|
1.Rogers, K. R. (2000). "Principles of Affinity-Based Biosensors." Molecular Biotechnology 14: 109-129. 2.陳柏志 (2013). 床邊檢驗現況及品質管制. 3.Wang, S. S., et al. (1990). "Guided-mode resonances in planar dielectric-layer diffraction gratings." Optical Society of America A 7(8): 1470-1474. 4.Raphael, M. P., et al. (2012). "A new methodology for quantitative LSPR biosensing and imaging." Anal Chem 84(3): 1367-1373. 5.Turner, A. P. (2013). "Biosensors: sense and sensibility." Chem Soc Rev 42(8): 3184-3196. 6.Malmqvist, M. (1993). "Biospecific interaction analysis using biosensor technology." Nature 361: 186-187. 7. "Business Wire." from https://www.businesswire.com/portal/site/home/search/?searchType=all&searchTerm=biosensor&searchPage=1. 8. Scarano, S., et al. (2010). "Surface plasmon resonance imaging for affinity-based biosensors." Biosens Bioelectron 25(5): 957-966. 9.Arlett, J. L., et al. (2011). "Comparative advantages of mechanical biosensors." Nat Nanotechnol 6(4): 203-215. 10.Shin, D. (1999). Resonance properties of periodic waveguides and their applications,”Ph. D. dissertation, the Universatity of Texas at Arlington. 11.Danielli, A., et al. (2018). The guided-mode resonance biosensor: principles, technology, and implementation. Frontiers in Biological Detection: From Nanosensors to Systems X. 12.Lin, S.-F., et al. (2012). "Sensitive metal layer assisted guided mode resonance biosensor with a spectrum inversed response and strong asymmetric resonance field distribution." OPTICS EXPRESS 20(13): 14584 13.Wu, H.-J., et al. (2008). "Resonant Effects in Evanescent Wave Scattering of Polydisperse Colloids." Langmuir 24: 13790-13795. 14.Toomre, D. and D. J. Manstein (2001). "Lighting up the cell surface with evanescent wave microscopy." TRENDS in Cell Biology 11(7): 298-303. 15.謝銘隆 and 周禮君 (2010). 貴金屬奈米粒子定域化表面電漿共振波在生物感測的應用. 化學, 周禮君. 68: 21-32. 16.許偉庭 and 周禮君 (2006). 貴金屬奈米粒子感測器. 生醫感測應用專題, 周禮君. 28.. 17.Willets, K. A. and R. P. Van Duyne (2007). "Localized surface plasmon resonance spectroscopy and sensing." Annu Rev Phys Chem 58: 267-297. 18.Creighton, J. A. and D. G. Eadont (1991). "Ultraviolet-Visible Absorption Spectra of the Colloidal Metallic Elements." J. Chem. Soc., Faraday Trans., 87(24): 3881-3891. 19.Ng, V. W. K., et al. (2013). "Gold: a versatile tool for in vivo imaging." J. Mater. Chem. B 1(1): 9-25. 20.Nath, N. and A. Chilkoti (2002). "A Colorimetric Gold Nanoparticle Sensor To Interrogate Biomolecular Interactions in Real Time on a Surface." Anal. Chem. 74: 504-509. 21.曾賢德 (2010). 金奈米粒子的表面電漿共振特性:耦合、應用與樣品製作. 物理雙月刊, 曾賢德. 32: 126-135. 22.Cao, J., et al. (2014). "Gold nanorod-based localized surface plasmon resonance biosensors: A review." Sensors and Actuators B: Chemical 195: 332-351. 23.趙志浩 and 吳杰亮 (2009). 敗血症的生物標記. Taiwan Crit. Care Med. 10: 105-112. 24.Reinhart, K., et al. (2006). "Markers for sepsis diagnosis: what is useful?" Crit Care Clin 22(3): 503-519, ix-x. 25.Schuetz, P., et al. (2016). "Procalcitonin: A new biomarker for the cardiologist." Int J Cardiol 223: 390-397. 26.Scientific, T. F. "B·R·A·H·M·S PCT (Procalcitonin) Education." from https://www.thermofisher.com/tw/zt/home/products-and-services/promotions/clinical/brahms-procalcitonin-sepsis-antibiotic-stewardship-pct-education.html. 27.Zhao, Y., et al. (2015). "Preparation of multi-shell structured fluorescent composite nanoparticles for ultrasensitive human procalcitonin detection." RSC Advances 5(8): 5988-5995.. 28.Liao, T., et al. (2016). "Lanthanide chelate-encapsulated polystyrene nanoparticles for rapid and quantitative immunochromatographic assay of procalcitonin." RSC Advances 6(105): 103463-103470. 29.Li, Y., et al. (2018). "Label-Free Sandwich Imaging Ellipsometry Immunosensor for Serological Detection of Procalcitonin." Anal Chem 90(13): 8002-8010.. 30.Liu, P., et al. (2019). "An ultrasensitive electrochemical immunosensor for procalcitonin detection based on the gold nanoparticles-enhanced tyramide signal amplification strategy." Biosens Bioelectron 126: 543-550. 31.Li, H.-Y., et al. (2015). "A low cost, label-free biosensor based on a novel double-sided grating waveguide coupler with sub-surface cavities." Sensors and Actuators B: Chemical 206: 371-380. 32.Lin, Y.-C., et al. (2017). "Intensity-detection-based guided-mode-resonance optofluidic biosensing system for rapid, low-cost, label-free detection." Sensors and Actuators B: Chemical 250: 659-666. 33.https://www.sigmaaldrich.com/technical-documents/articles/materials-science/nanomaterials/gold-nanoparticles.html
|