跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.169) 您好!臺灣時間:2025/03/20 17:02
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:范祐慈
研究生(外文):FAN YU TZU
論文名稱:濾鏡分類與毋須人工標註的濾鏡推薦系統
論文名稱(外文):Photo Filter Classification and Filter Recommendation Without Much Manual Labeling
指導教授:朱威達
指導教授(外文):Wei-Ta Chu
口試委員:葉梅珍江振國栗永徽朱威達
口試委員(外文):Mei-Chen YehChen-Kuo ChiangYung-Hui LiWei-Ta Chu
口試日期:2019-06-25
學位類別:碩士
校院名稱:國立中正大學
系所名稱:資訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:34
中文關鍵詞:照片濾鏡分類照片濾鏡推薦矩陣分解
外文關鍵詞:photo filter classificationphoto filter recommendationmatrix factorization
相關次數:
  • 被引用被引用:0
  • 點閱點閱:263
  • 評分評分:
  • 下載下載:36
  • 收藏至我的研究室書目清單書目收藏:0
用戶如何對照片使用濾鏡可能會透露出用戶的偏好或心理狀態,因此可能需要使用照片濾鏡分類方法來實現未來的大規模分析。我們收集專門用於照片濾鏡分類的數據集,並且採用遷移學習(transfer learning)技術將預先以物件分類為目標的深度模型轉換為適合於濾鏡分類的模型。基於準確的分類結果,我們構建了一個伴隨矩陣(co-occurrence matrix),以描述視覺特徵與濾鏡種類之間的頻率關係,最後經由非負矩陣分解(non-negative matrix factorization)實現濾鏡推薦。此方法不需太多的手動標記,當有更多的訓練數據時,它可以很容易地擴展。

在實驗評測中,我們驗證了各種常見的卷積神經網路的效能,並進行了一系列實驗研究,以證明濾鏡分類與遷移學習的有效性。我們還證明所提出的濾鏡推薦系統具有不錯的性能。
Because how users employ filters to photos may reveal user’s preference or mental state, a photo filter classification method is potentially demanded to enable future large-scale analysis.
We collect a dataset specifically for photo filter classification, and adopt the transfer learning technique to transform deep models pre-trained for object classification into that suitable for photo filter classification. Based on accurate classification results, we build a co-occurrence matrix to describe the frequency between visual information and filter types. Without much manual labeling, a filter recommendation approach is implemented via non-negative matrix decomposition. It can be easily extended when more training data are available.

In the evaluation, we verify different common convolutional neural networks and show performance comparison.
A series of experimental studies are conducted to demonstrate effectiveness of filter classification with transfer learning. We also demonstrate the proposed filter recommendation achieves encouraging performance.
1 Introduction................................. 1
1.1 Motivation................................. 1
1.2 SystemOverview............................. 2
1.3 Contributions............................... 3
1.4 ThesisOrganization............................ 3
2 RelatedWorks................................. 4
2.1 PhotoFilter................................ 4
2.2 RecommendationSystem......................... 6
2.3 ShortSummary.............................. 7
3 PhotoFilterClassification................................. 8
3.1 Datasets.................................. 8
3.2 TransferLearningfromPre-trainedModels............... 9
4 PhotoFilterRecommendation................................. 11
4.1 Dataset.................................. 12
4.2 MatrixFactorization........................... 12
4.3 VisualInformation............................ 15
4.3.1 AutoFeatures........................... 15
4.3.2 PlaceInformation......................... 16
4.3.3 AestheticsInformation...................... 16
4.3.4 ObjectInformation........................ 17
4.3.5 Fusion............................... 17
5 Experments................................. 19
5.1 FilterClassification............................ 19
5.2 FilterRecommendation.......................... 23
6 ConclusionandFutureWorks................................. 28
6.1 Conclusion................................ 28
6.2 FutureWorks............................... 28
References................................. 30
Appendix................................. 34
[1] Wei-TseSun,Ting-HsuanChao,Yin-HsiKuo,andWinstonH.Hsu.Photofil-
ter recommendationbycategory-awareaestheticlearning. IEEE Transactionson
Multimedia, 19(8):1870–1880,2017.
[2] Saeideh Bakhshi,DavidA.Shamma,LyndonKennedy,andEricGilbert.Whywe
filter ourphotosandhowitimpactsengagement.In ProceedingsofInternational
AAAI ConferenceonWebandSocialMedia, 2015.
[3] AndrewG.ReeceandChristopherM.Danforth.Instagramphotosrevealpredic-
tivemarkersofdepression. EPJ DataScience, 6(1):15,2017.
[4] Naila Murray,LucaMarchesotti,andFlorentPerronnin.Ava:Alarge-scale
database foraestheticvisualanalysis.In ProceedingsofIEEEConferenceon
Computer VisionandPatternRecognition, pages2408–2415.IEEE,2012.
[5] Gediminas AdomaviciusandAlexanderTuzhilin.Towardthenextgenerationof
recommender systems:Asurveyofthestate-of-the-artandpossibleextensions.
IEEE TransactionsonKnowledgeandDataEngineering, 17(6):734–749,2005.
[6] GregLinden,BrentSmith,andJeremyYork.Amazon.comrecommendations:
Item-to-item collaborativefiltering. IEEE InternetComputing, 7(1):76–80,2003.
[7] Wei-TaChuandWei-HanHuang.Culturaldifferenceandvisualinformationon
hotel ratingprediction. WorldWideWeb, 20(4):595–619,2017.
