跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.88) 您好!臺灣時間:2024/12/04 14:35
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:楊衡
研究生(外文):YANG, HENG
論文名稱:應用輸入與狀態時延相依強健多項式系統之雙向轉換器研製
論文名稱(外文):Design and Implementation of a Bidirectional Converter Using Robust Polynomial Systems with Input and State Time Delay-Dependent
指導教授:余國瑞余國瑞引用關係
指導教授(外文):YU, GWO-RUEY
口試委員:余國瑞張淵智吳炳飛彭昭暐高立人
口試委員(外文):YU, GWO-RUEYCHANG, YUAN-CHIHWU, BING-FEIPERNG, JAU-WOEIKAU, LIH-JEN
口試日期:2019-07-05
學位類別:碩士
校院名稱:國立中正大學
系所名稱:電機工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:227
中文關鍵詞:輸入與狀態時延強健多項式系統雙向轉換器平方和
外文關鍵詞:Robust polynomial system with input and state time-delayBidirectional converterSum of square
相關次數:
  • 被引用被引用:0
  • 點閱點閱:146
  • 評分評分:
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本論文應用輸入與狀態時延相依多項式模糊系統,設計直流/直流雙向轉換器之強健H∞控制器。本論文自行研製額定功率2kW雙向轉換器,結合傳統降壓轉換器與傳統升壓轉換器,作為電力級之轉換器,具有低成本、高功率密度、高效率之優點。控制級方面,使用自行研製之TI控制板實現輸入與狀態時延相依多項式模糊系統之控制,於建立轉換器之非理想狀態空間模型時,加入誤差積分項作為一狀態變數,使得輸出電壓誤差趨近於零,並將轉換器升、降壓模式之二極體偏壓,視為一固定外在干擾訊號,以H∞性能指標抑制干擾。此外,控制器輸出訊號經過緩衝器、驅動電路之光耦合器等元件,皆須反應時間,導致輸入時間延遲;另一方面,因回授電路元件特性及控制板計算回授訊號,皆需要時間,以致於狀態時間延遲。考慮上述現象,利用Lyapunov-Krasovskii函數,推導定理一輸入與狀態時延相依H∞多項式系統之穩定定理。因實際電路之元件數值、輸入電壓及輸出負載,皆受時間及環境影響,故考慮模式不確定性,接著推導定理二輸入與狀態時延相依強健多項式系統之穩定定理,並將定理一及定理二之穩定條件式以平方和(Sum of Squares)形式表示。最後透過Duty干擾、輸入電壓變動、負載變動、電感變動及電容變動等實驗,測試系統性能,與考慮輸入與狀態時延獨立多項式之控制方法比較,本論文使用之方法性能更為優良。
In this thesis, we propose a polynomial system with input and state time delay-dependent to design a robust H∞ controller for a DC/DC bidirectional converter. The self-developed bidirectional converter, rated power of which is 2kW, is combined with a conventional buck converter and a conventional boost converter as a power stage of the system. The bidirectional converter has the properties of low cost and high efficiency. In respect of the control stage, we utilize the self-developed control board with micro processor produced by Texas Instruments Incorporated to implement input and state time delay-dependent control. In order to make the output voltage error of the bidirectional converter tend to the zero, a state variable, which is known as error integral term, is put into the state-space equation. In addition, the diode bias in buck or boost mode is regarded as a fixed disturbance signal and it is suppressed by the H∞ performance approach. The output signal of the controller drives the power switch through the buffer and the optical coupler. The circuit components above have a reaction time and it results in an input time-delay. On the other hand, it takes time to return the feedback signal due to the characteristics of the feedback circuit components and the control board, and it leads to a state time-delay. The H∞ stability theorem of polynomial systems with input and state time delay-dependent is derived by using Lyapunov-Krasovskii function. However, values of components, input voltages, and output loads in actual circuits will vary with experimental conditions and time. Therefore, considering the model uncertainty, the robust stability theorem of polynomial systems with input and state time delay-dependent is derived in Theorem 2. The above theorems are all expressed in the form of SOS (Sum of Squares). Finally, compared to existing controller with input and state time delay-independent control system and the controller with state time delay-dependent control system, the proposed controller is better then previous two in experiments of duty disturbances, input voltage variations, load variations, inductance variations and capacitance variations.
