跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/11 14:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:郭宥汯
研究生(外文):Kuo, Yu-Hung
論文名稱:二氧化矽奈米串珠結構之合成與金奈米圓柱表面淨電荷之調控及其性質
論文名稱(外文):On the formation of silica nanobeads and the tuning of surface charges for gold nanorods and its properties
指導教授:王崇人
指導教授(外文):Wang, Churng-Ren
口試委員:林群欽陳建忠
口試委員(外文):Lin, Chun-ChinChen, Chien-Chong
口試日期:2019-07-04
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:66
中文關鍵詞:金奈米圓柱二氧化矽奈米串珠表面電荷
外文關鍵詞:gold nanorodsilica nanobeadssurface charges
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究展示兩步驟合成策略生成二氧化矽奈米串珠結構(silica nanobead,SNB),同時其另一產物為穩定分散之金奈米圓柱(gold nanorod, AuNR)粒子,表面帶有負電荷。這項新製程途徑以一般表面為正電荷的AuNR粒子為起始物,經由生成不均勻二氧化矽殼層包覆的核殼粒子(AuNR-nu-SiO2)後,加以適當的試劑將AuNR粒子自裸露的兩端滑出形成SNBs。其中步驟二滑出之機制實透過兩個接續步驟,我們稱之為脫附與滑出機制(detachment-and-sliding mechanism,DSM)。此DSM機制之起始物AuNR-nu-SiO2,也是兩步驟合成策略之中間產物, 須符合二點要求:一、金與二氧化矽之界面必須以靜電吸引為之而非化學鍵;二、金奈米圓柱兩端點之二氧化矽殼層厚度,至少一端為零。最後我們利用前述之移除試劑,採用SDS(Sodium dodecyl sulfate)破壞AuNR與二氧化矽殼層之間的靜電作用力後即可順利使金奈米圓柱粒子滑出而得SNB。
結果顯示,符合上述中間產物要求之AuNR-nu-SiO2粒子約有95 %能產生SNBs以及重新分散之金奈米圓柱粒子。同時,我們統計滑出前後之金奈米圓柱粒子之長寬比值皆約為4.6,且透過UV-Vis.消光光譜及電顯檢測得知金奈米圓柱粒子以完好之粒子形狀與尺寸滑出SNB並穩定分散。更進一步,我們降低脫離試劑之濃度與作用時間後,觀察到滑出至一半的金奈米圓柱粒子;若濃度太低時,無法使破壞靜電吸引作用,則使金奈米圓柱無法脫離滑出。由此更證實DSM的設計為實,以及生成SNB之高產率。另外,DSM之副產物為形狀維持穩定且分散良好之金奈米圓柱粒子,這一點讓我們驚喜。經表面電位量測得-52.6 mV,相較其原始以CTAB(cetyltrimethylammonium bromide)為保護劑之金奈米圓柱粒子,表面電荷為+45.8 mV作為對照,明顯地表面淨電荷完全逆轉為負電性。
由上述結果,同時參考過去文獻,我們設計另一系列的研究,藉由加入使金奈米圓柱粒子表面淨電荷從+50 mV完全逆轉至-50 mV。若來回添加陰離子試劑(SDS)及陽離子試劑(CTAB),則表面電荷的翻轉可做到可逆性。同時,藉由兩試劑來回添加,我們相信金奈米圓柱粒子表面可向外疊加達九層正負相間之雙層微胞,同時仍可穩定分散於DI(de-ionized water)。除此之外,透過濃度的調控可達成表面淨電荷在正負之間進行微調。另外,我們證實翻轉後表面帶負電荷之金奈米圓柱具兩項特性:其一,可穩定分散於PBS緩衝溶液以及DI中,相信未來可供生醫方面後續之應用;其二,粒子表面之負電荷具有阻絕在金奈米圓柱上進行二氧化矽鍍層之能力。

This study demonstrates an interesting two-step synthetic strategy to generate silica nanobeads (SNBs) and its by-products which are well dispersed gold nanorods (AuNRs) with negative surface charges. In this new synthetic scheme, AuNRs with positive surface charges are used as starting material to form non-uniform silica shell (AuNR-nu-SiO2) in the first step. The AuNR-nu-SiO2 (aq) is then mixed with suitable recovery reagent to make AuNRs slide out of the exposed ends of AuNR-nu-SiO2 in the second step. The primary product, SNB, is thus formed from such newly developed scheme. Meanwhile, the second step per se contains two sequential sub-steps, named detachment-and-sliding out mechanism (DSM). The starting material of the DSM, AuNR-nu-SiO2, needs to meet two requirements based on our design: First, the interaction between gold nanorod and silica at the interface needs to be as weak as possible. Electrostatic interaction is preferred rather than chemisorption. Second, the silica shell thickness of the AuNR-nu-SiO2 particles must have at least one end is zero, such that AuNR can be exposed at least in one end for it to slide out in DSM. Sodium dodecyl sulfate (SDS) is chosen to be the key recovery reagent in Step II. It is capable of breaking such electrostatic interaction (detachment) to facilitate the sliding out process of the core AuNR particle from the silica shell.
