跳到主要內容

臺灣博碩士論文加值系統

(100.28.0.143) 您好!臺灣時間:2024/07/13 18:00
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:邱漢唐
研究生(外文):Ciou, Han-Tang
論文名稱(外文):The Synthesis of Macrocyclic Beltenes
指導教授:林質修
指導教授(外文):Lin, Chih-Hsiu
口試委員:許岱欣朱延和鍾博文林質修
口試委員(外文):Hsu, Day-ShinChu, Yen-HoChung, Po-WenLin, Chih-Hsiu
口試日期:2020-06-23
學位類別:碩士
校院名稱:國立中正大學
系所名稱:化學暨生物化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2020
畢業學年度:108
語文別:中文
論文頁數:202
中文關鍵詞:環蕃環帶烯
外文關鍵詞:beltenesFriedlander condensationcyclophanes
相關次數:
  • 被引用被引用:0
  • 點閱點閱:185
  • 評分評分:
  • 下載下載:11
  • 收藏至我的研究室書目清單書目收藏:0
本篇論文研究方向為帶狀大環蕃之合成,此類分子簡稱環帶烯(beltene),為雙股大環結構。環帶烯對於諸多研究領域都有重要意義,環帶烯分子內之空腔已是超分子化學 (supramolecule chemistry)重要的建構單元;因環帶烯環狀結構而被迫扭曲的組成芳香烴常展現特殊能階的電子組態,是物理有機領域中重要的議題;撇開科學領域,環帶烯的剛性對稱結構頗能啟發人們的美感,以上都是合成環帶烯的動機。
從文獻中我們歸納出幾個合成環帶烯需要解決的難題。1)環帶烯合成本質上是寡聚合反應,若非每一步反應都擁有高效率,最終產物將不易獲得。2)由於聚合寡體最終需環化,所以必須考量到寡體曲率是否能在適當階段使分子頭尾相近,否則關環反應不易發生。3) 由於環帶烯雙股大環的構造,合成時需將困難的大環化反應進行兩次才能成功,使合成難度大增。
為解決上述困難,本論文使用Friedländer縮合反應 ( Friedländer condensation ) 來構成環帶烯主體結構,且以掌性雙酮單體控制聚合反中寡體之曲率。過程中我們設計並合成出雙邊均帶鄰胺基苯酮的單體6, 18, 36, 37,並與掌性雙酮進行一鍋或是逐步縮合環化反應,成功合成出環帶烯11, 14, 24,可惜卻因分子間堆疊產生不可逆沉澱,使後續研究難以進行。
論文中也藉由鄰胺苯酮形成dibenzo[1,5]diazocine的二聚反應,將單體18與 36轉化為三角形之環帶烯46, 47,其中化合物47可在晶體中自組裝成管狀結構,與本實驗室所合成其他環帶烯及文獻中許多環蕃固態堆疊結構類似,論文末了也提出一個由亂度主導的組裝機制,用以解釋此特殊現象。

The main focus of this dissertation is the synthesis of belt-shaped macrocyclic cyclophanes. This class of double-strand macrocycles is nicknamed “beltenes” and they are privileged structure motifs in several important disciplines. The intramolecular cavities of these macrocycles are excellent binding pockets for supramolecular chemistry. The cyclic structure can coerce the  scaffold to adopt bent or twisted conformations which often result in fascinating optical of electronic properties. Besides scientific interests, the rigid and symmetric architectures also appeal to our sense of aesthetics. The synthesis of beltenes is therefore a highly incentivized enterprise.
There are several difficulties in synthesizing beltenes. 1) Beltene syntheses are essentially oligomerization reactions. Unless the efficiency of each step is high, the final products cannot be obtained in appreciable yields. 2) The final cyclization reaction requires the head and tail of the rigid precursor molecule to be in close proximity. Therefore, the curvature of the molecule must be carefully controlled to ensure the success of cyclization. 3) To construct the double-strand structure, the difficult macrocyclization must be carried out twice. This requirement often devastates the overall yield.
