跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.86) 您好!臺灣時間:2025/02/07 22:15
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:謝雨倫
研究生(外文):HSIEH, YU-LUN
論文名稱:奈米碳材/導電高分子於柔性薄膜電熱片之製備與性質 探討
論文名稱(外文):Flexible electrothermal film heaters based on nanocarbon /PEDOT : PSS composites
指導教授:陳靜誼陳靜誼引用關係
口試委員:陳靜誼陳建中陳蓉瑤吳文中
口試日期:2019-07-17
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:153
中文關鍵詞:柔性薄膜電熱片熱塑性聚氨酯彈性橡膠導電高分子碳黑碳纖維
外文關鍵詞:flexible electrothermal film heaterTPUPEDOT : PSScarbon blackcarbon nanofibercarbon nanocapsulescoke
相關次數:
  • 被引用被引用:0
  • 點閱點閱:392
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
家用電暖及個人穿戴電熱裝置逐漸朝向輕薄、便攜及節能趨勢發展,因而有了柔性薄膜電熱片研究領域之產生,其中,新一代導電高分子材料具優異的電熱性質及光學性能,因而為製備柔性薄膜電熱片最受矚目之材料,為提高導電高分子之導電性,以製備柔性薄膜電熱片,本研究探討加入不同碳材於導電高分子後,製備的柔性薄膜電熱片之導電性及電熱性質比較,利用四種碳材分別為市售碳黑(carbon black) (型號:Super P)、台灣中油股份有限公司提供之焦炭微粉(coke) (型號:CPCA)、中正大學化工系奈米實驗室提供之奈米碳球(carbon nanocapsules, CNC)以及自製PAN碳纖維(carbon nanofiber, CNF),與型號為PH1000之導電高分子聚(3,4 -乙烯二氧噻吩)-聚苯乙烯磺酸(PEDOT : PSS)混合配製不同濃度之導電液,並利用靜電紡絲技術(electrospinning technique)將熱塑性聚氨酯彈性橡膠(thermo- plastic polyurethane, TPU) (型號1185A)製作成彈性纖維膜,最後利用噴霧式塗布方式使導電液塗布於彈性纖維膜,完成柔性薄膜電熱片之製作,並探討性質及電熱表現差異。
經探討薄膜表面型態、接觸角分析、透氣度分析及電熱表現之測試結果,可得知添加碳材後可提升PEDOT : PSS之導電性,製備具電熱效果之柔性薄膜電熱片,且電熱表現依序為CNC>Super P>CNF>CPCA,與碳材導電度測試結果相同,且於相同碳材添加量下提高PEDOT : PSS之濃度,也可明顯提升薄膜電熱片之效能,而使用40 mg之CNC加入1.5 ml之PEDOT : PSS製備最佳柔性薄膜電熱片為CNC40- P1.5,可於10 V施加電壓下達到88.7℃之均溫,且於30 %之拉伸形變下仍可維持約50℃之表現,於90°彎曲回復下重複五次測試及施加電壓持溫一小時的測試結果中,也顯示其具有良好的撓曲性及長期穩定性。
而此柔性薄膜電熱片亦可作為加熱水溫之裝置,且於貼合手部之加熱測試中皆有良好升溫表現,證明本實驗製備之柔性薄膜電熱片具有做為柔性電熱裝置及柔性熱療裝置之前景。

Electrothermal film heater has been widely used in the broad area including vehicle defrosting windows, thermal therapy device, heating element. Among them, flexible or stretchable electrothermal film heater has attracted great attention. Conducting polymer (e.g. PEDOT : PSS) is one of the most commonly used conducting material for flexible electrothermal film heater. In this study, to enhance the conductivity of conducting polymer and improve the performance of electrothermal film heater, four different kinds of nanocarbon materials, including commercial carbon black (model: Super P), coke supplied by CPC Corporation, Taiwan (model: CPCA), carbon nanocapsules (model: CNC, provided by Nano lab, CHE, NCCU), and carbon nanofiber (CNT, Lab-made) are introduced to mix with conducting polymer, poly(3,4-ethylenedioxythiophene)-polystyrene sulfonate (PEDOT:PSS, model: PH1000) to form the composite as the conductive ink. On the other hand, stretchable thermoplastic polyurethane (TPU, model: 1185A) elastic nanofiber mat is fabricated by electrospinning method, which is used as the substrate. Then, the flexible electrothermal film heater is prepared by spray coating of the conductive ink on the TPU nanofiber mat.
The electrothermal performances correlated with four different carbon materials are investigated in terms of applied voltage, response time, conductivity, and their basic carbon properties. The results show the CNC/PEDOT : PSS (40 mg/1.5 ml) coated TPU film has higher conductivity and better electrothermal property compared to the PEDOT : PSS and other carbon materials/PEDOT:PSS coated films. The average temperature of 88.7 °C can be reached at voltage of 10 V and maintained at around 50 °C under 30% stretch deformation. Moreover, the flexible electrothermal film heater can remain its good heating performances under repeatedly bending test for 5 times and long-term test for 1 hour.
Finally, the flexible electrothermal film heater has been demonstrated to has good electrothermal property in two applications: wearable thin-film heaters and water heater. These results provide clear evidence for its potential and widespread applications in the future.