The results show that about 95 % of the AuNR-nu-SiO2 particles can generate SNBs and then form bare AuNRs. The aspect ratios of the AuNRs before and after DSM keep the same, ca. 4.6 for an instance. Meanwhile, they showed a good dispersivity confirmed by UV-Vis. extinction spectroscopy and transmission electron microscope (TEM). By decreasing the concentration of the recovery reagent or by reducing the reaction time for the second step, we clearly found that the percentage of the sliding out AuNRs decreases. These evidences support the DSM design is correct, and high yields of SNB can be generated by our two-step synthetic scheme. In addition, to our surprise, its by-products, slide out AuNRs, exhibited good dispersivity and well-maintained in size and shape. Comparing to the surface charge of the starting material, cetyltrimethylammonium bromide (CTAB) capped AuNRs (AuNR- CTAB), the surface charge of slide out AuNRs was measured to give ca. -52.6 mV, while that for the CTAB capped AuNRs was ca. +45.8 mV. Obviously, the surface charges of AuNRs were completely reversed to negative after the two-step synthesis.
Motivated by such intriguing results, we then conducted a series of studies aiming at tuning the surface charges of suspended AuNRs while preserving their shape and good dispersivity. First, AuNRs by adding anionic reagent (SDS). We confirmed that surface charge of AuNR-CTAB can be completely reversed, from ca. +50 mV to ca. -50 mV, by adding suitable anionic reagent (SDS). We then further demonstrated that the surface charge can be switched completely back to positive by adding cationic reagent (CTAB) into the solution. Most importantly, the switching back and forth of the surface charges are extremely reversible. We believe that such anionic and cationic reagents form vesicle layers and they simply superimpose to each others. The maximal number of such layers we achieved are nine before the particles losing good dispersivity. Furthermore, by carefully adjusting the concentration of SDS we demonstrated that a fine-tuning in surface net charges can be achieved. Two new capabilities of the negatively charged AuNRs were confirmed, which are contrary to their positive analogue and may very well shed some light to future studies: First, they disperse well in PBS buffer solution. Second, they are capable to block the silica coating on the AuNRs via sol-gel process.

中文摘要 ..................................................... II
Abstract. ................................................... IV
總目錄.........................................................VI
圖目錄.......................................................VIII
表目錄........................................................XII
第一章 序論 ................................................... 1
1.1金奈米圓柱 ................................................. 1
1.2二氧化矽奈米粒子 ........................................... 7
1.3研究動機與目標 ............................................. 12
第二章 二氧化矽奈米串珠結構之合成方法與機制探討 .................. 15
2.1兩步驟合成設計與要求 ....................................... 15
2.1.1實驗藥品、設備與檢測儀器 .................................. 18
2.1.2步驟I 二氧化矽鍍層之要求 .................................. 19
2.1.3步驟 II 脫離試劑之選擇......................................24
2.1.4樣品製備 ..................................................26
2.2步驟II機制深入探討 .......................................... 27
2.2.1脫離及滑出步驟之機制 ...................................... 27
2.2.2副產物金奈米圓柱之特性 .................................... 36
第三章 金奈米圓柱表面淨電荷之調控及其性質........................ 37
3.1表面淨電荷微調與翻轉之合成方法............................... 37
3.1.1實驗藥品與檢測儀器 ....................................... 38
3.1.2表面淨電荷微調與其結構 ................................... 39
3.1.3表面電荷可逆性翻轉之現象 ................................. 42
3.2翻轉後之衍生特性 .......................................... 46
第四章 結論與未來展望 ........................................ 49
參考文獻 .................................................... 51
1.Murphy, C. J., Nanocubes and Nanoboxes. Science 2002, 298 (5601), 2139-2141.
2.Faraday, M., LIX., Experimental relations of gold (and other metals) to light.—The bakerian lecture. Philosophical Magazine Series 4 1857, 14 (96), 512-539.