To overcome the difficulties, we propose to employ Friedlander condensation as the key module to synthesize pyridoquinoline based beltenes. The two key building blocks are chiral bicyclo diketone, through which the curvature of the oligomers are directed, and ribbon-shaped molecules (6, 18, 36, 37) with ortho-amino benzophenone structure motifs on both sides of the molecules. After synthesizing these monomers, both one-pot and stepwise macrocyclization were carried out, and beltene 11, 14, and 24 were successfully produced. Unfortunately, these macrocycles form irreversible precipitations once purified. As a result, full characterization and further investigation is severely limited.
Utilizing the dimerization of ortho-amino benzophenone to form dibenzo[1,5]diazocine, we also prepare two triangular beltene 46 and 47 from 18 and 36. Like many other beltenes prepared by our team and other groups, beltene 47 adopts an eclipsed packing mode and forms tubular assemblies in its crystal structure. An entropy-driven model was proposed to account for such peculiar observation.

目錄
第一章 緒論..................................................................1
1-1前言與研究動機.............................................................1
1-2環帶烯合成文獻回顧.........................................................8
1-3 環帶烯合成探討...........................................................17
1-4 具體研究方法.............................................................20
第二章 結果與討論............................................................23
2-1 逆合成分析..............................................................23
2-2 單體之合成..............................................................25
2-3 使用化合物 6為單體進行環帶烯合成..........................................29
2-3-1 催化劑、溶劑、溫度測試.................................................29
2-3-2 催化劑活性期測試.......................................................33
2-3-3 合環測試..............................................................34
2-4 單體化合物 18之環帶烯大環合成.............................................41
2-4-1 單體化合物 18合成......................................................41
2-4-2 單體化合物18環帶烯合成.................................................44
2-4-3 環帶烯24後續研究.......................................................48
2-5 單體化合物 36, 37之環帶烯大環合成.........................................49
2-5-1初期合成方式............................................................49
2-5-2改善之合成方法..........................................................53
2-5-3 嘗試以化合物 36與2合成環帶烯...........................................56
2-5-4 嘗試以化合物37與架橋雙環二酮38的合成環帶烯..............................57
2-4 扁平芳香大環合成.........................................................62
2-5 Friedländer 縮合反應合成環帶烯之困境.....................................65
2-6藉鄰位胺基苯酮經酸催化形成雙亞胺八元環(dibenzo[1,5]dizaocine) 形成進行環帶烯合成..........................................................................71
儀器設備....................................................................78
實驗部分....................................................................79
參考資料...................................................................107
NMR及Mass光譜及化合物47之X-ray資訊..........................................111

1.a) D. J. Cram, J. M. Cram, Acc. Chem. Res. 1971, 4, 204–213. b) P. Timmerman, W. Verboom, D. N. Reinhoudt, Tetrahedron 1996, 52, 2663-2704. c) P. G. Ghasemabadi, T. Yao, G. J. Bodwell, Chem. Soc. Rev. 2015, 44, 6494—6518.
2.a) J. Xia, R. Jasti, Angew. Chem. Int. Ed. 2012, 51, 2474-2476. b) H. Takaba, H. Omachi, Y. Yamamoto, J. Bouffard, K. Itami, Angew. Chem. Int. Ed. 2009, 48, 6112 –6116. c) J. Y. Xue, K. Ikemoto, N. Takahashi, T. Izumi, H. Taka, H. Kita,, S. Sato, H. J. Isobe, Org. Chem. 2014, 79, 9735-9739. d) J. Zhang, J. S. Moore, Z. Xu, R. A. Aguirre, J. Am. Chem. Soc. 1992, 114, 2273-2274. e) P. R. Ashton, N. S. Isaacs, F. H.Kohnke, A. M. Z. Slawin, C. M. Spencer, J. F. Stoddart, J. M. William, Angew. Chem. Int. Ed. 1988, 27, 966-969. f) K. Luo, A. M. Prior, B. Wiredu, J. Desper, D. H. Hua, J. Am. Chem. Soc. 2010, 132, 17635-17641.
3.M. M. Pellegrin, Recl. Trav. Chim. 1899, 18, 457–465.
4.a) C. J. Brown, A. C. Farthing, Nature 1949, 164, 915–916. b) D. J. Cram, H. Steinberg, J. Am. Chem. Soc. 1951, 73, 5691-5704.