致謝 II
中文摘要 IV
Abstract VI
目錄 VIII
表目錄 XII
圖目錄 XIII
第一章 緒論 1
1-1 前言 1
第二章 文獻回顧 4
2-1 薄膜電熱片簡介 4
2-1-1 薄膜電熱片原理 4
2-1-2 薄膜電熱片分類 5
2-2 以導電高分子製備薄膜電熱片 12
2-2-1 導電高分子簡介 12
2-2-2 導電高分子PEDOT : PSS介紹 14
2-2-3 提高PEDOT : PSS 導電性方法 15
2-3 添加之碳材簡介 21
2-4 熱塑性聚酯(醚類)彈性體(TPU)簡介 23
2-4-1 TPU結構及特性 23
2-4-2 TPU靜電紡絲纖維 25
2-5 靜電紡絲技術 27
2-5-1 靜電紡絲原理與裝置 28
2-5-2 靜電紡絲影響參數 29
2-6 塗布技術 35
2-6-1 塗布技術種類 35
2-6-2 噴霧式塗布介紹 37
2-7 研究動機及目標 40
第三章 研究方法及步驟 42
3-1 實驗架構 42
3-2 利用靜電紡絲技術製備TPU薄膜 43
3-2-1 實驗藥品與材料 43
3-2-2 實驗裝置 44
3-2-3 實驗步驟及流程 44
3-2-4 實驗檢測儀器 48
3-3 利用靜電紡絲技術製備PAN碳纖維粉末 49
3-3-1 實驗藥品與材料 49
3-3-2 實驗裝置 50
3-3-3 實驗步驟及流程 50
3-3-4 實驗檢測儀器 52
3-4 碳材性質比較 53
3-4-1 實驗藥品與材料 53
3-4-2 實驗裝置 54
3-4-3 實驗檢測儀器及方法 54
3-4-4 實驗步驟及流程 57
3-5 利用塗布法結合碳材與高分子製備柔性薄膜電熱片 58
3-5-1 實驗藥品與材料 58
3-5-2 實驗裝置 59
3-5-3 實驗步驟及流程 59
3-6柔性薄膜電熱片性質測試 64
3-6-1 實驗材料 64
3-6-2 實驗裝置 64
3-6-3 實驗測試步驟及流程 65
3-6-4 檢測儀器 67
第四章 結果與討論 70
4-1 利用靜電紡絲技術製備TPU奈米纖維薄膜 71
4-1-1 TPU電紡前驅液溶劑測試 71
4-1-2 TPU電紡前驅液濃度測試 73
4-1-3 TPU電紡纖維膜製備 76
4-2 利用靜電紡絲製備PAN短碳纖維 77
4-2-1 利用靜電紡絲製備PAN碳纖維 77
4-2-2 碳纖維球磨處理 78
4-3 碳材基本性質比較 80
4-3-1 碳材基本性質 81
4-4 塗布方法測試 87
4-4-1 滴落塗布(drop coating) 87
4-4-2 以Super P進行噴霧式塗布(spray coating)濃度測試 95
4-5 以噴霧式塗布法製備不同碳材之柔性薄膜電熱片性質分析 104
4-5-1 表面型態分析 104
4-5-2 接觸角分析 109
4-5-3 水分透過率分析 112
4-5-4 實驗小結 114
4-6 以噴霧式塗布法製備不同碳材之柔性薄膜電熱片電熱表現 115
4-6-1 不同薄膜電熱片之電熱效果及薄膜導電度 116
4-6-2 於不同拉伸型變下之電熱效果 124
4-6-4 實驗小結 129
4-6-4 柔性薄膜電熱片之應用性測試 130
第五章 結論與未來展望 137
5-1 結論 137
5-2未來展望 139
參考文獻 140

1.D. Janas and K.K. Koziol, A review of production methods of carbon nanotube and graphene thin films for electrothermal applications. Nanoscale, 2014. 6(6): p. 3037-45.
2.T. Matsubayashi, M. Tenjimbayashi, K. Manabe, M. Komine, W. Navarrini, and S. Shiratori, Integrated Anti-Icing Property of Super-Repellency and Electrothermogenesis Exhibited by PEDOT:PSS/Cyanoacrylate Composite Nanoparticles. ACS Appl Mater Interfaces, 2016. 8(36): p. 24212-20.
3.M.N. Gueye, A. Carella, R. Demadrille, and J.P. Simonato, All-Polymeric Flexible Transparent Heaters. ACS Appl Mater Interfaces, 2017. 9(32): p. 27250-27256.
4.W.J. Hwang, K.S. Shin, J.H. Roh, D.S. Lee, and S.H. Choa, Development of micro-heaters with optimized temperature compensation design for gas sensors. Sensors 2011. 11(3): p. 2580-91.
5.S. Choi, J. Park, W. Hyun, J. Kim, J. Kim, and Y.B. Lee, Stretchable Heater Using LigandExchanged Silver Nanowire Nanocomposite for Wearable Articular Thermotherapy. ACS Nano, 2015. 9(6): p. 6626-6633.
6.H.K. Park, S.M. Kim, J.S. Lee, J.-H. Park, Y.-K. Hong, C.H. Hong, and K.K. Kim, Flexible plane heater: Graphite and carbon nanotube hybrid nanocomposite. Synth. Met., 2015. 203: p. 127-134.
7.S. Hong, H. Lee, J. Lee, J. Kwon, S. Han, Y.D. Suh, H. Cho, J. Shin, J. Yeo, and S.H. Ko, Highly stretchable and transparent metal nanowire heater for wearable electronics applications. Adv Mater, 2015. 27(32): p. 4744-51.
8.R.F. Loeser, S.R. Goldring, C.R. Scanzello, and M.B. Goldring, Osteoarthritis: a disease of the joint as an organ. Arthritis Rheum., 2012. 64(6): p. 1697-707.
9.S. Ochiai, A. Watanabe, H. Oda, and H. Ikeda, Effectiveness of thermotherapy using a heat and steam generating sheet for cartilage in knee osteoarthritis. J Phys Ther Sci, 2014. 26(2): p. 281-4.