3.Lohse, S. E.; Murphy, C. J., The Quest for Shape Control: A History of Gold Nanorod Synthesis. Chemistry of Materials 2013, 25 (8), 1250-1261.
4.Yu; Chang, S.-S.; Lee, C.-L.; Wang, C. R. C., Gold Nanorods:  Electrochemical Synthesis and Optical Properties. The Journal of Physical Chemistry B 1997, 101 (34), 6661-6664.
5.Chang, S.-S.; Shih, C.-W.; Chen, C.-D.; Lai, W.-C.; Wang, C. R. C., The Shape Transition of Gold Nanorods. Langmuir 1999, 15 (3), 701-709.
6.Kim, F.; Song, J. H.; Yang, P., Photochemical Synthesis of Gold Nanorods. Journal of the American Chemical Society 2002, 124 (48), 14316-14317.
7.Niidome, Y.; Nishioka, K.; Kawasakib, H.; Yamada, S., Rapid synthesis of gold nanorods by the combination of chemical reduction and photoirradiation processes; morphological changes depending on the growing processes. Chem. Commun. 2003, (18), 2376-2377.
8.Jana, N. R.; Gearheart, L.; Murphy, C. J., Wet Chemical Synthesis of High Aspect Ratio Cylindrical Gold Nanorods. The Journal of Physical Chemistry B 2001, 105 (19), 4065-4067.
9.Jana, N. R.; Gearheart, L.; Murphy, C. J., Seed-Mediated Growth Approach for Shape-Controlled Synthesis of Spheroidal and Rod-like Gold Nanoparticles Using a Surfactant Template. Advanced Materials 2001, 13 (18), 1389-1393.
10.Jana, N. R.; Gearheart, L.; Obare, S. O.; Murphy, C. J., Anisotropic Chemical Reactivity of Gold Spheroids and Nanorods. Langmuir 2002, 18 (3), 922-927.
11.Nikoobakht, B.; El-Sayed, M. A., Preparation and Growth Mechanism of Gold Nanorods (NRs) Using Seed-Mediated Growth Method. Chemistry of Materials 2003, 15 (10), 1957-1962.
12.Busbee, B. D.; Obare, S. O.; Murphy, C. J., An Improved Synthesis of High-Aspect-Ratio Gold Nanorods. Advanced Materials 2003, 15 (5), 414-416.
13.Murphy, C. J.; Sau, T. K.; Gole, A. M.; Orendorff, C. J.; Gao, J.; Gou, L.; Hunyadi, S. E.; Li, T., Anisotropic Metal Nanoparticles:  Synthesis, Assembly, and Optical Applications. The Journal of Physical Chemistry B 2005, 109 (29), 13857-13870.
14.Horiguchi, Y.; Honda, K.; Kato, Y.; Nakashima, N.; Niidome, Y., Photothermal Reshaping of Gold Nanorods Depends on the Passivating Layers of the Nanorod Surfaces. Langmuir 2008, 24 (20), 12026-12031.
15.Grzelczak, M.; Mezzasalma, S. A.; Ni, W.; Herasimenka, Y.; Feruglio, L.; Montini, T.; Pérez-Juste, J.; Fornasiero, P.; Prato, M.; Liz-Marzán, L. M., Antibonding Plasmon Modes in Colloidal Gold Nanorod Clusters. Langmuir 2012, 28 (24), 8826-8833.
16.Yilmaz, H.; Bae, S. H.; Cao, S.; Wang, Z.; Raman, B.; Singamaneni, S., Gold-Nanorod-Based Plasmonic Nose for Analysis of Chemical Mixtures. ACS Applied Nano Materials 2019.
17.Link, S.; El-Sayed, M. A., Spectral Properties and Relaxation Dynamics of Surface Plasmon Electronic Oscillations in Gold and Silver Nanodots and Nanorods. The Journal of Physical Chemistry B 1999, 103 (40), 8410-8426.
18.Chou, C.-H.; Chen, C.-D.; Wang, C. R. C., Highly Efficient, Wavelength-Tunable, Gold Nanoparticle Based Optothermal Nanoconvertors. The Journal of Physical Chemistry B 2005, 109 (22), 11135-11138.
19.Song, J.; Pu, L.; Zhou, J.; Duan, B.; Duan, H., Biodegradable Theranostic Plasmonic Vesicles of Amphiphilic Gold Nanorods. ACS Nano 2013, 7 (11), 9947-9960.