目錄

中文摘要 i
Abstract ii
目錄 iv
圖目錄 vii
表目錄 xvi
第一章 緒論 1
1-1 研究背景 1
1-2 文獻回顧 2
1-3 論文大綱 6
第二章 系統架構與雙向轉換器電路動作原理 8
2-1 再生能源儲能系統之系統架構 8
2-2 雙向轉換器之電路動作原理 9
2-2-1 雙向轉換器之電路架構 9
2-2-2 降壓模式 11
2-2-3 升壓模式 14
第三章 控制器原理與設計 18
3-1 雙向轉換器之輸入與狀態時延相依多項式控制系統模型 18
3-2 雙向轉換器之輸入與狀態時延相依H∞多項式控制系統穩定性分析 20
3-3 雙向轉換器之輸入與狀態時延相依強健多項式控制系統穩定性分析 34
第四章 雙向轉換器之周邊電路介紹與設計 47
4-1 雙向轉換器控制系統 47
4-2 周邊電路設計 48
4-2-1 電壓回授電路 48
4-2-2 電流回授電路 49
4-2-3 功率開關驅動電路 51
4-2-4 PWM緩衝器 52
第五章 微處理器及軟體流程規劃 53
5-1 微處理器介紹 53
5-2 程式流程 54
5-2-1 主程式流程 54
5-2-2 A/D中斷副程式 55
5-2-3 輸入與狀態時延相依多項式控制系統降壓模式副程式 56
5-2-4 輸入與狀態時延相依多項式控制系統升壓模式副程式 56
5-2-5 電路保護副程式 57
第六章 雙向轉換器之電腦模擬 58
6-1 電氣規格 58
6-2 模擬架構 59
6-3 時間常數計算 62
6-4 降壓模式模擬 65
6-4-1 降壓模式:無變動模擬 66
6-4-2 降壓模式:Duty干擾模擬 74
6-4-3 降壓模式:輸入電壓變動模擬 77
6-4-4 降壓模式:負載變動模擬 81
6-4-5 降壓模式:電感變動模擬 85
6-4-6 降壓模式:電容變動模擬 91
6-5 升壓模式模擬 97
6-5-1 升壓模式:無變動模擬 98
6-5-2 升壓模式:Duty干擾模擬 106
6-5-3 升壓模式:輸入電壓變動模擬 109
6-5-4 升壓模式:負載變動模擬 113
6-5-5 升壓模式:電感變動模擬 117
6-5-6 升壓模式:電容變動模擬 122
第七章 雙向轉換器之實作與實驗 128
7-1 實體電路 128
7-2 降壓模式實驗 130
7-2-1 降壓模式:無變動實驗 131
7-2-2 降壓模式:Duty干擾實驗 140
7-2-3 降壓模式:輸入電壓變動實驗 144
7-2-4 降壓模式:負載變動實驗 148
7-2-5 降壓模式:電感變動實驗 152
7-2-6 降壓模式:電容變動實驗 158
7-3 升壓模式實驗 164
7-3-1 升壓模式:無變動實驗 165
7-3-2 升壓模式:Duty干擾實驗 174
7-3-3 升壓模式:輸入電壓變動實驗 178
7-3-4 升壓模式:負載變動實驗 182
7-3-5 升壓模式:電感變動實驗 186
7-3-6 升壓模式:電容變動實驗 192
7-4 電池充電實驗 198
7-4-1 電池充電實驗:無變動實驗 198
7-4-2 電池充電實驗:Duty干擾實驗 199
7-4-3 電池充電實驗:輸入電壓變動實驗 201
7-4-4 電池充電實驗:負載變動實驗 202
7-4-5 電池充電實驗:電感變動實驗 204
7-4-6 電池充電實驗:電容變動實驗 206
7-5 電池放電實驗 208
7-5-1 電池放電實驗:無變動實驗 209
7-5-2 電池放電實驗:Duty干擾實驗 212
7-5-3 電池放電實驗:負載變動實驗 213
7-5-4 電池放電實驗:電感變動實驗 214
7-5-5 電池放電實驗:電容變動實驗 216
7-6 晶片運算時間實驗 219
7-7 效率量測 220
第八章 結論與未來研究方向 221
8-1 結論 221
8-2 未來研究方向 221
參考文獻 222


參考文獻
[1]國際能源署,取自:
https://www.iea.org/weo2018/
[2]經濟部能源局,取自:
https://www.re.org.tw/default.aspx
[3]台灣電力公司,取自:
https://www.re.org.tw/default.aspx
[4]H. S. Son, J. K. Kim, J. B. Lee, S. S. Moon, J. H. Park and S. H. Lee, “A new buck-boost converter with low voltage stress and reduced conducting components,” IEEE Trans. Industrial Electronics, vol. 64, no. 9, pp. 7030-7038, 2017.
