|
[1] S. Das, et al., “A self-tuning DVS processor using delay-error detection and correction,” IEEE J. Solid-State Circuits, vol. 41, pp.792-804, Apr. 2006. [2] M. Eireiner, S. Henzler, G. Georgakos, J. Berthold and D. Schmitt-Landsiedel, “In-situ delay characterization and local supply voltage adjustment for compensation of local parametric variations,” IEEE J. Solid-State Circuits, vol.42, pp.1583-1592, Jun. 2007. [3] K. A. Bowman, et al., “Energy-efficient and metastability-immune resilient circuits for dynamic variation tolerance,” IEEE J. Solid-State Circuits, vol. 44, pp.49-63, Jan. 2009. [4] D. Ernst, et al., “Razor: a low-power pipeline based on circuit-level timing speculation,” in Proc. MICRO, 2003, pp. 7-18. [5] S. Das, et al., “RazorII: in situ error detection and correction for PVT and SER tolerance,” IEEE J. Solid-State Circuits, vol. 44, pp. 32–48, Jan. 2009. [6] D. Bull, et al., “A power-efficient 32 bit ARM processor using timing-error detection and correction for transient-error tolerance and adaptation to PVT variation,” IEEE J. Solid-State Circuits, vol.46, pp.18-31, Jan. 2011. [7] M. Wirnshofer, L. Heiß, G. Georgakos and D. Schmitt-Landsiedel, “A variation-aware adaptive voltage scaling technique based on in-situ delay monitoring,” in Proc. DDECS, 2011, pp. 261-266. [8] M. Wirnshofer, L. Heiß, G. Georgakos and D. Schmitt-Landsiedel, “An energy-efficient supply voltage scheme using in-situ Pre-Error detection for on-the-fly voltage adaptation to PVT variations,” in Proc. ISIC, 2011, pp. 94-97. [9] M. Wirnshofer, et al., “Adaptive voltage scaling by in-situ delay monitoring for an image processing circuit,” in Proc. DDECS, 2012, pp. 205-208. [10] M. Fojtik, et al., “Bubble Razor: eliminating timing margins in an ARM Cortex-M3 processor in 45 nm CMOS using architecturally independent error detection and correction,” IEEE J. Solid-State Circuits, vol. 48, pp. 66-81, Jan. 2013. [11] I. Kwon, et al., “Razor-lite: a light-weight register for error detection by observing virtual supply rails,” IEEE J. Solid-State Circuits, vol. 49, pp. 2054-2066, Sept. 2014. [12] S. Das, G. Dasika, K. Shivashankar, and D. Bull, “A 1 GHz hardware loop-accelerator with razor-based dynamic adaptation for energy-efficient operation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, pp. 2290-2298, Aug. 2014. [13] S. Das, D. M. Bull and P. N. Whatmough, “Error-resilient design techniques for reliable and dependable computing,” IEEE Trans. Device Mater. Rel., vol. 15, pp.24-34, Mar. 2015. [14] B. Reagen, et al., “Ares: a framework for quantifying the resilience of deep neural networks, ” in Proc. DAC., 2018, pp. 1-6. [15] P. N. Whatmough, et al., “A 28nm SoC with a 1.2 GHz 568nJ/prediction sparse deep-neural-network engine with> 0.1 timing error rate tolerance for IoT applications,” in Proc. IEEE ISSCC, 2017, pp. 242-243. [16] MNIST handwritten digit database. [Online]. Available: http://yann.lecun.com/exdb/mnist/
|