|
1.Murphy, C. J., Nanocubes and Nanoboxes. Science 2002, 298 (5601), 2139-2141. 2.Faraday, M., LIX., Experimental relations of gold (and other metals) to light.—The bakerian lecture. Philosophical Magazine Series 4 1857, 14 (96), 512-539. 3.Lohse, S. E.; Murphy, C. J., The Quest for Shape Control: A History of Gold Nanorod Synthesis. Chemistry of Materials 2013, 25 (8), 1250-1261. 4.Yu; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C., Gold Nanorods: Electrochemical Synthesis and Optical Properties. The Journal of Physical Chemistry B 1997, 101 (34), 6661-6664. 5.Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C. R. C., The Shape Transition of Gold Nanorods. Langmuir 1999, 15 (3), 701-709. 6.Kim, F.; Song, J. H.; Yang, P., Photochemical Synthesis of Gold Nanorods. Journal of the American Chemical Society 2002, 124 (48), 14316-14317. 7.Niidome, Y.; Nishioka, K.; Kawasakib, H.; Yamada, S., Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; morphological changes depending on the growing processes. Chem. Commun. 2003, (18), 2376-2377. 8.Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. The Journal of Physical Chemistry B 2001, 105 (19), 4065-4067. 9.Jana, N. R.; Gearheart, L.; Murphy, C. J., Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Advanced Materials 2001, 13 (18), 1389-1393. 10.Jana, N. R.; Gearheart, L.; Obare, S. O.; Murphy, C. J., Anisotropic Chemical Reactivity of Gold Spheroids and Nanorods. Langmuir 2002, 18 (3), 922-927. 11.Nikoobakht, B.; El-Sayed, M. A., Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chemistry of Materials 2003, 15 (10), 1957-1962. 12.Busbee, B. D.; Obare, S. O.; Murphy, C. J., An Improved Synthesis of High-Aspect-Ratio Gold Nanorods. Advanced Materials 2003, 15 (5), 414-416. 13.Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T., Anisotropic Metal Nanoparticles: Synthesis, Assembly, and Optical Applications. The Journal of Physical Chemistry B 2005, 109 (29), 13857-13870. 14.Horiguchi, Y.; Honda, K.; Kato, Y.; Nakashima, N.; Niidome, Y., Photothermal Reshaping of Gold Nanorods Depends on the Passivating Layers of the Nanorod Surfaces. Langmuir 2008, 24 (20), 12026-12031. 15.Grzelczak, M.; Mezzasalma, S. A.; Ni, W.; Herasimenka, Y.; Feruglio, L.; Montini, T.; Pérez-Juste, J.; Fornasiero, P.; Prato, M.; Liz-Marzán, L. M., Antibonding Plasmon Modes in Colloidal Gold Nanorod Clusters. Langmuir 2012, 28 (24), 8826-8833. 16.Yilmaz, H.; Bae, S. H.; Cao, S.; Wang, Z.; Raman, B.; Singamaneni, S., Gold-Nanorod-Based Plasmonic Nose for Analysis of Chemical Mixtures. ACS Applied Nano Materials 2019. 17.Link, S.; El-Sayed, M. A., Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. The Journal of Physical Chemistry B 1999, 103 (40), 8410-8426. 18.Chou, C.-H.; Chen, C.-D.; Wang, C. R. C., Highly Efficient, Wavelength-Tunable, Gold Nanoparticle Based Optothermal Nanoconvertors. The Journal of Physical Chemistry B 2005, 109 (22), 11135-11138. 19.Song, J.; Pu, L.; Zhou, J.; Duan, B.; Duan, H., Biodegradable Theranostic Plasmonic Vesicles of Amphiphilic Gold Nanorods. ACS Nano 2013, 7 (11), 9947-9960. 20.Yu, J.; Ha, W.; Sun, J.