5.S. Yamago, Y. Watanabe, T. Iwamoto, Angew. Chem. Int. Ed. 2010, 49, 757 –759.
6.a) B. L. Merner, L. N. Dawe, G. J. Bodwell, Angew. Chem.Int. Ed. 2009, 48, 5487–5491. b) R. Bula, M. Fingerle, A. Ruff, B. Speiser, C. Maichle-Mössmer, H. F. Bettinger, Angew. Chem., Int. Ed. 2013, 52, 11647–11650. c) B. L. Merner, L. N. Dawe, G. J. Bodwell, Angew. Chem. Int. Ed. 2009, 48, 5487–5491.
7.a) K. Kiegiel, L. Steczek, G. Zakrzewska-Trznadel, Journal of Chemistry 2013, 1-16.
8.J. L. Atwood, L. J. Barbour, M. W. Heavena, C. L. Raston, Chem. Commun. 2003, 18, 2270–2271.
9.a) T. Ogoshi, S. Kanai, S. Fujinami, T. Yamagishi, Y. Nakamoto, J. Am. Chem. Soc. 2008, 130, 5022-5023. b) Z. Zhang, B. Xia, C. Han, Y. Yu, F. Huang, Org. Lett. 2010, 12, 3285–3287. c) T. Ogoshi, T. Yamagishi, Y. Nakamoto, Chem. Rev. 2016, 116, 7937−8002.
10.Xi. Hou, C. Ke, C. Cheng, N. Song, A. K. Blackburn, A. A. Sarjeant, Y. Y. Botros, Y. Yang, J. F. Stoddart, Chem. Commun. 2014, 50, 6196-6199.
11.Y. Segawa, A. Yagi, K. Matsui, K. Itami, Angew. Chem. Int. Ed. 2016, 55, 5136 – 5158.
12.K. Ikemoto, R. Kobayashi, S. Sato, H. Isobe, Angew. Chem. Int. Ed. 2017, 56, 6511–6514.
13.a) W. Krätschmer, L. D. Lamb, K. Fostiropoulos, D. R. Huffman, Nature 1990, 347, 354–358. b) P. Nikolaev, J. Nanosci. Nanotech. 2004, 4, 307-316. c) C. Backes, A. M. Abdelkader, C. Alonso, etc., 2D Materials, 2020, 7(2).
14.G. Wittig, G. Lehmann, Chem. Ber, 1957, 90, 875–892.
15.a) F. Vogtle, A. Schroder, D. Karbach, Angew. Chem. Int. Ed. 1991, 30, 575-577. b) W. Boomgaarden, F. Vögtle, M. Nieger, H. Hupfer, Chem. Eur. J. 1999, 5, 345-355.
16.F. H. Kohnke, A. M. Z. Slawin, J. F. Stoddart, D. J. Williams, Angew. Chem. Int. Ed. 1987, 26, 892-894.
17.W. D. Neudorff, D. Lentz, M. Anibarro, A. D. Schlüter, Chem. Eur. J. 2003, 9, 2745-2757.
18.B. Esser, F. Rominger, R.Gleiter, J. Am. Chem. Soc. 2008, 130, 6716–6717.
19.G. Povie, Y. Segawa, T. Nishihara, Y. Miyauchi, K. Itami, Science 2017, 356, 172–175.
20.J. Wang, Q. Miao, Org. Lett. 2019, 21, 10120−10124.
21.T. Shi, Q. Guo, S. Tong, M. Wang, J. Am. Chem. Soc. 2020, 142, 10, 4576–4580.
22.Z. Sun, K. Ikemoto, T. M. Fukunaga, T. Koretsune, R. Arita, S. Sato, H. Isobe, Science 2019, 363, 151–155 .
23.R. B. Woodward, W. E. Doering, J. Am. Chem. Soc. 1944, 66, 849.
24.J. Marco-Contelles, E. Pérez-Mayoral, A. Samadi, M. C. Carreiras, E. Soriano, Chem. Rev. 2009, 109, 2652–2671.
25.J. K.Stille, Macromolecules 1981, 14, 870-880.