10.E. Yildirim, G. Wu, X. Yong, T.L. Tan, Q. Zhu, J. Xu, J. Ouyang, J.-S. Wang, and S.-W. Yang, A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS. J. Mater. Chem. , 2018. 6(19): p. 5122-5131.
11.X. He, R. He, Q. Lan, W. Wu, F. Duan, J. Xiao, M. Zhang, Q. Zeng, J. Wu, and J. Liu, Screen-Printed Fabrication of PEDOT:PSS/Silver Nanowire Composite Films for Transparent Heaters. Materials 2017. 10(3): p. 10.
12.S.L. Jia, H.Z. Geng, L. Wang, Y. Tian, C.X. Xu, P.P. Shi, Z.Z. Gu, X.S. Yuan, L.C. Jing, Z.Y. Guo, and J. Kong, Carbon nanotube-based flexible electrothermal film heaters with a high heating rate. R Soc Open Sci, 2018. 5(6): p. 172072.
13.T.-C. Liu and Y.-Y. Li, Synthesis of carbon nanocapsules and carbon nanotubes by an acetylene flame method. Carbon, 2006. 44(10): p. 2045-2050.
14.H. Emad Abdoluosefi and G. Honarasa, Fabrication of polyurethane and thermoplastic polyurethane nanofiber by controlling the electrospinning parameters. MATER RES EXPRESS, 2017. 4(10).
15.F. Gong, C. Meng, J. He, and X. Dong, Fabrication of highly conductive and multifunctional polyester fabrics by spray-coating with PEDOT:PSS solutions. Prog. Org. Coat. , 2018. 121: p. 89-96.
16.S. Ji, W. He, K. Wang, Y. Ran, and C. Ye, Thermal response of transparent silver nanowire/PEDOT:PSS film heaters. Small, 2014. 10(23): p. 4951-60.
17.A.C. Siegel, S.T. Phillips, B.J. Wiley, and G.M. Whitesides, Thin, lightweight, foldable thermochromic displays on paper. Lab Chip, 2009. 9(19): p. 2775-81.
18.T. Maruyama and K. Tabata, Indium-Tin Oxide Thin Films Prepared by Chemical Vapor Deposition. Thin Solid Films, 1991. 70(7): p. 297-302.
19.F. Kurdesau, G. Khripunov, A.F. da Cunha, M. Kaelin, and A.N. Tiwari, Comparative study of ITO layers deposited by DC and RF magnetron sputtering at room temperature. J. Non-Cryst. Solids, 2006. 352(9-20): p. 1466-1470.
20.Z. Chen, K. Yang, and J. Wang, Preparation of indium tin oxide films by vacuum evaporation. Thin Solid Films, 1988. 162: p. 305-313.
21.S.M. Rozati and T. Ganj, Transparent conductive Sn-doped indium oxide thin films deposited by spray pyrolysis technique. RENEW ENERG, 2004. 29(10): p. 1671-1676.
22.A. Kachouane, M. Addou, A. Bougrine, B. El idrissi, R. Messoussi, M. Regragui, and J.C. Bérnede, Preparation and characterisation of tin-doped indium oxide films. Mater. Chem. Phys. , 2001. 70(3): p. 285-289.
23.K. Im, K. Cho, J. Kim, and S. Kim, Transparent heaters based on solution-processed indium tin oxide nanoparticles. Thin Solid Films, 2010. 518(14): p. 3960-3963.
24.J.H. Kim, B.D. Ahn, C.H. Kim, K.A. Jeon, H.S. Kang, and S.Y. Lee, Heat generation properties of Ga doped ZnO thin films prepared by rf-magnetron sputtering for transparent heaters. Thin Solid Films, 2008. 516(7): p. 1330-1333.
25.C. Hudaya, B.J. Jeon, and J.K. Lee, High thermal performance of SnO2:F thin transparent heaters with scattered metal nanodots. ACS Appl Mater Interfaces, 2015. 7(1): p. 57-61.
26.S. Iijima, Helical microtubules of graphitic carbon. Nature, 1991. 354(6348): p. 56-58.
27.Y.H. Yoon, J.W. Song, D. Kim, J. Kim, J.K. Park, S.K. Oh, and C.S. Han, Transparent Film Heater Using Single-Walled Carbon Nanotubes. Adv. Mater. , 2007. 19(23): p. 4284-4287.
28.D. Jung, M. Han, and G.S. Lee, Flexible transparent conductive heater using multiwalled carbon nanotube sheet. J VAC SCI TECHNOL B, 2014. 32(4).
29.D. Jung, D. Kim, K.H. Lee, L.J. Overzet, and G.S. Lee, Transparent film heaters using multi-walled carbon nanotube sheets. SENSOR ACTUAT A-PHYS, 2013. 199: p. 176-180.
30.K. Lee, V. Scardaci, H.-Y. Kim, T. Hallam, H. Nolan, B.E. Bolf, G.S. Maltbie, J.E. Abbott, and G.S. Duesberg, Highly sensitive, transparent, and flexible gas sensors based on gold nanoparticle decorated carbon nanotubes. SENSOR ACTUAT B-CHEM, 2013. 188: p. 571-575.
31.J. Luo, H. Lu, Q. Zhang, Y. Yao, M. Chen, and Q. Li, Flexible carbon nanotube/polyurethane electrothermal films. Carbon, 2016. 110: p. 343-349.
32.J. Kang, H. Kim, K.S. Kim, S.K. Lee, S. Bae, J.H. Ahn, Y.J. Kim, J.B. Choi, and B.H. Hong, High-performance graphene-based transparent flexible heaters. Nano Lett, 2011. 11(12): p. 5154-8.