-n.; Shi, Y.-p., Supramolecular Hybrid Hydrogel Based on Host–Guest Interaction and Its Application in Drug Delivery. ACS Applied Materials & Interfaces 2014, 6 (22), 19544-19551. 21.Liu, X.; Huang, N.; Li, H.; Wang, H.; Jin, Q.; Ji, J., Multidentate Polyethylene Glycol Modified Gold Nanorods for in Vivo Near-Infrared Photothermal Cancer Therapy. ACS Applied Materials & Interfaces 2014, 6 (8), 5657-5668. 22.Zhang, H.; Zhu, Y.; Qu, L.; Wu, H.; Kong, H.; Yang, Z.; Chen, D.; Mäkilä, E.; Salonen, J.; Santos, H. A.; Hai, M.; Weitz, D. A., Gold Nanorods Conjugated Porous Silicon Nanoparticles Encapsulated in Calcium Alginate Nano Hydrogels Using Microemulsion Templates. Nano Letters 2018, 18 (2), 1448-1453. 23.Manivasagan, P.; Bharathiraja, S.; Santha Moorthy, M.; Oh, Y.-O.; Song, K.; Seo, H.; Oh, J., Anti-EGFR Antibody Conjugation of Fucoidan-Coated Gold Nanorods as Novel Photothermal Ablation Agents for Cancer Therapy. ACS Applied Materials & Interfaces 2017, 9 (17), 14633-14646. 24.Grzincic, E. M.; Murphy, C. J., Gold Nanorods Indirectly Promote Migration of Metastatic Human Breast Cancer Cells in Three-Dimensional Cultures. ACS Nano 2015, 9 (7), 6801-6816. 25.Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P., Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots. J. Phys. Chem. B 2001, 105 (37), 8861. 26.Yuan, W.; Zhao, H.; Hu, H.; Wang, S.; Baker, G. L., Synthesis and Characterization of the Hole-Conducting Silica/Polymer Nanocomposites and Application in Solid-State Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces 2013, 5 (10), 4155-4161. 27.Li, W.; Shi, Y.; Chen, K.; Zhu, L.; Fan, S., A Comprehensive Photonic Approach for Solar Cell Cooling. ACS Photonics 2017, 4 (4), 774-782. 28.Lavik, E.; von Recum, H., The Role of Nanomaterials in Translational Medicine. ACS Nano 2011, 5 (5), 3419-3424. 29.Ge, J.; Huynh, T.; Hu, Y.; Yin, Y., Hierarchical Magnetite/Silica Nanoassemblies as Magnetically Recoverable Catalyst–Supports. Nano Letters 2008, 8 (3), 931-934. 30.Okada, S.; Ikurumi, S.; Kamegawa, T.; Mori, K.; Yamashita, H., Structural Design of Pd/SiO2@Ti-Containing Mesoporous Silica Core–Shell Catalyst for Efficient One-Pot Oxidation Using in Situ Produced H2O2. The Journal of Physical Chemistry C 2012, 116 (27), 14360-14367. 31.Li, Q.; Zhou, T.; Yang, H., Encapsulation of Hoveyda–Grubbs2nd Catalyst within Yolk–Shell Structured Silica for Olefin Metathesis. ACS Catalysis 2015, 5 (4), 2225-2231. 32.Liu, J.; Hao, J.; Hu, C.; He, B.; Xi, J.; Xiao, J.; Wang, S.; Bai, Z., Palladium Nanoparticles Anchored on Amine-Functionalized Silica Nanotubes as a Highly Effective Catalyst. The Journal of Physical Chemistry C 2018, 122 (5), 2696-2703. 33.Zhang, Z.; Wang, L.; Wang, J.; Jiang, X.; Li, X.; Hu, Z.; Ji, Y.; Wu, X.; Chen, C., Mesoporous Silica-Coated Gold Nanorods as a Light-Mediated Multifunctional Theranostic Platform for Cancer Treatment. Advanced Materials 2012, 24 (11), 1418-1423. 34.Xu, B.; Ju, Y.; Cui, Y.; Song, G.; Iwase, Y.; Hosoi, A.; Morita, Y., tLyP-1–Conjugated Au-Nanorod@SiO2 Core–Shell Nanoparticles for Tumor-Targeted Drug Delivery and Photothermal Therapy. Langmuir 2014, 30 (26), 7789-7797. 