[1]聯宏軸承,http://a16329395.pixnet.net/blog/post/191114819-%E8%BB%B8%E6%89%BF%E7%9A%84%E5%88%86%E9%A1%9E%E5%B0%8F%E5%B8%B8%E8%AD%98-%E6%9C%89%E9%97%9C%E6%BB%BE%E5%8B%95%E7%9A%84%E9%A1%9E%E5%9E%8B-%E9%95%B7%E5%BE%97%E5%BE%88%E5%83%8F-,2013。
[2]Jammu, N. S., & Kankar, P. K. (2011). A review on prognosis of rolling element bearings. International Journal of Engineering Science and Technology, 3(10), 7497-7503.
[3]Yang, W., & Court, R. (2013). Experimental study on the optimum time for conducting bearing maintenance. Measurement, 46(8), 2781-2791.
[4]Ali, J. B., Fnaiech, N., Saidi, L., Chebel-Morello, B., & Fnaiech, F. (2015). Application of empirical mode decomposition and artificial neural network for automatic bearing fault diagnosis based on vibration signals. Applied Acoustics, 89, 16-27.
[5]Zimroz, R., Bartelmus, W., Barszcz, T., & Urbanek, J. (2014). Diagnostics of bearings in presence of strong operating conditions non-stationarity—A procedure of load-dependent features processing with application to wind turbine bearings. Mechanical systems and signal processing, 46(1), 16-27.
[6]Pan, Y., Chen, J., & Guo, L. (2009). Robust bearing performance degradation assessment method based on improved wavelet packet–support vector data description. Mechanical Systems and Signal Processing, 23(3), 669-681.
[7]Samanta, B., & Al-Balushi, K. R. (2003). Artificial neural network based fault diagnostics of rolling element bearings using time-domain features. Mechanical systems and signal processing, 17(2), 317-328.
[8]Li, B., Chow, M. Y., Tipsuwan, Y., & Hung, J. C. (2000). Neural-network-based motor rolling bearing fault diagnosis. IEEE transactions on industrial electronics, 47(5), 1060-1069.
[9]Peter, W. T., Peng, Y. A., & Yam, R. (2001). Wavelet analysis and envelope detection for rolling element bearing fault diagnosis—their effectiveness and flexibilities. Journal of vibration and acoustics, 123(3), 303-310.
[10]FernáNdez-Francos, D., MartíNez-Rego, D., Fontenla-Romero, O., & Alonso-Betanzos, A. (2013). Automatic bearing fault diagnosis based on one-class ν-SVM. Computers & Industrial Engineering, 64(1), 357-365.
[11]Al-Raheem, K. F., & Abdul-Karem, W. (2010). Rolling bearing fault diagnostics using artificial neural networks based on Laplace wavelet analysis. International Journal of Engineering, Science and Technology, 2(6).
[12]林育新,滾動軸承智能診斷與剩餘壽命預估之研發,國立中正大學機械工程學系碩士論文,2017。[13]江玟菱,進給系統健康診斷技術之研發,國立中正大學機械工程學系碩士論文,2018。[14]Liu, F. T., Ting, K. M., & Zhou, Z. H. (2008, December). Isolation forest. In 2008 Eighth IEEE International Conference on Data Mining (pp. 413-422). IEEE.
[15]Isolation Forest example, https://scikit-learn.org/dev/auto_examples/ensemble/plot_isolation_forest.html#sphx-glr-auto-examples-ensemble-plot-isolation-forest-py, 2019.
[16]屈梁生,機械故障的全息診斷原理,科學出版社,2007。
[17]劉石與屈梁生,回轉機械故障診斷中的三維全息譜,西安交通大學學報,第38卷,第9期,2004。
[18]Chen, W. R., Yun, Y. H., Wen, M., Lu, H. M., Zhang, Z. M., & Liang, Y. Z. (2016). Representative subset selection and outlier detection via isolation forest. Analytical Methods, 8(39), 7225-7231.
[19]Anomaly Detection, https://www.slideshare.net/mlvlc/l14-anomaly-detection, 2015.
[20]Liu, F. T., Ting, K. M., & Zhou, Z. H. (2012). Isolation-based anomaly detection. ACM Transactions on Knowledge Discovery from Data (TKDD), 6(1), 3.
[21]Data Science Basics: An Introduction to Ensemble Learnings, https://thetazero.com/news/data-science-basics-an-introduction-to-ensemble-learners-ssp, 2016.
[22]Chen, P., Wang, K., & Feng, K. (2016, October). Application of order-tracking holospectrum to cracked rotor fault diagnostics under nonstationary conditions. In 2016 Prognostics and system health management conference (PHM-Chengdu) (pp. 1-6). IEEE.
[23]Acoustics and Vibration Database,http://data-acoustics.com/measurements/bearing-faults/bearing-6/, 2012.
[24]Nectoux, P., Gouriveau, R., Medjaher, K., Ramasso, E., Chebel-Morello, B., Zerhouni, N., & Varnier, C. (2012, June). PRONOSTIA: An experimental platform for bearings accelerated degradation tests. In IEEE International Conference on Prognostics and Health Management, PHM'12. (pp. 1-8). IEEE Catalog Number: CPF12PHM-CDR.
[25]SKF Static misalignment,https://www.skf.com/ph/products/bearings-units-housings/bearing-units/ball-bearing-units/principles/design-of-y-bearing-arrangements/misalignment/index.html.