33.S. Bae, H. Kim, Y. Lee, X. Xu, J.S. Park, Y. Zheng, J. Balakrishnan, T. Lei, H.R. Kim, Y.I. Song, Y.J. Kim, K.S. Kim, B. Ozyilmaz, J.H. Ahn, B.H. Hong, and S. Iijima, Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol, 2010. 5(8): p. 574-8.
34.J.J. Bae, S.C. Lim, G.H. Han, Y.W. Jo, D.L. Doung, E.S. Kim, S.J. Chae, T.Q. Huy, N. Van Luan, and Y.H. Lee, Heat Dissipation of Transparent Graphene Defoggers. ADV FUNCT MATER, 2012. 22(22): p. 4819-4826.
35.J. Wang, Z. Fang, H. Zhu, B. Gao, S. Garner, P. Cimo, Z. Barcikowski, A. Mignerey, and L. Hu, Flexible, transparent, and conductive defrosting glass. Thin Solid Films, 2014. 556: p. 13-17.
36.J.S. Woo, J.T. Han, S. Jung, J.I. Jang, H.Y. Kim, H.J. Jeong, S.Y. Jeong, K.J. Baeg, and G.W. Lee, Electrically robust metal nanowire network formation by in-situ interconnection with single-walled carbon nanotubes. Sci Rep, 2014. 4: p. 4804.
37.S. Wang, X. Zhang, and W. Zhao, Flexible, Transparent, and Conductive Film Based on Random Networks of Ag Nanowires. J NANOMATER, 2013. 2013: p. 1-6.
38.J. Jiu, T. Sugahara, M. Nogi, and K. Suganuma, Ag nanowires: large-scale synthesis via a trace-salt-assisted solvothermal process and application in transparent electrodes. J NANOPART RES, 2013. 15(4).
39.J.H. Lee, P. Lee, D. Lee, S.S. Lee, and S.H. Ko, Large-Scale Synthesis and Characterization of Very Long Silver Nanowires via Successive Multistep Growth. CRYST GROWTH DES, 2012. 12(11): p. 5598-5605.
40.Y. Sun, B. Mayers, T. Herricks, and Y. Xia, Polyol Synthesis of Uniform Silver Nanowires: A Plausible Growth Mechanism and the Supporting Evidence. NANO LETT, 2003. 3(7): p. 955-960.
41.M.C. Larciprete, A. Albertoni, A. Belardini, G. Leahu, R. Li Voti, F. Mura, C. Sibilia, I. Nefedov, I.V. Anoshkin, E.I. Kauppinen, and A.G. Nasibulin, Infrared properties of randomly oriented silver nanowires. J. Appl. Phys. , 2012. 112(8).
42.C. Celle, C. Mayousse, E. Moreau, H. Basti, A. Carella, and J.-P. Simonato, Highly flexible transparent film heaters based on random networks of silver nanowires. NANO RES, 2012. 5(6): p. 427-433.
43.T. Kim, Y.W. Kim, H.S. Lee, H. Kim, W.S. Yang, and K.S. Suh, Uniformly Interconnected Silver-Nanowire Networks for Transparent Film Heaters. ADV FUNCT MATER, 2013. 23(10): p. 1250-1255.
44.H.H. Khaligh and I.A. Goldthorpe, Failure of silver nanowire transparent electrodes under current flow. Nanoscale Res Lett, 2013. 8(1): p. 235.
45.Y. Li, K. Tsuchiya, H. Tohmyoh, and M. Saka, Numerical analysis of the electrical failure of a metallic nanowire mesh due to Joule heating. Nanoscale Res Lett, 2013. 8(1): p. 370.
46.Y.-A. Li, Y.-J. Chen, and N.-H. Tai, Highly thermal conductivity and infrared emissivity of flexible transparent film heaters utilizing silver-decorated carbon nanomaterials as fillers. MATER RES EXPRESS, 2014. 1(2).
47.X. Zhang, X. Yan, J. Chen, and J. Zhao, Large-size graphene microsheets as a protective layer for transparent conductive silver nanowire film heaters. Carbon, 2014. 69: p. 437-443.
48.H.-Y. Lu, C.-Y. Chou, J.-H. Wu, J.-J. Lin, and G.-S. Liou, Highly transparent and flexible polyimide–AgNW hybrid electrodes with excellent thermal stability for electrochromic applications and defogging devices. J MATER CHEM C, 2015. 3(15): p. 3629-3635.
49.J. Li, J. Liang, X. Jian, W. Hu, J. Li, and Q. Pei, A Flexible and Transparent Thin Film Heater Based on a Silver Nanowire/Heat-resistant Polymer Composite. MACROMOL MATER ENG, 2014. 299(11): p. 1403-1409.
50.M. Li, S. Ji, J. Pan, H. Wu, L. Zhong, Q. Wang, F. Li, and G. Li, Infrared response of self-heating VO2nanoparticles film based on Ag nanowires heater. J. Mater. Chem. A, 2014. 2(48): p. 20470-20473.
51.J. Kang, Y. Jang, Y. Kim, S.H. Cho, J. Suhr, B.H. Hong, J.B. Choi, and D. Byun, An Ag-grid/graphene hybrid structure for large-scale, transparent, flexible heaters. Nanoscale, 2015. 7(15): p. 6567-73.
52.H. Shirakawa, E.J. Louis, A.G. MacDiarmid, C.K. Chiang, and A.J. Heeger, Synthesis of electrically conducting organic polymers: halogen derivatives of polyacetylene, (CH) x. J. Chem. Soc., Chem.Commun. , 1977(16): p. 578.