35.Chan, M.-H.; Chen, S.-P.; Chen, C.-W.; Chan, Y.-C.; Lin, R. J.; Tsai, D. P.; Hsiao, M.; Chung, R.-J.; Chen, X.; Liu, R.-S., Single 808 nm Laser Treatment Comprising Photothermal and Photodynamic Therapies by Using Gold Nanorods Hybrid Upconversion Particles. The Journal of Physical Chemistry C 2018, 122 (4), 2402-2412. 36.Li, Y.; Wen, T.; Zhao, R.; Liu, X.; Ji, T.; Wang, H.; Shi, X.; Shi, J.; Wei, J.; Zhao, Y.; Wu, X.; Nie, G., Localized Electric Field of Plasmonic Nanoplatform Enhanced Photodynamic Tumor Therapy. ACS Nano 2014, 8 (11), 11529-11542. 37.Jin, X.; Khlebtsov, B. N.; Khanadeev, V. A.; Khlebtsov, N. G.; Ye, J., Rational Design of Ultrabright SERS Probes with Embedded Reporters for Bioimaging and Photothermal Therapy. ACS Applied Materials & Interfaces 2017, 9 (36), 30387-30397. 38.Wang, S.; Zhang, M.; Zhang, W., Yolk−Shell Catalyst of Single Au Nanoparticle Encapsulated within Hollow Mesoporous Silica Microspheres. ACS Catalysis 2011, 1 (3), 207-211. 39.Chen, K.-J.; Lin, C.-T.; Tseng, K.-C.; Chu, L.-K., Using SiO2-Coated Gold Nanorods as Temperature Jump Photothermal Convertors Coupled with a Confocal Fluorescent Thermometer to Study Protein Unfolding Kinetics: A Case of Bovine Serum Albumin. The Journal of Physical Chemistry C 2017, 121 (27), 14981-14989. 40.Lee, J.; Park, J. C.; Bang, J. U.; Song, H., Precise Tuning of Porosity and Surface Functionality in Au@SiO2 Nanoreactors for High Catalytic Efficiency. Chemistry of Materials 2008, 20 (18), 5839-5844. 41.Deng, T.-S.; van der Hoeven, J. E. S.; Yalcin, A. O.; Zandbergen, H. W.; van Huis, M. A.; van Blaaderen, A., Oxidative Etching and Metal Overgrowth of Gold Nanorods within Mesoporous Silica Shells. Chemistry of Materials 2015, 27 (20), 7196-7203. 42.Ernawati, L.; Ogi, T.; Balgis, R.; Okuyama, K.; Stucki, M.; Hess, S. C.; Stark, W. J., Hollow Silica as an Optically Transparent and Thermally Insulating Polymer Additive. Langmuir 2016, 32 (1), 338-345. 43.Qiao, Z.-A.; Zhang, P.; Chai, S.-H.; Chi, M.; Veith, G. M.; Gallego, N. C.; Kidder, M.; Dai, S., Lab-in-a-Shell: Encapsulating Metal Clusters for Size Sieving Catalysis. Journal of the American Chemical Society 2014, 136 (32), 11260-11263. 44.Hong, Y.; Choi, I. A.; Seo, W. S., Au nanoparticle@hollow mesoporous carbon with FeCo/graphitic shell nanoparticls as a magnetically recyclable yolk–shell nanocatalyst for catalytic reduction of nitroaromatics. Scientific Reports 2018, 8 (1), 7469. 45.Wei, L.; Yan, S.; Wang, H.; Yang, H., Fabrication of multi-compartmentalized mesoporous silica microspheres through a Pickering droplet strategy for enhanced CO2 capture and catalysis. NPG Asia Materials 2018, 10 (9), 899-911. 46.Chen, J.; Wu, X.; Hou, X.; Su, X.; Chu, Q.; Fahruddin, N.; Zhao, J. X., Shape-Tunable Hollow Silica Nanomaterials Based on a Soft-Templating Method and Their Application as a Drug Carrier. ACS Applied Materials & Interfaces 2014, 6 (24), 21921-21930. 47.Singh, R. K.; Kim, T.-H.; Mahapatra, C.; Patel, K. D.; Kim, H.-W., Preparation of Self-Activated Fluorescence Mesoporous Silica Hollow Nanoellipsoids for Theranostics. Langmuir 2015, 31 (41), 11344-11352. 