(3.238.186.43) 您好!臺灣時間:2021/02/25 01:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:陳威廷
研究生(外文):CHEN,WEI-TING
論文名稱:新型生物感測方法基於共振波導光柵增強粒子電漿共振結合三明治法用於超靈敏偵測前降鈣素
論文名稱(外文):A Novel Biosensing Approach Based On Resonant Waveguide Grating Enhanced Particle Plasmon Resonance And Sandwich Method For Ultrasensitive Detection Of Procalcitonin.
指導教授:周禮君周禮君引用關係
指導教授(外文):CHAU, LAI-KWAN
口試委員:王少君張國恩許佳振
口試委員(外文):WANG, SHAU-CHUNCHANG,GUO-ENHSU,CHIA-CHEN
口試日期:2017-10-30
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:108
語文別:中文
論文頁數:64
中文關鍵詞:共振波導光柵粒子電漿共振三明治法
外文關鍵詞:Resonant waveguide gratingParticle plasmon resonanceSandwich method
相關次數:
  • 被引用被引用:1
  • 點閱點閱:79
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
有鑑於 Point of care testing (POCT) 是現今醫療發展的新趨勢,期待滿足臨床治療或家用看護所進行的準確、快速、及時的診斷需求。但現今許多生物感測器仍然笨重昂貴且檢測靈敏度未達需求,故本研究開發全新生物感測方法以滿足此需求。
在本研究中利用共振波導光柵(Resonant Waveguide Grating , RGW)結構所產生的電場增強粒子電漿共振(Particle Plasmon Resonance ,PPR)效應,並透過三明治法來提升感測靈敏度。在此選用前降鈣素 (Procalcitonin , PCT)為目標分析物,PCT為敗血症生物指標之一,因此對檢測靈敏度需求較高,若能成功偵測才能滿足現今醫療機構所需。
在晶片與金奈米分別使用葡聚糖與自組裝單層,以減少非特異性吸附的發生,最佳化條件並使用三明治法後可成功於15分鐘內偵測PCT,線性範圍為10-17-10-13 g/mL;相關係數為0.99;偵測極限為10-19g/mL 水平。除此之外也探討了不同製程的晶片與配體金奈米濃度對檢測上的影響,因晶片本身使用環烯烴共聚物(Cyclic Olefin Copolymer , COC)價格較低易大量製造,故此感測平台在未來極具商品化的潛力。

In this work, a novel biosensing method based on enhancement of particle plasmon resonance (PPR) phenomenon by resonant waveguide grating (RWG) using a sandwich assay is illustrated. The sandwich approach is utilized to improve the sensitivity of the RWG-PPR biosensor platform for ultrasensitive detection of procalcitonin (PCT), a biomarker of severe bacterial and fungal infections.
We use Dextran and Self-assembled monolayer (SAM). Its molecular property allows the chip sensing region to form an anti-nonspecific adsorption layer. Experimental results demonstrate that the RWG-PPR biosensor platform has an excellent ability for rapid (15 min), sensitive (10-19g mL-1 level) and quantitative analysis of PCT.. Moreover, since the sensing chip is constructed by cycle olefin copolymer (COC) using a low-cost and easy mass production process, there is a high potential to commercialize the biosensor platform.

摘要 1
Abstract 2
總目錄 3
第一章 緒論 5
1-1前言 5
1-2生物感測器 (Biosensor) 6
1-2.1生物感測器簡介 6
1-2.2生物感測器近年發展與挑戰 8
1.3波導模態共振 (Guide mode resonance , GMR) 9
1-3.1光柵異常繞射現象介紹 9
1-3.2波導模態共振結構與效應 11
1-3.3波導層原理與漸逝波介紹 13
1.4粒子電漿共振 (Particle Plasmon Resonance , PPR) 15
1-4.1金屬奈米粒子 15
1-4.2金奈米粒子 16
1.5前降鈣素元 (Procalcitonin , PCT) 19
1.6檢測降鈣素元 (PCT) 文獻回顧 21
第二章 實驗設備、藥品及方法 24
2.1實驗設備 24
2.2藥品 25
2.3晶片製程 27
2-3.1晶片製作 27
2-3.2晶片封裝 28
2-4金奈米粒子合成 29
2-5穿透光譜儀架設 30
2-6反射式即時偵測系統架設 31
2-7波導模態共振波長最佳化策略 33
2-8反射式即時偵測系統感測能力測試 34
2-9生化分子檢測策略 34
2-10檢測生化分子修飾方法 35
2-10.1晶片修飾捕獲抗體 35
2-10.2配體金奈米修飾方法 37
2-11三明治法之配體金濃度條件優化 40
2-12背景吸附測試 41
2-13 PCT標準品檢測 42
第三章 結果與討論 44
3-1晶片製作與修飾後鑑定 44
3-2金奈米合成與修飾鑑定 45
3-3波導模態共振波長最佳化 47
3-4反射式即時偵測系統感測測試 50
3.5濺鍍有孔洞晶片即時偵測 51
3-6濺鍍無孔洞晶片即時偵測 52
3-7蒸鍍晶片即時偵測 54
3-8配體金奈米濃度最佳化 56
3-9背景吸附測試 58
3-10 PCT標準品檢測 59
第四章 結論與未來展望 61
第五章 參考文獻 62