53.J.E. Lim, S.M. Lee, S.S. Kim, T.W. Kim, H.W. Koo, and H.K. Kim, Brush-paintable and highly stretchable Ag nanowire and PEDOT:PSS hybrid electrodes. Sci Rep, 2017. 7(1): p. 14685.
54.Y.-H. Chang, S.-R. Tseng, C.-Y. Chen, H.-F. Meng, E.-C. Chen, S.-F. Horng, and C.-S. Hsu, Polymer solar cell by blade coating. Org. Electron., 2009. 10(5): p. 741-746.
55.F. Ely, A. Matsumoto, B. Zoetebier, V.S. Peressinotto, M.K. Hirata, D.A. de Sousa, and R. Maciel, Handheld and automated ultrasonic spray deposition of conductive PEDOT:PSS films and their application in AC EL devices. Org. Electron., 2014. 15(5): p. 1062-1070.
56.C.-K. Cho, W.-J. Hwang, K. Eun, S.-H. Choa, S.-I. Na, and H.-K. Kim, Mechanical flexibility of transparent PEDOT:PSS electrodes prepared by gravure printing for flexible organic solar cells. SOL ENERG MAT SOL C, 2011. 95(12): p. 3269-3275.
57.Y. Zhou, J. He, H. Wang, K. Qi, N. Nan, X. You, W. Shao, L. Wang, B. Ding, and S. Cui, Highly sensitive, self-powered and wearable electronic skin based on pressure-sensitive nanofiber woven fabric sensor. Sci Rep, 2017. 7(1): p. 12949.
58.M.M. Voigt, R.C.I. Mackenzie, C.P. Yau, P. Atienzar, J. Dane, P.E. Keivanidis, D.D.C. Bradley, and J. Nelson, Gravure printing for three subsequent solar cell layers of inverted structures on flexible substrates. Sol. Energy Mat. Sol. C, 2011. 95(2): p. 731-734.
59.J. Rivnay, S. Inal, B.A. Collins, M. Sessolo, E. Stavrinidou, X. Strakosas, C. Tassone, D.M. Delongchamp, and G.G. Malliaras, Structural control of mixed ionic and electronic transport in conducting polymers. Nat Commun, 2016. 7: p. 11287.
60.J.Y. Kim, J.H. Jung, D.E. Lee, and J. Joo, Enhancement of electrical conductivity of poly(3,4-ethylenedioxythiophene)/poly(4-styrenesulfonate) by a change of solvents. SYNTHETIC MET, 2002. 126(2-3): p. 311-316.
61.J. Ouyang and Y. Yang, Conducting Polymer as Transparent Electric Glue. ADV MATER, 2006. 18(16): p. 2141-2144.
62.J. Ouyang, C.W. Chu, F.C. Chen, Q. Xu, and Y. Yang, High-Conductivity Poly(3,4-ethylenedioxythiophene):Poly(styrene sulfonate) Film and Its Application in Polymer Optoelectronic Devices. Advanced Functional Materials, 2005. 15(2): p. 203-208.
63.K.-C. Chang, M.-S. Jeng, C.-C. Yang, Y.-W. Chou, S.-K. Wu, M.A. Thomas, and Y.-C. Peng, The Thermoelectric Performance of Poly(3,4-ethylenedi oxythiophene)/Poly(4-styrenesulfonate) Thin Films. J ELECTRON MATER, 2009. 38(7): p. 1182-1188.
64.S.L. Lai, M.Y. Chan, M.K. Fung, C.S. Lee, and S.T. Lee, Concentration effect of glycerol on the conductivity of PEDOT film and the device performance. MAT SCI ENG B-ADV 2003. 104(1-2): p. 26-30.
65.J. Ouyang, Q. Xu, C.-W. Chu, Y. Yang, G. Li, and J. Shinar, On the mechanism of conductivity enhancement in poly(3,4-ethylenedioxythiophene):poly(styrene sulfonate) film through solvent treatment. Polymer, 2004. 45(25): p. 8443-8450.
66.E. Yildirim, G. Wu, X. Yong, T.L. Tan, Q. Zhu, J. Xu, J. Ouyang, J.-S. Wang, and S.-W. Yang, A theoretical mechanistic study on electrical conductivity enhancement of DMSO treated PEDOT:PSS. J MATER CHEM C, 2018. 6(19): p. 5122-5131.
67.S. Duan, L. Zhang, Z. Wang, and C. Li, One-step rod coating of high-performance silver nanowire–PEDOT:PSS flexible electrodes with enhanced adhesion after sulfuric acid post-treatment. RSC Advances, 2015. 5(115): p. 95280-95286.
68.D. Yoo, J. Kim, and J.H. Kim, Direct synthesis of highly conductive poly(3,4-ethylenedioxythiophene):poly(4-styrenesulfonate) (PEDOT:PSS)/graphene composites and their applications in energy harvesting systems. Nano Research, 2014. 7(5): p. 717-730.
69.D. Yoo, J. Kim, S.H. Lee, W. Cho, H.H. Choi, F.S. Kim, and J.H. Kim, Effects of one- and two-dimensional carbon hybridization of PEDOT:PSS on the power factor of polymer thermoelectric energy conversion devices. J MATER CHEM A, 2015. 3(12): p. 6526-6533.
70.M.R. Moraes, A.C. Alves, F. Toptan, M.S. Martins, E.M.F. Vieira, A.J. Paleo, A.P. Souto, W.L.F. Santos, M.F. Esteves, and A. Zille, Glycerol/PEDOT:PSS coated woven fabric as a flexible heating element on textiles. J MATER CHEM C, 2017. 5(15): p. 3807-3822.