20.Yu, J.; Ha, W.; Sun, J.-n.; Shi, Y.-p., Supramolecular Hybrid Hydrogel Based on Host–Guest Interaction and Its Application in Drug Delivery. ACS Applied Materials & Interfaces 2014, 6 (22), 19544-19551.
21.Liu, X.; Huang, N.; Li, H.; Wang, H.; Jin, Q.; Ji, J., Multidentate Polyethylene Glycol Modified Gold Nanorods for in Vivo Near-Infrared Photothermal Cancer Therapy. ACS Applied Materials & Interfaces 2014, 6 (8), 5657-5668.
22.Zhang, H.; Zhu, Y.; Qu, L.; Wu, H.; Kong, H.; Yang, Z.; Chen, D.; Mäkilä, E.; Salonen, J.; Santos, H. A.; Hai, M.; Weitz, D. A., Gold Nanorods Conjugated Porous Silicon Nanoparticles Encapsulated in Calcium Alginate Nano Hydrogels Using Microemulsion Templates. Nano Letters 2018, 18 (2), 1448-1453.
23.Manivasagan, P.; Bharathiraja, S.; Santha Moorthy, M.; Oh, Y.-O.; Song, K.; Seo, H.; Oh, J., Anti-EGFR Antibody Conjugation of Fucoidan-Coated Gold Nanorods as Novel Photothermal Ablation Agents for Cancer Therapy. ACS Applied Materials & Interfaces 2017, 9 (17), 14633-14646.
24.Grzincic, E. M.; Murphy, C. J., Gold Nanorods Indirectly Promote Migration of Metastatic Human Breast Cancer Cells in Three-Dimensional Cultures. ACS Nano 2015, 9 (7), 6801-6816.
25.Gerion, D.; Pinaud, F.; Williams, S. C.; Parak, W. J.; Zanchet, D.; Weiss, S.; Alivisatos, A. P., Synthesis and Properties of Biocompatible Water-Soluble Silica-Coated CdSe/ZnS Semiconductor Quantum Dots. J. Phys. Chem. B 2001, 105 (37), 8861.
26.Yuan, W.; Zhao, H.; Hu, H.; Wang, S.; Baker, G. L., Synthesis and Characterization of the Hole-Conducting Silica/Polymer Nanocomposites and Application in Solid-State Dye-Sensitized Solar Cell. ACS Applied Materials & Interfaces 2013, 5 (10), 4155-4161.
27.Li, W.; Shi, Y.; Chen, K.; Zhu, L.; Fan, S., A Comprehensive Photonic Approach for Solar Cell Cooling. ACS Photonics 2017, 4 (4), 774-782.
28.Lavik, E.; von Recum, H., The Role of Nanomaterials in Translational Medicine. ACS Nano 2011, 5 (5), 3419-3424.
29.Ge, J.; Huynh, T.; Hu, Y.; Yin, Y., Hierarchical Magnetite/Silica Nanoassemblies as Magnetically Recoverable Catalyst–Supports. Nano Letters 2008, 8 (3), 931-934.
30.Okada, S.; Ikurumi, S.; Kamegawa, T.; Mori, K.; Yamashita, H., Structural Design of Pd/SiO2@Ti-Containing Mesoporous Silica Core–Shell Catalyst for Efficient One-Pot Oxidation Using in Situ Produced H2O2. The Journal of Physical Chemistry C 2012, 116 (27), 14360-14367.
31.Li, Q.; Zhou, T.; Yang, H., Encapsulation of Hoveyda–Grubbs2nd Catalyst within Yolk–Shell Structured Silica for Olefin Metathesis. ACS Catalysis 2015, 5 (4), 2225-2231.
32.Liu, J.; Hao, J.; Hu, C.; He, B.; Xi, J.; Xiao, J.; Wang, S.; Bai, Z., Palladium Nanoparticles Anchored on Amine-Functionalized Silica Nanotubes as a Highly Effective Catalyst. The Journal of Physical Chemistry C 2018, 122 (5), 2696-2703.
33.Zhang, Z.; Wang, L.; Wang, J.; Jiang, X.; Li, X.; Hu, Z.; Ji, Y.; Wu, X.; Chen, C., Mesoporous Silica-Coated Gold Nanorods as a Light-Mediated Multifunctional Theranostic Platform for Cancer Treatment. Advanced Materials 2012, 24 (11), 1418-1423.
34.Xu, B.; Ju, Y.; Cui, Y.; Song, G.; Iwase, Y.; Hosoi, A.; Morita, Y., tLyP-1–Conjugated Au-Nanorod@SiO2 Core–Shell Nanoparticles for Tumor-Targeted Drug Delivery and Photothermal Therapy. Langmuir 2014, 30 (26), 7789-7797.