1.Rogers, K. R. (2000). "Principles of Affinity-Based Biosensors." Molecular Biotechnology 14: 109-129.
2.陳柏志 (2013). 床邊檢驗現況及品質管制.
3.Wang, S. S., et al. (1990). "Guided-mode resonances in planar dielectric-layer diffraction gratings." Optical Society of America A 7(8): 1470-1474.
4.Raphael, M. P., et al. (2012). "A new methodology for quantitative LSPR biosensing and imaging." Anal Chem 84(3): 1367-1373.
5.Turner, A. P. (2013). "Biosensors: sense and sensibility." Chem Soc Rev 42(8): 3184-3196.
6.Malmqvist, M. (1993). "Biospecific interaction analysis using biosensor technology." Nature 361: 186-187.
7. "Business Wire." from https://www.businesswire.com/portal/site/home/search/?searchType=all&searchTerm=biosensor&searchPage=1.
8. Scarano, S., et al. (2010). "Surface plasmon resonance imaging for affinity-based biosensors." Biosens Bioelectron 25(5): 957-966.
9.Arlett, J. L., et al. (2011). "Comparative advantages of mechanical biosensors." Nat Nanotechnol 6(4): 203-215.
10.Shin, D. (1999). Resonance properties of periodic waveguides and their applications,”Ph. D. dissertation, the Universatity of Texas at Arlington.
11.Danielli, A., et al. (2018). The guided-mode resonance biosensor: principles, technology, and implementation. Frontiers in Biological Detection: From Nanosensors to Systems X.
12.Lin, S.-F., et al. (2012). "Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution." OPTICS EXPRESS 20(13): 14584
13.Wu, H.-J., et al. (2008). "Resonant Effects in Evanescent Wave Scattering of Polydisperse Colloids." Langmuir 24: 13790-13795.
14.Toomre, D. and D. J. Manstein (2001). "Lighting up the cell surface with evanescent wave microscopy." TRENDS in Cell Biology 11(7): 298-303.
15.謝銘隆 and 周禮君 (2010). 貴金屬奈米粒子定域化表面電漿共振波在生物感測的應用. 化學, 周禮君. 68: 21-32.
16.許偉庭 and 周禮君 (2006). 貴金屬奈米粒子感測器. 生醫感測應用專題, 周禮君. 28..
17.Willets, K. A. and R. P. Van Duyne (2007). "Localized surface plasmon resonance spectroscopy and sensing." Annu Rev Phys Chem 58: 267-297.
18.Creighton, J. A. and D. G. Eadont (1991). "Ultraviolet-Visible Absorption Spectra of the Colloidal Metallic Elements." J. Chem. Soc., Faraday Trans., 87(24): 3881-3891.
19.Ng, V. W. K., et al. (2013). "Gold: a versatile tool for in vivo imaging." J. Mater. Chem. B 1(1): 9-25.
20.Nath, N. and A. Chilkoti (2002). "A Colorimetric Gold Nanoparticle Sensor To Interrogate Biomolecular Interactions in Real Time on a Surface." Anal. Chem. 74: 504-509.
21.曾賢德 (2010). 金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作. 物理雙月刊, 曾賢德. 32: 126-135.
22.Cao, J., et al. (2014). "Gold nanorod-based localized surface plasmon resonance biosensors: A review." Sensors and Actuators B: Chemical 195: 332-351.
23.趙志浩 and 吳杰亮 (2009). 敗血症的生物標記. Taiwan Crit. Care Med. 10: 105-112.
24.Reinhart, K., et al. (2006). "Markers for sepsis diagnosis: what is useful?" Crit Care Clin 22(3): 503-519, ix-x.
25.Schuetz, P., et al. (2016). "Procalcitonin: A new biomarker for the cardiologist." Int J Cardiol 223: 390-397.
26.Scientific, T. F. "B·R·A·H·M·S PCT (Procalcitonin) Education." from https://www.thermofisher.com/tw/zt/home/products-and-services/promotions/clinical/brahms-procalcitonin-sepsis-antibiotic-stewardship-pct-education.html.
27.Zhao, Y., et al. (2015). "Preparation of multi-shell structured fluorescent composite nanoparticles for ultrasensitive human procalcitonin detection." RSC Advances 5(8): 5988-5995..
28.Liao, T., et al. (2016). "Lanthanide chelate-encapsulated polystyrene nanoparticles for rapid and quantitative immunochromatographic assay of procalcitonin." RSC Advances 6(105): 103463-103470.
29.Li, Y., et al. (2018). "Label-Free Sandwich Imaging Ellipsometry Immunosensor for Serological Detection of Procalcitonin." Anal Chem 90(13): 8002-8010..
30.Liu, P., et al. (2019). "An ultrasensitive electrochemical immunosensor for procalcitonin detection based on the gold nanoparticles-enhanced tyramide signal amplification strategy." Biosens Bioelectron 126: 543-550.
31.Li, H.-Y., et al. (2015). "A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities." Sensors and Actuators B: Chemical 206: 371-380.
32.Lin, Y.-C., et al. (2017). "Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection." Sensors and Actuators B: Chemical 250: 659-666.
33.https://www.sigmaaldrich.com/technical-documents/articles/materials-science/nanomaterials/gold-nanoparticles.html


電子全文 電子全文(網際網路公開日期:20241120)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文
 
系統版面圖檔 系統版面圖檔