71.X. He, G. Shen, R. Xu, W. Yang, C. Zhang, Z. Liu, B. Chen, J. Liu, and M. Song, Hexagonal and Square Patterned Silver Nanowires/PEDOT:PSS Composite Grids by Screen Printing for Uniformly Transparent Heaters. Polymers 2019. 11(3).
72.J. Park, D. Han, S. Choi, Y. Kim, and J. Kwak, Flexible transparent film heaters using a ternary composite of silver nanowire, conducting polymer, and conductive oxide. RSC Advances, 2019. 9(10): p. 5731-5737.
73.S.A.N. Entifar, J.W. Han, D.J. Lee, Z.R. Ramadhan, J. Hong, M.H. Kang, S. Kim, D. Lim, C. Yun, and Y.H. Kim, Simultaneously enhanced optical, electrical, and mechanical properties of highly stretchable transparent silver nanowire electrodes using organic surface modifier. Sci Technol Adv Mater, 2019. 20(1): p. 116-123.
74.M. Cao, M. Wang, L. Li, H. Qiu, and Z. Yang, Effect of Graphene-EC on Ag NW-Based Transparent Film Heaters: Optimizing the Stability and Heat Dispersion of Films. ACS Appl Mater Interfaces, 2018. 10(1): p. 1077-1083.
75.R. Zhou, P. Li, Z. Fan, D. Du, and J. Ouyang, Stretchable heaters with composites of an intrinsically conductive polymer, reduced graphene oxide and an elastomer for wearable thermotherapy. J MATER CHEM C, 2017. 5(6): p. 1544-1551.
76.K.-B. Kim, M.-S. Kim, D.-h. Lee, B.-M. Choi, K.-S. Jung, S.-H. Jung, J.-K. Lee, B.-H. O, S.-G. Lee, and S.-G. Park, Lift-off patterning of multi-walled carbon nanotube and PEDOT:PSS composite films with fluorinated polymer templates. MICROELECTRON ENG, 2015. 145: p. 160-165.
77.Jean-Baptiste Donnet and A. Voet, Carbon black, physics, chemistry, and elastomer reinforcement. Vol. 15. 1977, New York Dekker. 631-632.
78.H. Liang, Y. Fukahori, A.G. Thomas, and J.J.C. Busfield, The steady state abrasion of rubber: Why are the weakest rubber compounds so good in abrasion? Wear, 2010. 268(5-6): p. 756-762.
79.張瀚文, 利用靜電紡絲法由常壓塔底油製備碳纖維及其官能化與
金屬離子吸附之研究 中正大學化學工程所103級碩士論文, 2016.
80.H.-E. Yin, F.-H. Huang, and W.-Y. Chiu, Hydrophobic and flexible conductive films consisting of PEDOT:PSS-PBA/fluorine-modified silica and their performance in weather stability. J. Mater. Chem., 2012. 22(28).
81.P.R. R, M.S. Thomas, and S. Varughese, Multi-region to single region shear thinning transitions in drying PEDOT:PSS dispersions: contributions from charge density fluctuations. Soft Matter, 2015. 11(43): p. 8441-51.
82.T.S. Hansen, K. West, O. Hassager, and N.B. Larsen, Highly Stretchable and Conductive Polymer Material Made from Poly(3,4-ethylenedioxythiophene) and Polyurethane Elastomers. ADV FUNCT MATER, 2007. 17(16): p. 3069-3073.
83.S.J. Kwon, T.Y. Kim, B.S. Lee, T.H. Lee, J.E. Kim, and K.S. Suh, Elastomeric conducting polymer nano-composites derived from ionic liquid polymer stabilized-poly(3,4-ethylenedioxythiophene). SYNTHETIC MET, 2010. 160(9-10): p. 1092-1096.
84.Z. Xiao, C. Sheng, Y. Xia, X. Yu, C. Liang, H. Huang, Y. Gan, J. Zhang, and W. Zhang, Electrical heating behavior of flexible thermoplastic polyurethane/Super-P nanoparticle composite films for advanced wearable heaters. J IND ENG CHEM, 2019. 71: p. 293-300.
85.M. Vosgueritchian, D.J. Lipomi, and Z. Bao, Highly Conductive and Transparent PEDOT:PSS Films with a Fluorosurfactant for Stretchable and Flexible Transparent Electrodes. ADV FUNCT MATER, 2012. 22(2): p. 421-428.
86.D.J. Lipomi, J.A. Lee, M. Vosgueritchian, B.C.K. Tee, J.A. Bolander, and Z. Bao, Electronic Properties of Transparent Conductive Films of PEDOT:PSS on Stretchable Substrates. CHEM MATER, 2012. 24(2): p. 373-382.
87.Y.G. Seol, T.Q. Trung, O.-J. Yoon, I.-Y. Sohn, and N.-E. Lee, Nanocomposites of reduced graphene oxide nanosheets and conducting polymer for stretchable transparent conducting electrodes. J. Mater. Chem., 2012. 22(45).
88.B.C. Bai, S.C. Kang, J.S. Im, S.H. Lee, and Y.-S. Lee, Effect of oxyfluorinated multi-walled carbon nanotube additives on positive temperature coefficient/negative temperature coefficient behavior in high-density polyethylene polymeric switches. MATER RES BULL, 2011. 46(9): p. 1391-1397.
89.T.T. Huynh, K. Padois, F. Sonvico, A. Rossi, F. Zani, F. Pirot, J. Doury, and F. Falson, Characterization of a polyurethane-based controlled release system for local delivery of chlorhexidine diacetate. Eur J Pharm Biopharm, 2010. 74(2): p. 255-64.