48.Zoldesi, C. I.; van Walree, C. A.; Imhof, A., Deformable Hollow Hybrid Silica/Siloxane Colloids by Emulsion Templating. Langmuir 2006, 22 (9), 4343-4352. 49.Huang, Z.; Xiong, Z.; Chen, Y.; Hu, S.; Lai, W., Sensitive and Matrix-Tolerant Lateral Flow Immunoassay Based on Fluorescent Magnetic Nanobeads for the Detection of Clenbuterol in Swine Urine. Journal of Agricultural and Food Chemistry 2019, 67 (10), 3028-3036. 50.Bottini, M.; Magrini, A.; Rosato, N.; Bergamaschi, A.; Mustelin, T., Dispersion of Pristine Single-walled Carbon Nanotubes in Water by a Thiolated Organosilane: Application in Supramolecular Nanoassemblies. The Journal of Physical Chemistry B 2006, 110 (28), 13685-13688. 51.Bottini, M.; Cerignoli, F.; Mills, D. M.; D'Annibale, F.; Leone, M.; Rosato, N.; Magrini, A.; Pellecchia, M.; Bergamaschi, A.; Mustelin, T., Luminescent Silica Nanobeads: Characterization and Evaluation as Efficient Cytoplasmatic Transporters for T-Lymphocytes. Journal of the American Chemical Society 2007, 129 (25), 7814-7823. 52.吳致廷, 金奈米柱-不均勻二氧化矽核殼粒子之光致熔化現象與界面結構之關係. 國立中正大學化學暨生物化學所 2016. 53.Wu, W.-C.; Tracy, J. B., Large-Scale Silica Overcoating of Gold Nanorods with Tunable Shell Thicknesses. Chemistry of Materials 2015. 54.Zou, H.; Wu, S.; Shen, J., Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications. Chemical Reviews 2008, 108 (9), 3893-3957. 55.Burrows, N. D.; Lin, W.; Hinman, J. G.; Dennison, J. M.; Vartanian, A. M.; Abadeer, N. S.; Grzincic, E. M.; Jacob, L. M.; Li, J.; Murphy, C. J., Surface Chemistry of Gold Nanorods. Langmuir 2016, 32 (39), 9905-9921. 56.Huang, C.-C.; Huang, C.-H.; Kuo, I. T.; Chau, L.-K.; Yang, T.-S., Synthesis of silica-coated gold nanorod as Raman tags by modulating cetyltrimethylammonium bromide concentration. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 409, 61-68. 57.Tang, X.; Kröger, E.; Nielsen, A.; Strelow, C.; Mews, A.; Kipp, T., Ultrathin and Highly Passivating Silica Shells for Luminescent and Water-Soluble CdSe/CdS Nanorods. Langmuir 2017, 33 (21), 5253-5260. 58.Brinker, C. J., Sol-Gel Science: The Physics and Chemistry of Sol-Gel processing. Harcourt Brace & Company 1990. 59.Vanderkooy, A.; Chen, Y.; Gonzaga, F.; Brook, M. A., Silica Shell/Gold Core Nanoparticles: Correlating Shell Thickness with the Plasmonic Red Shift upon Aggregation. ACS Applied Materials & Interfaces 2011, 3 (10), 3942-3947. 60.吳榮憲, 深入研究金奈米柱-不均勻二氧化矽核殼結構之光致熔化現象與金棒長度之關係. 國立中正大學化學暨生物化學所 2018. 61.曾毓婷, 金奈米柱-不均勻二氧化矽核殼結構中金奈米柱光致熔化現象:界面、厚度及緻密度之影響. 國立中正大學化學暨生物化學所 2017. 62.Gole, A.; Murphy, C. J., Polyelectrolyte-Coated Gold Nanorods: Synthesis, Characterization and Immobilization. Chemistry of Materials 2005, 17 (6), 1325-1330. 63.Hu, K.; Bard, A. J., Characterization of Adsorption of Sodium Dodecyl Sulfate on Charge-Regulated Substrates by Atomic Force Microscopy Force Measurements. Langmuir 1997, 13 (20), 5418-5425. 64.Shih, C. W. L., W. C. ;Hwang, C. C.; Chang, S. S.; Wang, C.R.C. , Metal Nanoparticles: Synthesis, Characterization, and Application in preparation. Marcel Dekker 2001, 7, 163-182.
|