26.Y. Imai, E. F. Johnson, T. Katto, M. Kurihara, J. K. Stille, Journal of Polymer Science 1975, 13, 2233-2249.
27.F. Almqvist, N. Ekman, T. Frejd, J. Org. Chem. 1996, 61, 3794-3798.
28.Y. Luo, A. J. Carnell, J. Org. Chem. 2010, 75, 2057–2060.
29.N. Tokunaga, Y. Otomaru, K. Okamoto, K. Ueyama, R. Shintani, T. Hayashi, J. Am. Chem. Soc. 2004, 126, 13584-13585.
30.a) J. Marco-Contelles, E. Pérez-Mayoral, A. Samadi, M. C. Carreiras, E. Soriano, Chem. Rev. 2009, 109, 2652–2671. b) S. K. De, R. A. Gibbs, Tetrahedron Lett. 2005, 46, 1647–1649. c) J. M. Muchowski, M. L. Maddox, Can. J. Chem. 2004, 82, 461–478.
31.a) A. A. Mikhaylov, A. D. Dilman, R. A. Novikov, Y. A. Khoroshutina, M. I. Struchkova, D. E. Arkhipov, Y. V. Nelyubina, A. A. Tabolin, S. L. Ioffe, Tetrahedron Lett. 2016, 57, 11–14. b) A. Bodzioch, K. Owsianik, J. Skalik, E. Kowalska, A. Stasiak, E. Różycka-Sokołowska, B. Marciniak, P. Bałczewsk, Synthesis 2016, 48(20), 3509-3514.
32.a) L. Qin, H. Cui, D. Zou, J. Li, Y. Wu, Z. Zhu, Y. Wu, Tetrahedron Lett. 2010, 51, 4445–4448. b) F. Ma, X. Xie, L. Zhang, Z. Peng, L. Ding, L. Fu, Z. Zhang, J. Org. Chem. 2012, 77, 5279−5285.
33.K. Ikemoto, J. Lin, R. Kobayashi, S. Sato, H. Isobe, Angew. Chem. Int. Ed. 2018, 57, 8555-8559.
34.J. J. Lin, C. H. Cheng, U. S. Patent 7, 671,241, March 2, 2009
35.A. Krasovskiy, P. Knochel, Angew. Chem. Int. Ed. 2004, 43, 3333-3336.
36.R. L. Bao, R. Zhao, L. Shi, Chem. Commun. 2015, 51, 6884-6900.
37.J. P. Wolfe, J. Åhman, J. P. Sadighi, R. A. Singer, S. L. Buchwald, Tetrahedron Lett. 1997, 38, 6367-6370.
38.S. Becker, A. Böhm, K. Müllen, Chem. Eur. J. 2000, 6, 3984-3990.
39.M. Widegren, M. Dietz, A. Friberg, T. Frejd, B. Hahn-Hägerdal, M. F. Gorwa-Grauslund, M. Katz, Synthesis 2006, 20, 3527-3530.
40.T. Chanda, R. K. Verma, M. S. Singh, Chem. Asian J. 2012, 7, 778 – 787.
41.A. K. Cho, J. H. Song, E. J. Lee, D. H. Lee, J. T.Hanh, D. I. Jung, Bull. Korean Chem. Soc. 2015, 36, 2746-2749.
42.a) Y. Segawa, P. Senel, S. Matsuura, H. Omachi, K. Itami, Chem. Lett. 2011, 40, 423-435. b) J. Xia, R. Jasti, Angew. Chem. Int. Ed. 2012, 51, 2474-2476. c) J. Xia, J. W. Bacon, R. Jasti, Chem. Sci. 2012, 3, 3018-3021.
43.K. Luo, A. M. Prior, B. Wiredu, J. Desper, D. H. Hua, J. Am. Chem. Soc. 2010, 132, 17635-17641.
44.W. Si, X. B. Hu, X. H. Liu, R. Fan, Z. Chen, L. Weng, J. L. Hou, Tetrahedron Lett. 2011, 52, 2484-2487.
45.S. T. Schneebeli, C. Cheng, K. J. Hartlieb, N. L. Strutt, A. A. Sarjeant, C. L. Stern, J. F. Stoddart, Chem. Eur. J. 2013, 19, 3860-3868.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top