90.Ç. Akduman, I. Özgüney, and E.P. Akçakoca Kumbasar, Electrospun Thermoplastic Polyurethane Mats Containing Naproxen– Cyclodextrin Inclusion Complex. AUTEX RES J, 2014. 14(4): p. 239-246.
91.A. Shaker, A.H. Hassanin, N.M. Shaalan, M.A. Hassan, and A.A. El-Moneim, A novel technique for producing conductive polyurethane nanofibrous membrane for flexible electronics applications. IOP Conf. Ser.: Mater. Sci. Eng., 2017. 244.
92.Y. Li, B. Zhou, G. Zheng, X. Liu, T. Li, C. Yan, C. Cheng, K. Dai, C. Liu, C. Shen, and Z. Guo, Continuously prepared highly conductive and stretchable SWNT/MWNT synergistically composited electrospun thermoplastic polyurethane yarns for wearable sensing. J. Mater. Chem. C, 2018. 6(9): p. 2258-2269.
93.M.-H. You, X.-X. Wang, X. Yan, J. Zhang, W.-Z. Song, M. Yu, Z.-Y. Fan, S. Ramakrishna, and Y.-Z. Long, A self-powered flexible hybrid piezoelectric–pyroelectric nanogenerator based on non-woven nanofiber membranes. J MATER CHEM A, 2018. 6(8): p. 3500-3509.
94.Y.K. Luu, K. Kim, B.S. Hsiao, B. Chu, and M. Hadjiargyrou, Development of a nanostructured DNA delivery scaffold via electrospinning of PLGA and PLA–PEG block copolymers. J CONTROL RELEASE, 2003. 89(2): p. 341-353.
95.Heidi Schreuder-Gibson, Phillip Gibson, Kris Senecal, Michael Sennett, John Walker, Walter Yeomans, and a.D. Ziegler, Protective textile materials based on electrospun nanofibers. Chem. Fibers Int. , 2010. 60(4): p. 227.
96.Z. Ma, M. Kotaki, R. Inai, and S. Ramakrishna, Potential of nanofiber matrix as tissue-engineering scaffolds. Tissue Eng, 2005. 11(1-2): p. 101-9.
97.G. Taylor, Electrically Driven Jets. Proc. R. Soc. A, 1969. 313(1515): p. 453-475.
98.Z.-M. Huang, Y.Z. Zhang, M. Kotaki, and S. Ramakrishna, A review on polymer nanofibers by electrospinning and their applications in nanocomposites. COMPOS SCI TECHNOL, 2003. 63(15): p. 2223-2253.
99.D. Li and Y. Xia, Electrospinning of Nanofibers: Reinventing the Wheel? ADV MATER, 2004. 16(14): p. 1151-1170.
100.J.M. Deitzel, J. Kleinmeyer, D. Harris, and N.C. Beck Tan, The effect of processing variables on the morphology of electrospun nanofibers and textiles. Polymer, 2001. 42(1): p. 261-272.
101.N. Bhardwaj and S.C. Kundu, Electrospinning: a fascinating fiber fabrication technique. Biotechnol Adv, 2010. 28(3): p. 325-47.
102.J. Doshi and D.H. Reneker, Electrospinning process and applications of electrospun fibers. J ELECTROSTAT, 1995. 35(2-3): p. 151-160.
103.M.M. Hohman, M. Shin, G. Rutledge, and M.P. Brenner, Electrospinning and electrically forced jets. II. Applications. PHYS FLUIDS, 2001. 13(8): p. 2221-2236.
104.M.M. Demir, I. Yilgor, E. Yilgor, and B. Erman, Electrospinning of polyurethane fibers. Polymer, 2002. 43(11): p. 3303-3309.
105.V. Beachley and X. Wen, Effect of electrospinning parameters on the nanofiber diameter and length. Mater Sci Eng C Mater Biol Appl, 2009. 29(3): p. 663-668.
106.X. Yuan, Y. Zhang, C. Dong, and J. Sheng, Morphology of ultrafine polysulfone fibers prepared by electrospinning. POLYM INT, 2004. 53(11): p. 1704-1710.
107.J.S. Lee, K.H. Choi, H.D. Ghim, S.S. Kim, D.H. Chun, H.Y. Kim, and W.S. Lyoo, Role of molecular weight of atactic poly(vinyl alcohol) (PVA) in the structure and properties of PVA nanofabric prepared by electrospinning. J Appl Polym Sci, 2004. 93(4): p. 1638-1646.
108.Z. Li and C. Wang, One-dimensional Nanostructures, Electrospinning technique and
Unique Nanofibers. 2013: Springer.
109.C. Wang, H.-S. Chien, C.-H. Hsu, Y.-C. Wang, C.-T. Wang, and H.-A. Lu, Electrospinning of Polyacrylonitrile Solutions at Elevated Temperatures. Macromolecules, 2007. 40(22): p. 7973-7983.
110.E.S. Medeiros, L.H.C. Mattoso, R.D. Offeman, D.F. Wood, and W.J. Orts, Effect of relative humidity on the morphology of electrospun polymer fibers. CAN J CHEM, 2008. 86(6): p. 590-599.
111.T. Ito, H. Uchiyama, and H. Kozuka, Evaporation-Driven Deposition of ITO Thin Films from Aqueous Solutions with Low-Speed Dip-Coating Technique. Langmuir, 2017. 33(21): p. 5314-5320.
112.E. Shim, 2 - Coating and laminating processes and techniques for textiles, in Smart Textile Coatings and Laminates (Second Edition), W.C. Smith, Editor. 2019, Woodhead Publishing. p. 11-45.