35.Chan, M.-H.; Chen, S.-P.; Chen, C.-W.; Chan, Y.-C.; Lin, R. J.; Tsai, D. P.; Hsiao, M.; Chung, R.-J.; Chen, X.; Liu, R.-S., Single 808 nm Laser Treatment Comprising Photothermal and Photodynamic Therapies by Using Gold Nanorods Hybrid Upconversion Particles. The Journal of Physical Chemistry C 2018, 122 (4), 2402-2412.
36.Li, Y.; Wen, T.; Zhao, R.; Liu, X.; Ji, T.; Wang, H.; Shi, X.; Shi, J.; Wei, J.; Zhao, Y.; Wu, X.; Nie, G., Localized Electric Field of Plasmonic Nanoplatform Enhanced Photodynamic Tumor Therapy. ACS Nano 2014, 8 (11), 11529-11542.
37.Jin, X.; Khlebtsov, B. N.; Khanadeev, V. A.; Khlebtsov, N. G.; Ye, J., Rational Design of Ultrabright SERS Probes with Embedded Reporters for Bioimaging and Photothermal Therapy. ACS Applied Materials & Interfaces 2017, 9 (36), 30387-30397.
38.Wang, S.; Zhang, M.; Zhang, W., Yolk−Shell Catalyst of Single Au Nanoparticle Encapsulated within Hollow Mesoporous Silica Microspheres. ACS Catalysis 2011, 1 (3), 207-211.
39.Chen, K.-J.; Lin, C.-T.; Tseng, K.-C.; Chu, L.-K., Using SiO2-Coated Gold Nanorods as Temperature Jump Photothermal Convertors Coupled with a Confocal Fluorescent Thermometer to Study Protein Unfolding Kinetics: A Case of Bovine Serum Albumin. The Journal of Physical Chemistry C 2017, 121 (27), 14981-14989.
40.Lee, J.; Park, J. C.; Bang, J. U.; Song, H., Precise Tuning of Porosity and Surface Functionality in Au@SiO2 Nanoreactors for High Catalytic Efficiency. Chemistry of Materials 2008, 20 (18), 5839-5844.
41.Deng, T.-S.; van der Hoeven, J. E. S.; Yalcin, A. O.; Zandbergen, H. W.; van Huis, M. A.; van Blaaderen, A., Oxidative Etching and Metal Overgrowth of Gold Nanorods within Mesoporous Silica Shells. Chemistry of Materials 2015, 27 (20), 7196-7203.
42.Ernawati, L.; Ogi, T.; Balgis, R.; Okuyama, K.; Stucki, M.; Hess, S. C.; Stark, W. J., Hollow Silica as an Optically Transparent and Thermally Insulating Polymer Additive. Langmuir 2016, 32 (1), 338-345.
43.Qiao, Z.-A.; Zhang, P.; Chai, S.-H.; Chi, M.; Veith, G. M.; Gallego, N. C.; Kidder, M.; Dai, S., Lab-in-a-Shell: Encapsulating Metal Clusters for Size Sieving Catalysis. Journal of the American Chemical Society 2014, 136 (32), 11260-11263.
44.Hong, Y.; Choi, I. A.; Seo, W. S., Au nanoparticle@hollow mesoporous carbon with FeCo/graphitic shell nanoparticls as a magnetically recyclable yolk–shell nanocatalyst for catalytic reduction of nitroaromatics. Scientific Reports 2018, 8 (1), 7469.
45.Wei, L.; Yan, S.; Wang, H.; Yang, H., Fabrication of multi-compartmentalized mesoporous silica microspheres through a Pickering droplet strategy for enhanced CO2 capture and catalysis. NPG Asia Materials 2018, 10 (9), 899-911.
46.Chen, J.; Wu, X.; Hou, X.; Su, X.; Chu, Q.; Fahruddin, N.; Zhao, J. X., Shape-Tunable Hollow Silica Nanomaterials Based on a Soft-Templating Method and Their Application as a Drug Carrier. ACS Applied Materials & Interfaces 2014, 6 (24), 21921-21930.
47.Singh, R. K.; Kim, T.-H.; Mahapatra, C.; Patel, K. D.; Kim, H.-W., Preparation of Self-Activated Fluorescence Mesoporous Silica Hollow Nanoellipsoids for Theranostics. Langmuir 2015, 31 (41), 11344-11352.
