跳到主要內容

臺灣博碩士論文加值系統

(44.211.31.134) 您好!臺灣時間:2024/07/13 01:28
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:陳柏瑄
研究生(外文):CHEN,PO-HSUAN
論文名稱:用於腫瘤放射治療之氣囊式假體及呼吸曲線追蹤研究
論文名稱(外文):Pneumatic Phantom Design and Respiratory Reproduction for Tumor Radiotherapy
指導教授:余英豪
指導教授(外文):YU,YING-HAO
口試委員:余英豪楊智媖洪世凱蔡維達
口試委員(外文):YU,YING-HAOYANG,CHIH-YINGHUNG,SHIH-KAITSAI,WEI-TA
口試日期:2018-10-09
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:中文
論文頁數:68
中文關鍵詞:放射治療呼吸調控氣囊式假體模型比例-積分-微分控制卡爾曼濾波器
外文關鍵詞:RadiotherapyRPMPneumatic PhantomPIDK
相關次數:
  • 被引用被引用:0
  • 點閱點閱:256
  • 評分評分:
  • 下載下載:12
  • 收藏至我的研究室書目清單書目收藏:0
在現今的醫學放射治療 (Radiotherapy, RT) 中,呼吸調控系統為標靶真光刀(TrueBeam) 治療之重要配備,此項技術主要藉由即時呼吸循環放射治療調控(Real-Time Position Management of RT, RPM) 來收集患者目前呼吸節奏並透過電腦斷層掃描 (Computed Tomography, CT) 照射判斷體內腫瘤移動的相關位置。而為了降低患者之輻射接受量,必須縮小治療範圍並精準命中腫瘤。然而現今的放射治療中經常有腫瘤追蹤率低及多餘或不足之放射線照射問題,所以若能增加術前的模擬治療次數,將可大幅改善此一情況。本研究具備術前學習紀錄真實病患之呼吸波形,進而即時追蹤規律或不規則呼吸行為,因此有別於一般市售之假體模型僅能單純進行理想正弦波形之呼吸模擬。
為此,本研究專注於開發氣囊式假體並模仿真人之呼吸行為;首先氣囊式假體是由矽膠材質製作假肺,以3D列印之連桿閥門、導管、T型管以及假腫瘤等組合而成,再利用場效可程式化邏輯陣列 (Field Programmable Gate Array, FPGA) 加上數位相機採用彩色影像追蹤功能收集真人呼吸節奏,透過Arduino平行傳輸接著以比例-積分-微分控制法 (Proportional-Integral-Derivative Control, PID Control) 搭配卡爾曼濾波器 (Kalman Filter) 達到自適應性調整控制量參數,並且同時藉由使用者介面視窗監控,完成有效利用簡易之運算量及機構以達到即時及精準的呼吸曲線追蹤。
根據本研究之實驗結果,氣囊式假體在有效操作範圍內追蹤人體呼吸曲線,分別針對直線、理想正弦波形、週期大、週期小以及不規則波形執行0~100秒之測試時間並比較P、PI、PID以及PID加卡爾曼濾波器 (Proportional-Integral-Derivative-Kalman Filter Control, PIDK) 等四種控制法。本研究之追蹤準確率平均在88%~99%之間,此結果已達到實用階段。可以預見本系統將可運用於未來在腫瘤放射治療術前規劃應用上,進而有效降低癌症病患受非必要放射照射之風險。

Real-Time Position Management (RPM) nowadays is essential to radiotherapy using TrueBeam. Due to the problems on low tumor tracking capability accompanying excessive or insufficient dose application, narrow beam delivery with high accuracy control is critical for the minimum dose reception of patient. It can be seen such problem can be dramatically improved by sufficient trials before formal therapy. Thus developing a vivid phantom to reproduce patient’s respiration behavior for radiotherapy preview becomes the objective of research.
Here this project focuses on the development of pneumatic phantom and reproduction of respiration. The lung is made of silicone material, and the tumor, air valve, catheters, T-tubes are all from 3D PLA printer. A Field Programmable Gate Array (FPGA) with digital camera is employed for marker detection to record and track respiratory trajectory in anterior-posterior (A-P) direction. Respiratory reproduction is controlled by proportional-integral-derivative controller with Kalman filter (PIDK) in order to achieve a real-time adaptive control system. Finally, the tracking performance can be monitored by a user interface on PC.
The phantom was verified by P, PI, PID, and PIDK controls within 100 seconds. According to the experimental results, the average tracking accuracy of proposed PIDK control is from 88% to 99%. This result is applicable for end-to-end verification of stereotactic lung radiation therapy in the future.

摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
縮寫說明 ix
第一章 緒論 1
1.1 研究動機 1
1.2 研究目的 2
1.3 研究方法 3
1.4 論文貢獻 4
1.5 文獻探討 5
1.6 論文架構 9
第二章 氣囊式假體模型之設計 10
2.1 前言 10
2.2 氣囊式假體架構介紹 13
2.2.1 假肺、假腫瘤 13
2.2.2 連桿閥門 15
2.3 呼吸曲線追蹤系統架構介紹 17
2.3.1 FPGA擷取影像 17
2.3.2 呼吸曲線追蹤系統 18
2.4 實驗結果與討論 19
2.5 結論 25
第三章 呼吸曲線追蹤之控制 26
3.1 前言 26
3.2 氣囊式假體之系統轉移函數模擬 27
3.3 比例-積分-微分控制 (PID Control) 31
3.3.1 比例控制 (P) 32
3.3.2 積分控制 (I) 32
3.3.3 微分控制 (D) 32
3.4 卡爾曼濾波器 (Kalman Filter) 33
3.5 實驗結果與分析 35
3.6 結論 46
第四章 總結與未來展望 47
4.1 前言 47
4.2 實驗結果之討論 48
4.2.1 氣囊式假體 48
4.2.2 呼吸追蹤曲線控制 48
4.3 論文貢獻 49
4.3.1 醫學假體之改善 49
4.3.1.1 材料 49
4.3.1.2 機構 50
4.3.1.3 成本 50
4.3.2 呼吸追蹤之改良 51
4.3.2.1 標記與相機 51
4.3.2.2 追蹤方法 52
4.4 結論與未來展望 52
參考文獻 54


Bogel M., Hofmann H. G., Hornegger J., Fahrig R., Britzen S., and Maier A., "Respiratory Motion Compensation Using Diaphragm Tracking for Cone-Beam C-Arm CT: A Simulation and a Phantom Study," Int J Biomed Imaging, vol. 2013, pp. 520-540, 2013.

Cheung Y. and Sawant A., "An externally and internally deformable, programmable lung motion phantom," Med Phys, vol. 42, no. 5, pp. 2585-2593, May 2015.

Chi Mei Medical Center. (2014). 呼吸調控放射線治療Respiratory Gated Radiotherapy. Available: http://www.chimei.org.tw/main/cmh_department/59012/info/5700/55700206.html

Computerized Imaging Reference Systems Inc. <008A PB 062716.pdf>. Available: http://www.cirsinc.com/products/all/18/dynamic-thorax-phantom/

Constantinou C., Attix F. H., and Paliwal B. R., "A solid water phantom material for radiotherapy x-ray and gamma-ray beam calibrations," Med Phys, vol. 9, no. 3, pp. 436-441, May-Jun 1982.

Cruz W., Narayanasamy G., Papanikolaou N., and Stathakis S., "Dosimetric comparison of water phantoms, ion chambers, and data acquisition modes for LINAC characterization," Radiation Measurements, vol. 82, pp. 108-114, 2015.
Ehrbar S., Perrin R., Peroni M., Bernatowicz K., Parkel T., Pytko I., Klock S., Guckenberger M., Tanadini-Lang S., Weber D. C., and Lomax A., "Respiratory motion-management in stereotactic body radiation therapy for lung cancer - A dosimetric comparison in an anthropomorphic lung phantom (LuCa)," Radiother Oncol, vol. 121, no. 2, pp. 328-334, Nov 2016.

Guckenberger M., Kavanagh A., Webb S., and Brada M., "A novel respiratory motion compensation strategy combining gated beam delivery and mean target position concept --a compromise between small safety margins and long duty cycles," Radiother Oncol, vol. 98, no. 3, pp. 317-22, Mar 2011.

Health Promotion Administration Ministry of Health and Welfare. (2015). <民國104年癌症登記報告.pdf>. Available: https://www.hpa.gov.tw/Pages/ashx/File.ashx?FilePath=~/File/Attach/8084/File_7635.pdf

Ion Beam Application. Blue Phantom. Available:
https://www.iba-dosimetry.com/product/blue-phantom-2/

Kanagaki B., Read P. W., Molloy J. A., Larner J. M., and Sheng K., "A motion phantom study on helical tomotherapy: the dosimetric impacts of delivery technique and motion," Phys Med Biol, vol. 52, no. 1, pp. 243-255, Jan 7 2007.