113.S. Jha, X.-H. Wang, and H. Faber, Touch sensor application of spray deposited ZnO films, in 2017 IEEE 26th ISIE. 2017. p. 1412-1416.
114.G. Amokrane, C. Falentin-Daudré, S. Ramtani, and V. Migonney, A Simple Method to Functionalize PCL Surface by Grafting Bioactive Polymers Using UV Irradiation. Irbm, 2018. 39(4): p. 268-278.
115.F. Zabihi, Y. Xie, S. Gao, and M. Eslamian, Morphology, conductivity, and wetting characteristics of PEDOT:PSS thin films deposited by spin and spray coating. Appl. Surf. Sci. , 2015. 338: p. 163-177.
116.M. Noebels, R.E. Cross, D.A. Evans, and C.E. Finlayson, Characterization of spray-coating methods for conjugated polymer blend thin films. J MATER SCI, 2014. 49(12): p. 4279-4287.
117.X. He, A. Liu, X. Hu, M. Song, F. Duan, Q. Lan, J. Xiao, J. Liu, M. Zhang, Y. Chen, and Q. Zeng, Temperature-controlled transparent-film heater based on silver nanowire-PMMA composite film. Nanotechnology, 2016. 27(47): p. 475709.
118.S. Chuangchote, T. Sagawa, and S. Yoshikawa, Electrospinning of poly(vinyl pyrrolidone): Effects of solvents on electrospinnability for the fabrication of poly(p-phenylene vinylene) and TiO2nanofibers. J. Appl. Polym. Sci. , 2009. 114(5): p. 2777-2791.
119.Y.-l. Lu, F. Zhang, T. Chen, S.-n. Hu, W.-j. Kou, X.-l. Luo, L.-q. Wang, and C.-h. Cai, Effect of Solvent Properties on Electrospinning of Amphiphilic Polypeptides. ACTA POLYM SIN, 2016(5): p. 650-658.
120.黃彩甄, 利用靜電紡絲法由常壓塔底油製備碳纖維 於葡萄糖感測器之應用. 中正大學化學工程所104級碩士論文, 2018.
121.Z. Zhou, C. Lai, L. Zhang, Y. Qian, H. Hou, D.H. Reneker, and H. Fong, Development of carbon nanofibers from aligned electrospun polyacrylonitrile nanofiber bundles and characterization of their microstructural, electrical, and mechanical properties. Polymer, 2009. 50(13): p. 2999-3006.
122.S. Ma, J. Liu, M. Qu, X. Wang, R. Huang, and J. Liang, Effects of carbonization tension on the structural and tensile properties of continuous bundles of highly aligned electrospun carbon nanofibers. Mater. Lett. , 2016. 183: p. 369-373.
123.Z. Zhou, K. Liu, C. Lai, L. Zhang, J. Li, H. Hou, D.H. Reneker, and H. Fong, Graphitic carbon nanofibers developed from bundles of aligned electrospun polyacrylonitrile nanofibers containing phosphoric acid. Polymer, 2010. 51(11): p. 2360-2367.
124.C.-K. Liu, Y. Feng, H.-J. He, J. Zhang, R.-J. Sun, and M.-Y. Chen, Effect of carbonization temperature on properties of aligned electrospun polyacrylonitrile carbon nanofibers. MATER DESIGN, 2015. 85: p. 483-486.
125.L.X. Wang, Y.W. Zhang, M.L. Jin, X.L. Zhou, and Y. Hu, The Study of the Mathematical Model between Thermal Conductivity and Graphitization Degree of Different Carbon Materials. Adv. Mater. , 2011. 233-235: p. 3010-3013.
126.J. McQuade and L.T. Vuong, Solvent Retention and Crack Evolution in Dropcast PEDOT:PSS and Dependence on Surface Wetting. ACS Omega, 2018. 3(4): p. 3868-3873.
127.C.N. Hoth, R. Steim, P. Schilinsky, S.A. Choulis, S.F. Tedde, O. Hayden, and C.J. Brabec, Topographical and morphological aspects of spray coated organic photovoltaics. Org. Electron. , 2009. 10(4): p. 587-593.
128.D. Sui, Y. Huang, L. Huang, J. Liang, Y. Ma, and Y. Chen, Flexible and transparent electrothermal film heaters based on graphene materials. Small, 2011. 7(22): p. 3186-92.
129.I.Y. Kim, M.K. Yoo, J.H. Seo, S.S. Park, H.S. Na, H.C. Lee, S.K. Kim, and C.S. Cho, Evaluation of semi-interpenetrating polymer networks composed of chitosan and poloxamer for wound dressing application. Int J Pharm, 2007. 341(1-2): p. 35-43.
130.F. Piana and J. Pionteck, Effect of the melt processing conditions on the conductive paths formation in thermoplastic polyurethane/expanded graphite (TPU/EG) composites. COMPOS SCI TECHNOL, 2013. 80: p. 39-46.
131.Y. Ding, W. Xu, W. Wang, H. Fong, and Z. Zhu, Scalable and Facile Preparation of Highly Stretchable Electrospun PEDOT:PSS@PU Fibrous Nonwovens toward Wearable Conductive Textile Applications. ACS Appl Mater Interfaces, 2017. 9(35): p. 30014-30023.
132.P. Ilanchezhiyan, A.S. Zakirov, G.M. Kumar, S.U. Yuldashev, H.D. Cho, T.W. Kang, and A.T. Mamadalimov, Highly efficient CNT functionalized cotton fabrics for flexible/wearable heating applications. RSC Advances, 2015. 5(14): p. 10697-10702.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