跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/28 05:56
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:邱仕霖
研究生(外文):CHIU, SHIH-LIN
論文名稱:過度降壓深度神經網路之 FPGA 平台設計
論文名稱(外文):FPGA Evaluation Platform Design for Voltage-Over-Scaled Deep Neural Networks
指導教授:林泰吉
指導教授(外文):LIN, TAY-JYI
口試委員:王進賢葉經緯林泰吉賴穎暉
口試委員(外文):WANG, JINN-SHYANYEH, CHING-WEILIN, TAY-JYILAI, YING-HUI
口試日期:2019-01-22
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:45
中文關鍵詞:深度神經網路過度降壓時序錯誤計算誤差
外文關鍵詞:Deep neural networkVoltage-Over-ScaledTiming errorArithmetic error
相關次數:
  • 被引用被引用:0
  • 點閱點閱:139
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
降低操作電壓以達到節能的目標已經是熟知之設計技術,目前也有大量文獻探討動態追蹤最低操作電壓並防止或補救過度降壓造成之計算錯誤。本研究主要是以 FPGA 建構動態調整電壓之設計平台,以期在實體晶片未完成前,評估具錯誤容忍能力之深度神經網路在過度降壓時之系統行為。我們以哈佛大學在 2017 年國際固態電子電路會議發表之神經網路架構作為參考設計,發現極小量時序錯誤 (timing error) 即會造成該設計極大之計算誤差 (arithmetic error),阻止進一步降壓節能。我們利用 ReLU 非負數計算的特性,提出以無號計算為基礎之更新架構,在同樣之精準度條件下可以進一步壓低 40mV 操作電壓,降低約 10% 能源消耗。
The goal of reducing operating voltage to achieve energy savings is well known design technology, and there is much literature on dynamically tracking the minimum operating voltage and preventing or remedying the computational errors caused by voltage-over-scaled. This research is mainly based on the FPGA to construct a dynamic voltage scaling design platform, in order to evaluate the system behavior of the deep neural network with fault tolerance during voltage-over-scaled before the physical chip is completed. Using the neural network architecture published by Harvard University at the International Solid-State Circuits Conference in 2017 as a reference design, we found that a very small amount of timing error would cause a great arithmetic error in the design, preventing further voltage reduction and energy saving. Using the characteristics of ReLU non-negative calculations, we propose an update architecture based on the unsigned calculation, which can further reduce the operating voltage of 40mV and reduce energy consumption by about 10% under the same precision conditions.
誌謝 i
摘要 ii
目錄 v
圖目錄 vii
表目錄 ix
第一章 序論 1
1.1研究背景 1
1.2研究動機 4
1.3研究貢獻 5
1.4論文架構 6
第二章 背景 7
2.1手寫數字辨識系統 8
2.2時序餘裕偵測器 11
第三章 過度降壓神經網路實現 16
3.1乘法器動態延遲量測 17
3.2可量化神經網路錯誤容忍度平台 19
3.3可擷取神經網路計算誤差平台 26
3.4過度降壓神經網路驗證平台 30
第四章 過度降壓神經網路效能評估 34
4.1神經網路效能量測 35
4.2過度降壓神經網路成效分析 38
第五章 結論 43
參考文獻 44

[1] S. Das, et al., “A self-tuning DVS processor using delay-error detection and correction,” IEEE J. Solid-State Circuits, vol. 41, pp.792-804, Apr. 2006.
[2] M. Eireiner, S. Henzler, G. Georgakos, J. Berthold and D. Schmitt-Landsiedel, “In-situ delay characterization and local supply voltage adjustment for compensation of local parametric variations,” IEEE J. Solid-State Circuits, vol.42, pp.1583-1592, Jun. 2007.
[3] K. A. Bowman, et al., “Energy-efficient and metastability-immune resilient circuits for dynamic variation tolerance,” IEEE J. Solid-State Circuits, vol. 44, pp.49-63, Jan. 2009.
[4] D. Ernst, et al., “Razor: a low-power pipeline based on circuit-level timing speculation,” in Proc. MICRO, 2003, pp. 7-18.
[5] S. Das, et al., “RazorII: in situ error detection and correction for PVT and SER tolerance,” IEEE J. Solid-State Circuits, vol. 44, pp. 32–48, Jan. 2009.
[6] D. Bull, et al., “A power-efficient 32 bit ARM processor using timing-error detection and correction for transient-error tolerance and adaptation to PVT variation,” IEEE J. Solid-State Circuits, vol.46, pp.18-31, Jan. 2011.
[7] M. Wirnshofer, L. Heiß, G. Georgakos and D. Schmitt-Landsiedel, “A variation-aware adaptive voltage scaling technique based on in-situ delay monitoring,” in Proc. DDECS, 2011, pp. 261-266.
[8] M. Wirnshofer, L. Heiß, G. Georgakos and D. Schmitt-Landsiedel, “An energy-efficient supply voltage scheme using in-situ Pre-Error detection for on-the-fly voltage adaptation to PVT variations,” in Proc. ISIC, 2011, pp. 94-97.

[9] M. Wirnshofer, et al., “Adaptive voltage scaling by in-situ delay monitoring for an image processing circuit,” in Proc. DDECS, 2012, pp. 205-208.
[10] M. Fojtik, et al., “Bubble Razor: eliminating timing margins in an ARM Cortex-M3 processor in 45 nm CMOS using architecturally independent error detection and correction,” IEEE J. Solid-State Circuits, vol. 48, pp. 66-81, Jan. 2013.
[11] I. Kwon, et al., “Razor-lite: a light-weight register for error detection by observing virtual supply rails,” IEEE J. Solid-State Circuits, vol. 49, pp. 2054-2066, Sept. 2014.
[12] S. Das, G. Dasika, K. Shivashankar, and D. Bull, “A 1 GHz hardware loop-accelerator with razor-based dynamic adaptation for energy-efficient operation,” IEEE Trans. Circuits Syst. I, Reg. Papers, vol. 61, pp. 2290-2298, Aug. 2014.
[13] S. Das, D. M. Bull and P. N. Whatmough, “Error-resilient design techniques for reliable and dependable computing,” IEEE Trans. Device Mater. Rel., vol. 15, pp.24-34, Mar. 2015.
[14] B. Reagen, et al., “Ares: a framework for quantifying the resilience of deep neural networks, ” in Proc. DAC., 2018, pp. 1-6.
[15] P. N. Whatmough, et al., “A 28nm SoC with a 1.2 GHz 568nJ/prediction sparse deep-neural-network engine with> 0.1 timing error rate tolerance for IoT applications,” in Proc. IEEE ISSCC, 2017, pp. 242-243.
[16] MNIST handwritten digit database. [Online]. Available: http://yann.lecun.com/exdb/mnist/

電子全文 電子全文(網際網路公開日期:20240213)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top