), 1413-1418.
17.Napoli, M.; De Vita, R.; Immediata, I.; Longo, P.; Guerra, G., Polyethylene waxes by metallocenes. Polymers for Advanced Technologies 2011, 22 (4), 458-462.
18.Fink, G.; Steinmetz, B.; Zechlin, J.; Przybyla, C.; Tesche, B., Propene Polymerization with Silica-Supported Metallocene/MAO Catalysts. Chemical Reviews 2000, 100 (4), 1377-1390.
19.Sindorf, D. W.; Maciel, G. E., Silicon-29 NMR study of dehydrated/rehydrated silica gel using cross polarization and magic-angle spinning. Journal of the American Chemical Society 1983, 105 (6), 1487-1493.
20.Juan, A.; Damiani, D.; Pistonesi, C., Study of zirconocene and MAO interaction with SiO2 surfaces. Applied Surface Science 2000, 161 (3), 417-425.
21.洪俊曄. 具商業價值載體Metallocene觸媒技術及其應用於linear low density polyethylene(LLDPE)之合成. 國立中正大學, 嘉義縣, 2017.
22.Bonini, F.; Fraaije, V.; Fink, G., Propylene polymerization through supported metallocene/ MAO catalysts: Kinetic analysis and modelling. Journal of Polymer Science Part A: Polymer Chemistry 1995, 33 (14), 2393-2402.
23.Naik, S. D.; Ray, W. H., Particle morphology for polyolefins synthesized with supported metallocene catalysts. Journal of Applied Polymer Science 2001, 79 (14), 2565-2579.
24.Przybyla, C.; Fink, G., Two different, on the same silica supported metallocene catalysts, activated by various trialkylaluminums – a kinetic and morphological study as well as an experimental investigation for building stereoblock polymers. Acta Polymerica 1999, 50 (2‐3), 77-83.
25.Steinmetz, B.; Tesche, B.; Przybyla, C.; Zechlin, J.; Fink, G., Polypropylene growth on silica-supported metallocene catalysts: A microscopic study to explain kinetic behavior especially in early polymerization stages. Acta Polymerica 1997, 48 (9), 392-399.
26.Zheng, X.; Smit, M.; Chadwick, J. C.; Loos, J., Fragmentation Behavior of Silica-Supported Metallocene/MAO Catalyst in the Early Stages of Olefin Polymerization. Macromolecules 2005, 38 (11), 4673-4678.
27.Bortolussi, F.; Broyer, J.-P.; Spitz, R.; Boisson, C., Synthesis of Silica-Supported Metallocene Catalysts for Olefin Polymerization. Macromolecular Chemistry and Physics 2002, 203 (17), 2501-2507.
28.Jezequel, M.; Dufaud, V.; Ruiz-Garcia, M. J.; Carrillo-Hermosilla, F.; Neugebauer, U.; Niccolai, G. P.; Lefebvre, F.; Bayard, F.; Corker, J.; Fiddy, S.; Evans, J.; Broyer, J.-P.; Malinge, J.; Basset, J.-M., Supported Metallocene Catalysts by Surface Organometallic Chemistry. Synthesis, Characterization, and Reactivity in Ethylene Polymerization of Oxide-Supported Mono- and Biscyclopentadienyl Zirconium Alkyl Complexes:  Establishment of Structure/Reactivity Relationships. Journal of the American Chemical Society 2001, 123 (15), 3520-3540.
29.Daftaribesheli, M., Comparison of Slurry and Gas-phase Polymerization. In Comparison of catalytic ethylene polymerization in slurry and gas phase., University of Twente, 2009; pp 1-5.
30.林郁峰. 合成固態甲基鋁氧烷(sMAO)之Metallocene觸媒及其活化條件與反應條件探討. 國立中正大學, 嘉義縣, 2018.
31.Yau, W. W., Examples of Using 3D-GPC-TREF for Polyolefin Characterization. Macromolecular Symposia 2007, 257 (1), 29-45.
32.Williams, D. B. G.; Lawton, M., Drying of Organic Solvents: Quantitative Evaluation of the Efficiency of Several Desiccants. The Journal of Organic Chemistry 2010, 75 (24), 8351-8354.
33.Kilpatrick, A. F. R.; Buffet, J.-C.; Nørby, P.; Rees, N. H.; Funnell, N. P.; Sripothongnak, S.; O’Hare, D., Synthesis and Characterization of Solid Polymethylaluminoxane: A Bifunctional Activator and Support for Slurry-Phase Ethylene Polymerization. Chemistry of Materials 2016, 28 (20), 7444-7450.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