[5]B. Moon, H.Y. Jung, S.H. Kim and S.H Lee, “A Modified Toplogy of Tow-Switch Buck-Boost Converter,” IEEE Access, vol. 5, pp. 17772-17780, 2017.
[6]A. Ajami, H. Ardi and A. Farakhor, “A novel high step-up DC/DC converter based on integrating coupled inductor and switched-capacitor techniques for renewable energy applications,” IEEE Trans. Power Electronics, vol. 30, no. 8, pp.4255-4263, 2015.
[7]S. Dusmez, A. Khaligh and A. Hasanzadeh, “A zero-voltage-transition bidirectional DC/DC converter,” IEEE Trans. Industrial Electronics, vol. 62, no. 5, pp.3152-3162, 2015.
[8]A. K. Rathore and U. R. Prasanna, “Analysis, design, and experimental results of novel snubberless bidirectional naturally clamped ZCS/ZVS current-fed half-bridge DC/DC converter for fuel cell vehicles,” IEEE Trans. Industrial Electronics, vol. 60, no. 10, pp.4482-4491, 2013.
[9]S. C. Tan, Y. M. Lai and C. K. Tse, “General design issues of sliding-mode controllers in DC/DC converters,” IEEE Trans. Industrial Electronics, vol. 55, no. 3, pp. 1160-1174, 2008.
[10]A. Momeneh, M. Castilla, M. M. Ghahderijani, J. Miret and L. G. Vicuna, “Analysis, design and implementation of a DC/DC boost resonant-inductor converter with sliding-mode control,” IET Power Electron, vol. 11, no. 3, pp. 460-467, 2018.
[11]T. F. Wu, C. H. Chang and Y. H. Chen, “A fuzzy-logic-controlled single-stage converter for PV-powered lighting system applications,” IEEE Trans. Industrial Electronics, vol. 47, no. 2, pp. 287-296, 2000.
[12]Y. H. Chang, W. S. Chan and C. W. Chang, “T-S fuzzy model-based adaptive dynamic surface control for ball and beam system,” IEEE Trans. Industrial Electronics, vol.60, no. 6, pp. 2251-2263, 2013.
[13]C. S. Chiu and Y. L. Ouyang, “Robust maximum power tracking control of uncertain photovoltaic systems: A unified T-S fuzzy model-based approach,” IEEE Trans. Control Systems Technology, vol. 19, no. 6, pp. 1516-1526, 2011.
[14]H. K. Lam and S. C. Tan, “Stability analysis of fuzzy-model-based control systems: application on regulation of switching DC–DC converter,” IET Control Theory Appl., vol. 3, no. 8, pp. 1093-1106, 2009.