Kaohsiung Veterans General Hospital. 放射治療的歷史發展及未來展望. Available: https://org.vghks.gov.tw/ct/News_Content.aspx?n=2044902FC839D045&sms=D59138EA3ED4269C&s=7BD2095C1DB2BDEA

Keall P. J., Mageras G. S., Balter J. M., Emery R. S., Forster K. M., Jiang S. B., Kapatoes J. M., Low D. A., Murphy M. J., Murray B. R., Ramsey C. R., Van Herk M. B., Vedam S. S., Wong J. W., and Yorke E., "The management of respiratory motion in radiation oncology report of AAPM Task Group 76," Med Phys, vol. 33, no. 10, pp. 3874-3900, Oct 2006.

Kinhikar R. A., Jamema S. V., Reenadevi, Pai R., Zubin M., Gupta T., Dhote D. S., Deshpande D. D., Shrivastava S. K., and Sarin R., "Dosimetric validation of first helical tomotherapy Hi-Art II machine in India," Med Phys, vol. 5, no. 1, pp. 284-289, 2009.

Korreman S. S., "Motion in radiotherapy: photon therapy," Phys Med Biol, vol. 57, no. 23, pp. R161-R191, Dec 7 2012.

Medwig J., Gaede S., Battista J. J., and Yartsev S., "Effect of lateral target motion on image registration accuracy in CT-guided helical tomotherapy: a phantom study," J Med Imaging Radiat Oncol, vol. 54, no. 3, pp. 280-286, Jun 2010.

Modus Medical Devices Inc. . Available: https://modusqa.com/motion/phantom

Pallotta S., Calusi S., Foggi L., Lisci R., Masi L., Marrazzo L., Talamonti C., Livi L., and Simontacchi G., "ADAM: A breathing phantom for lung SBRT quality assurance," Phys Med, vol. 49, pp. 147-155, May 2018.

Palmer A. L., Nash D., Kearton J. R., Jafari S. M., and Muscat S., "A multicentre 'end to end' dosimetry audit of motion management (4DCT-defined motion envelope) in radiotherapy," Radiother Oncol, vol. 125, no. 3, pp. 453-458, Dec 2017.

Perrin R. L., Zakova M., Peroni M., Bernatowicz K., Bikis C., Knopf A. K., Safai S., Fernandez-Carmona P., Tscharner N., Weber D. C., Parkel T. C., and Lomax A. J., "An anthropomorphic breathing phantom of the thorax for testing new motion mitigation techniques for pencil beam scanning proton therapy," Phys Med Biol, vol. 62, no. 6, pp. 2486-2504, Mar 21 2017.

Pollock S., Kipritidis J., Lee D., Bernatowicz K., and Keall P., "The impact of breathing guidance and prospective gating during thoracic 4DCT imaging: an XCAT study utilizing lung cancer patient motion," Phys Med Biol, vol. 61, no. 17, pp. 6485-501, Sep 7 2016.

Quinones D. R., Soler-Egea D., Gonzalez-Perez V., Reibke J., Simarro-Mondejar E., Perez-Feito R., Garcia-Manrique J. A., Crispin V., and Moratal D., "Open Source 3D Printed Lung Tumor Movement Simulator for Radiotherapy Quality Assurance," Materials (Basel), vol. 11, no. 8, Jul 30 2018.

Radiology Support Devices Inc. . Available: http://www.rsdphantoms.com/pages/dynamicanatomicalrespiring.html

Tyler M. K., "Quantification of interplay and gradient effects for lung stereotactic ablative radiotherapy (SABR) treatments," Appl Clin Med Phys, vol. 17, pp. 158-166, 2016.

Varian Medical Systems Inc. Real-time Position Management™ (RPM) Respiratory Gating. Available:
https://www.varian.com/zh-hant/oncology/products/real-time-tracking-motion-management/real-time-position-management-rpm

Wang Z., Wu Q. J., Marks L. B., Larrier N., and Yin F. F., "Cone-beam CT localization of internal target volumes for stereotactic body radiotherapy of lung lesions," Int J Radiat Oncol Biol Phys, vol. 69, no. 5, pp. 1618-1624, Dec 1 2007.



QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top