48.Zoldesi, C. I.; van Walree, C. A.; Imhof, A., Deformable Hollow Hybrid Silica/Siloxane Colloids by Emulsion Templating. Langmuir 2006, 22 (9), 4343-4352.
49.Huang, Z.; Xiong, Z.; Chen, Y.; Hu, S.; Lai, W., Sensitive and Matrix-Tolerant Lateral Flow Immunoassay Based on Fluorescent Magnetic Nanobeads for the Detection of Clenbuterol in Swine Urine. Journal of Agricultural and Food Chemistry 2019, 67 (10), 3028-3036.
50.Bottini, M.; Magrini, A.; Rosato, N.; Bergamaschi, A.; Mustelin, T., Dispersion of Pristine Single-walled Carbon Nanotubes in Water by a Thiolated Organosilane:  Application in Supramolecular Nanoassemblies. The Journal of Physical Chemistry B 2006, 110 (28), 13685-13688.
51.Bottini, M.; Cerignoli, F.; Mills, D. M.; D'Annibale, F.; Leone, M.; Rosato, N.; Magrini, A.; Pellecchia, M.; Bergamaschi, A.; Mustelin, T., Luminescent Silica Nanobeads:  Characterization and Evaluation as Efficient Cytoplasmatic Transporters for T-Lymphocytes. Journal of the American Chemical Society 2007, 129 (25), 7814-7823.
52.吳致廷, 金奈米柱-不均勻二氧化矽核殼粒子之光致熔化現象與界面結構之關係. 國立中正大學化學暨生物化學所 2016.
53.Wu, W.-C.; Tracy, J. B., Large-Scale Silica Overcoating of Gold Nanorods with Tunable Shell Thicknesses. Chemistry of Materials 2015.
54.Zou, H.; Wu, S.; Shen, J., Polymer/Silica Nanocomposites: Preparation, Characterization, Properties, and Applications. Chemical Reviews 2008, 108 (9), 3893-3957.
55.Burrows, N. D.; Lin, W.; Hinman, J. G.; Dennison, J. M.; Vartanian, A. M.; Abadeer, N. S.; Grzincic, E. M.; Jacob, L. M.; Li, J.; Murphy, C. J., Surface Chemistry of Gold Nanorods. Langmuir 2016, 32 (39), 9905-9921.
56.Huang, C.-C.; Huang, C.-H.; Kuo, I. T.; Chau, L.-K.; Yang, T.-S., Synthesis of silica-coated gold nanorod as Raman tags by modulating cetyltrimethylammonium bromide concentration. Colloids and Surfaces A: Physicochemical and Engineering Aspects 2012, 409, 61-68.
57.Tang, X.; Kröger, E.; Nielsen, A.; Strelow, C.; Mews, A.; Kipp, T., Ultrathin and Highly Passivating Silica Shells for Luminescent and Water-Soluble CdSe/CdS Nanorods. Langmuir 2017, 33 (21), 5253-5260.
58.Brinker, C. J., Sol-Gel Science: The Physics and Chemistry of Sol-Gel processing. Harcourt Brace & Company 1990.
59.Vanderkooy, A.; Chen, Y.; Gonzaga, F.; Brook, M. A., Silica Shell/Gold Core Nanoparticles: Correlating Shell Thickness with the Plasmonic Red Shift upon Aggregation. ACS Applied Materials & Interfaces 2011, 3 (10), 3942-3947.
60.吳榮憲, 深入研究金奈米柱-不均勻二氧化矽核殼結構之光致熔化現象與金棒長度之關係. 國立中正大學化學暨生物化學所 2018.
61.曾毓婷, 金奈米柱-不均勻二氧化矽核殼結構中金奈米柱光致熔化現象:界面、厚度及緻密度之影響. 國立中正大學化學暨生物化學所 2017.
62.Gole, A.; Murphy, C. J., Polyelectrolyte-Coated Gold Nanorods:  Synthesis, Characterization and Immobilization. Chemistry of Materials 2005, 17 (6), 1325-1330.
63.Hu, K.; Bard, A. J., Characterization of Adsorption of Sodium Dodecyl Sulfate on Charge-Regulated Substrates by Atomic Force Microscopy Force Measurements. Langmuir 1997, 13 (20), 5418-5425.
64.Shih, C. W. L., W. C. ;Hwang, C. C.; Chang, S. S.; Wang, C.R.C. , Metal Nanoparticles: Synthesis, Characterization, and Application in preparation. Marcel Dekker 2001, 7, 163-182.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top