[8] Zhibo Wang,JilongLiao,QingCao,HairongQi,andZhiWang.Friendbook:a
semantic-based friendrecommendationsystemforsocialnetworks. IEEE Trans-
actions onMobileComputing, 14(3):538–551,2015.
[9] Wei-TaChuandYa-LunTsai.Ahybridrecommendationsystemconsideringvi-
sual informationforpredictingfavoriterestaurants. WorldWideWeb, 20(6):1313–
1331, 2017.
[10] Chung-HuaChuandSe-HsienWu.Achineserestaurantrecommendationsystem
based onmobilecontext-awareservices.In ProceedingsofIEEEInternational
ConferenceonMobileDataManagement, volume2,pages116–118,2013.
[11] Felicia Cordeiro,ElizabethBales,ErinCherry,andJamesFogarty.Rethinkingthe
mobile foodjournal:Exploringopportunitiesforlightweightphoto-basedcapture.
In ProceedingsofACMConferenceonHumanFactorsinComputingSystems,
pages 3207–3216.ACM,2015.
[12] Michael J.PazzaniandDanielBillsus.Content-basedrecommendationsystems.
The AdaptiveWeb, pages325–341,2007.
[13] PasqualeLops,MarcoDeGemmis,andGiovanniSemeraro.Content-basedrec-
ommender systems:Stateoftheartandtrends. Recommender SystemsHandbook,
pages 73–105,2011.
[14] John S.Breese,DavidHeckerman,andCarlKadie.Empiricalanalysisofpre-
dictivealgorithmsforcollaborativefiltering.In ProceedingsofConferenceon
Uncertainty inArtificialIntelligence, pages43–52,1998.
[15] Jia Deng,WeiDong,RichardSocher,Li-JiaLi,KaiLi,andLiFei-Fei.Imagenet:
A large-scalehierarchicalimagedatabase.In ProceedingsofIEEEConferenceon
Computer VisionandPatternRecognition, pages248–255,2009.
[16] Tsung-YiLin,MichaelMaire,SergeBelongie,JamesHays,PietroPerona,Deva
Ramanan, PiotrDoll´ar,andCLawrenceZitnick.Microsoftcoco:Commonob-
jects incontext.In ProceedingsofEuropeanConferenceonComputerVision,
pages 740–755.Springer,2014.
[17] Lorien YPratt.Discriminability-basedtransferbetweenneuralnetworks.In Pro-
ceedings ofAdvancesinNeuralInformationProcessingSystems, pages204–211,
1993.
[18] AlexKrizhevsky,IlyaSutskever,andGeoffreyEHinton.Imagenetclassification
with deepconvolutionalneuralnetworks.In ProceedingsofAdvancesinNeural
Information ProcessingSystems, pages1097–1105,2012.
[19] K.SimonyanandA.Zisserman.Verydeepconvolutionalnetworksforlarge-
scale imagerecognition.In ProceedingsofInternationalConferenceonLearning
Representations, 2015.
[20] KaimingHe,XiangyuZhang,ShaoqingRen,andJianSun.Deepresiduallearning
for imagerecognition.In ProceedingsofIEEEConferenceonComputerVision
and PatternRecognition, pages770–778,2016.
[21] YehudaKoren,RobertBell,andChrisVolinsky.Matrixfactorizationtechniques
for recommendersystems. Computer, 42(8):30–37,2009.
[22] MichaelWBerry,MurrayBrowne,AmyNLangville,VPaulPauca,andRobertJ
Plemmons. Algorithmsandapplicationsforapproximatenonnegativematrixfac-
torization. Computational StatisticsandDataAnalysis, 52(1):155–173,2007.
[23] Amy N.Langville,CarlD.Meyer,RussellAlbright,JamesCox,andDavidDul-
ing. Algorithms,initializations,andconvergenceforthenonnegativematrixfac-
torization. arXiv preprintarXiv:1407.7299, 2014.
[24] Daniel D.LeeandH.SebastianSeung.Algorithmsfornon-negativematrixfac-
torization. In ProceedingsofAdvancesinNeuralInformationProcessingSystems,
pages 556–562,2001.
[25] Zhonglong Zheng,JieYang,andYitanZhu.Initializationenhancerfornon-
negativematrixfactorization. Engineering ApplicationsofArtificialIntelligence,
20(1):101–110, 2007.
[26] Bolei Zhou,AgataLapedriza,AdityaKhosla,AudeOliva,andAntonioTorralba.
Places: A10millionimagedatabaseforscenerecognition. IEEE Transactionson
PatternAnalysisandMachineIntelligence, 40(6):1452–1464,2018.
[27] Xin Lu,ZheLin,HailinJin,JianchaoYang,andJamesZ.Wang.Rapid:Rating
pictorial aestheticsusingdeeplearning.In ProceedingsoftheACMInternational
ConferenceonMultimedia, pages457–466,2014.
[28] HosseinTalebiandPeymanMilanfar.Nima:Neuralimageassessment. IEEE
TransactionsonImageProcessing, 27(8):3998–4011,2018.
[29] JosephRedmonandAliFarhadi.Yolov3:Anincrementalimprovement. arXiv
preprintarXiv:1804.02767, 2018.
[30] Yang-YuFan,ShuLiu,BoLi,ZheGuo,AshokSamal,JunWan,andStanZ
Li. Labeldistribution-basedfacialattractivenesscomputationbydeepresidual
learning. IEEE TransactionsonMultimedia, 20(8):2196–2208,2017.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top