[15]K. Y. Lian, J. J. Liou and C. Y. Huang, “LMI-based integral fuzzy control of DC-DC converters,” IEEE Trans. Fuzzy Systems, vol. 14, no. 1, pp. 71-80, 2006.
[16]H. K. Lam, T. H. Lee, F. H. F. Leung and P. K. S. Tam, “Fuzzy control of DC-DC switching converters: stability and robustness analysis,” in Proc. IEEE Industrial Electronics Society, pp. 899-902, 2001.
[17]H. K. Lam and S. C. Tan, “Stability analysis of fuzzy-model-based control systems: application on regulation of switching DC–DC converter,” IET Control Theory Appl., vol. 3, no. 8, pp. 1093-1106, 2009.
[18]K. Tanaka, H. Yoshida, H. Ohtake and H. O. Wang, “A sum-of-squares approach to modeling and control of nonlinear dynamical systems with polynomial fuzzy systems,” IEEE Trans. Fuzzy Systems, vol. 17, no. 4, pp. 911-922, 2009.
[19]K. Tanaka, H. Ohtake and H. O. Wang, “Guaranteed cost control of polynomial fuzzy systems via a sum of squares approach”, IEEE. Trans. Syst., Man, vol. 39, no. 2, 2009.
[20]H. K. Lam, L. Wu and J. Lam, “Two-step stability analysis for general polynomial-fuzzy-model based control systems,” IEEE Trans. Fuzzy Systems, vol. 23, no. 3, pp. 511-524, 2015.
[21]H. K. Lam, C. Liu, L. Wu and X. Zhao, “Polynomial fuzzy-model-based control systems: stability analysis via approximated membership functions considering sector nonlinearity of control input,” IEEE Trans. Fuzzy Systems, vol. 23, no. 6, pp. 2202-2214, 2015.
[22]H. K. Lam and H. Li, “Output-feedback tracking control for polynomial fuzzy-model-based control systems,” IEEE Trans. Industrial Electronics, vol. 60, no. 12, pp.5830-5840, 2013.
[23]C. Liu and H. K. Lam, “Design of a polynomial fuzzy observer controller with sampled-output measurements for nonlinear systems considering unmeasurable premise variables,” IEEE Trans. Fuzzy Systems, vol. 23, no. 6, pp.2067-2079, 2015.
[24]S. J. Yoo, “Delay-independent fault detection and accommodation for non-linear strict-feedback systems with unknown time-varying delays,” IET Control Theory Appl., vol. 9, no. 2, pp. 293-299, 2015.
[25]E. Devance and I. Lestas, “Delay-independent asymptotic stability in monotone systems,” IEEE Trans. Automatic Control, vol. 61, no. 9, pp. 2625-2631, 2016.
[26]X. Li and C. E. de Souza, “Delay-dependent robust stability and stabilization of uncertain linear delay systems: a linear matrix inequality approach,” IEEE Trans. Automatic Control, vol. 42, no. 8, pp. 1144-1148, 1997.
[27]Papachristodoulou, M. M. Peet and S. Lall, “Analysis of polynomial systems with time delays via the sum of squares decomposition,” IEEE Trans. Automatic Control, vol. 54, no. 5, pp. 1058-1064, 2009.
[28]T. Weihua and Z. Huaguang, “Optimal guaranteed cost control for fuzzy descriptor systems with time-varying delay,” Journal of Systems Engineering and Electronics, vol. 19, no. 3, pp. 584-591, 2008.
[29]Q. Gao, G. Feng, Z. Xi, Y. Wang and J. Qiu, “A new design of robust H∞ sliding mode control for uncertain stochastic T–S fuzzy time-delay systems,” IEEE Trans. Cybernetics, vol. 44, no. 9, pp. 1556-1566, 2014.
[30]S. H. Esfahani, “Improvement on the problem of output feedback fuzzy H∞-tracking control design for non-linear discrete-time systems with state and input delay,” IET Control Theory Appl., vol. 10, no. 1, pp. 24-34, 2016.
[31]L. Wu, X. Su, P. Shi and J. Qiu, “Model approximation for discrete-time state-delay system in the T-S fuzzy framework,” IEEE Trans. Fuzzy Systems, vol. 19, no. 2, pp. 366-378, 2011.
[32]H. Zhang, G. Yu, C. Zhou and C. Dang, “Delay-dependent decentrailsed H∞ filtering for fuzzy interconnected systems with time-varying delay based on Takagi-Sugeno fuzzy model,” IET Control Theory Appl. , vol. 7, no. 5, pp. 720-729, 2013.
[33]Y. X. Zhang and X. F. Wang, “Observer-based stabilization of T-S fuzzy systems with input delay,” IEEE Trans. Fuzzy Systems, vol. 16, no. 3, pp. 652-663, 2008.
[34]H. Han, “T-S fuzzy controllers for a class of nonlinear systems with uncertainties and input delay,” in Proc. IEEE Fuzzy Systems, 2009, pp. 820-825.
[35]B. Faycal and N. Noureddine, “An LMI approach to robust H∞ control and stabilization analysis for uncertain T-S fuzzy systems with state and input time-delays,” in Proc. IEEE Control, Engineering and Information Technology, 2015, pp.1-6.
[36]W. Li and W. Wang, “Guaranteed cost control for polynomial discrete fuzzy time delay systems by sum-of-squares approach,” in Proc. IEEE Information and Computing Science, 2012, pp. 178-181.
[37]F. Zhang, L. Li, and W. Wang, “Stability and stabilization for a class of polynomial discrete fuzzy systems with time delay by sum-of-squares optimization,” in Proc. IEEE Fuzzy Systems and Knowledge Discovery, 2011, pp. 713-717.
[38]A. Papachristodoulou, M. M. Peet and S. Lall, “Analysis of polynomial system with time delay via the sum of squares decomposition,” IEEE Trans. Automatic Control, vol. 54, no. 5, pp. 1058-1064, 2009.
[39]G. Franze, D. Famularo and A. Casavola, “Constrained nonlinear polynomial time-delay systems: A sum-of-squares approach to estimate the domain of attraction,” IEEE Trans. Automatic Control, vol. 57, no. 10, pp. 2673-2679, 2012.
[40]X. Li, H. K. Lam, F. Liu and X. Zhao, “Stability and stabilization analysis of positive polynomial fuzzy systems with time delay considering piecewise membership functions,” IEEE Trans. Fuzzy Systems, vol. 25, no. 4, pp. 958-971, 2017.
[41]X. Li, H. K. Lam, G. Song and F. Liu, “Stability analysis of positive polynomial fuzzy-model-based control systems with time delay under imperfect premise matching,” IEEE Trans. Fuzzy Systems, vol. 26, no. 4, pp. 2289-2300, 2018.
[42]S. H. Tsai and C. Y. Jen, “H∞ stabilization for polynomial fuzzy time-delay system: A sum-of-squares approach,” IEEE Trans. Fuzzy Systems, vol. 26, no. 6, pp. 3630-3644, 2018.
[43]S. Prajna, A. Papachirstodoulou and P. A. Parrilo, “Introducing SOSTOOLS: a general purpose sum of squares programming solver,” in Proc. IEEE Decision and Control, 2002, pp. 741-746.
[44]G. T. Chen, Design and implementation of a bidirectional converter using robust polynomial systems with input and state time-delay, Master Thesis, Department of Electrical Engineering, National Chung Cheng University, 2018.
[45]Y. H. Chiang, Design and implementation of a bidirectional converter using interval type-2 robust polynomial fuzzy systems with time-delay dependent, Master Thesis, Department of Electrical Engineering, National Chung Cheng University, 2017.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top