跳到主要內容

臺灣博碩士論文加值系統

(44.212.96.86) 您好!臺灣時間:2023/12/07 00:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:曾偉銘
研究生(外文):TSENG,WEI-MING
論文名稱(外文):Performance Evaluation of MIMO Visible Light Communication System using Display-Camera Smartphones
指導教授:李昌明李昌明引用關係
指導教授(外文):LEE, CHANG-MING
口試委員:葉建宏邱茂清劉宗憲
口試委員(外文):YEH, CHIEN-HUNGCHIU, MAO-CHINGLIU, TSUNG-HSIEN
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立中正大學
系所名稱:通訊工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:54
中文關鍵詞:可見光通訊光學多重輸入多重輸出收發器設計亮度控制成像接收器魚眼鏡頭Sobel edge detectionSER
外文關鍵詞:Visible Light Communicationoptical MIMO transceiver designbrightness controlimaging receiverfisheye lensSobel edge detectionSER
相關次數:
  • 被引用被引用:0
  • 點閱點閱:152
  • 評分評分:
  • 下載下載:17
  • 收藏至我的研究室書目清單書目收藏:0
數據傳輸在智慧型行動裝置的使用已是一項不可或缺的技術,檔案傳送與多媒體串流服務的需求越益增加,促使無線通訊功能不斷精進。伴隨著無線通訊裝置的普遍性以及其相機的廣泛使用,使得可見光通訊技術 (Visible Light Communication, VLC) 在手機上的運用,成為熱烈討論的話題。其設計概念是考慮在照明燈具上賦予通訊功能,隨著不同的可見光特性與運用被提出,已出現涉及通訊安全、增加傳輸頻寬等相關議題,也開始深入探討利用可見光通訊來補足藍芽(Bluetooth)、RFID NFC (Radio Frequency Identification Near-Field Communication) 等無線近場通訊技術。此篇將考量以現有智慧型手機的硬體元件,建構可見光通訊系統以彌補現有無線電波傳輸的不足,其挑戰除了需整合現有的軟硬體資源,也必須克服傳輸時背景雜訊與本身陣列光源互相干擾。
本篇建立了一個可用於近場多重輸入多重輸出 (Near-Field Multiple Input Multiple Output, MIMO) 可見光通訊的成像取樣模型,包含了兩支智慧型手機並搭配超寬視角的魚眼鏡頭,並採用影像處理技術 (Sobel Edge Detector) 進行訊號處理,形成了一個完整的光通訊系統。緊湊的魚眼鏡頭投影平面、小尺寸像素和高角度分集,也意味著與緊湊平面接收器陣列的集成是可行的,使用智慧型手機的相機進行傳輸,除了可獲得實際傳輸通道的光強度外,也可以更貼近一般的生活。本文中所採用的Sobel edge detection 技術,可以針對可見光訊號在干擾的環境中不能直接應用無線電波通信所使用的 MIMO 技術的問題,必須調整MIMO系統等化器設計,來正確擷取訊號位置與強度以完成解調,我們設計的 MIMO VLC 系統可以有效地支持調光/亮度控制和其它可見光學特定要求。實驗結果顯示,本篇提出的MIMO VLC光學系統,可以成功的配合Sobel影像處理技術,解碼出所傳送的訊息。本系統在近場環境時,傳送與接收手機的距離分別為9cm、6cm與4cm時,分別有28.7%、24.6%與21.03% Symbol Error Rate (SER) 的傳輸效能。
本論文使用智慧行動裝置之螢幕與相機作為傳輸系統,以無線可見光為基礎,考量可見光的特性建構 MIMO VLC 系統,會採用魚眼鏡頭的角度分集特性,以提升傳輸的可靠度,除可發揮現有行動裝置的潛力,亦可彌補電磁波傳輸系統不足之處,未來更可以配合等化器與預編碼器的設計,進行最佳化,也可採用錯誤更正碼來提升傳輸效率。
  關鍵詞:可見光通訊、光學多重輸入多重輸出收發器設計、亮度控制、成像接收器、魚眼鏡頭、Sobel edge detection、SER

Recently, the mobile phone plays an important role in our life. The camera embedded in mobile phone is pervasive and frequently used not only for capturing images, but also for communication. Moreover, users could download a digital file by using camera to capture the images (or video) in the screen of a desktop PC or even a smartphone. This paper realized a Near-Field Multiple-Input Multiple-Output (NF MIMO) Visible Light Communications (VLC) system. This system consists of a transmitter (one smart phone with a display monitor) to show images as sending signals, and a receiver (the other smart phone with a camera and a fisheye lens) to capture images as receiving signals. To reconstruct the data in the receiver, Sobel edge detection (a digital signal process technique) is applied to allocate the valid region and demodulate the received signal.
This paper considers applying the MIMO VLC system to the near field applications. In order to explore the spatial diversity in MIMO system, the potentials of high-resolution display and the camera have been exploited in the last decades. In addition, the fisheye lens combined with the ordinary lens (or an ultra-wide field-of-view lens) is adopted in the proposed system to provide high angular diversity. Based on Sobel edge detection, the signal demodulation would be realized in two steps. First, we use Sobel edge detection to find the boundary of smartphone’s display. Second, Sobel edge detection can segment the valid region of signal and estimate the signal energy by averaging the grayscale of pixels in segmented region. In our experience, the symbol error rates (SERs) of the implemented optical MIMO VLC system at distances 9cm, 6cm, and 4cm between two smartphones are 28.7%, 24.6%, and 21.03%, respectively.
In the future, the improvements may consider the optimization of pre-coder/equalizer, and applying error correction codes.

Key words: Visible light communications, optical MIMO transceiver design, brightness control, imaging receiver, fisheye lens, Sobel edge detection, SER

ACKNOWLEDGMENTS II
中文摘要 III
ABSTRACT V
TABLE OF CONTENTS VI
LIST OF FIGURES VIII
LIST OF TABLES XII
CH1 INTRODUCTION 9
CH2 RELEVANT RESEARCH 14
2.1 Visible Light Communication 14
2.2 The Multiple-input Multiple-output Technologies 17
2.3 Imaging Optical MIMO System 18
2.4 Optimum Solution 23
CH3 CONSTRUCTION OF MIMO VLC SYSTEM USING SMARTPHONES 27
3.1 Near-Field MIMO VLC System 27
3.1.1 Shorten the Transmission Distance of MIMO VLC System 28
3.2 Digital Signal Process for VLC Receiver 29
3.3 Design of MIMO VLC System 35
CH4 EXPERIMENTAL RESULT 44
4.1 Signal Modulation and Demodulation 44
CH5 CONCLUSION 50
REFERENCES 51
APPENDIX A 55

[1]E. T. Won and et. al., “Visible light communication : tutorial,” IEEE 802.15-, March 2008.
[2] S. Rajagopal, R.D. Roberts, and S.-K. Lim, “IEEE 802.15.7 Visible Light Communication: Modulation Schemes and Dimming Support,” IEEE Communications Magazine, vol. 50, Issue 3, March 2012.
[3] D. Tsonev, S. Videv, and H. Haas, “Light Fidelity (Li-Fi): Towards All-optical Networking,” in Proc. SPIE OPTO. 2013, Art ID. 900702.
[2]Akash Gupta, Parul Garg and Nikhil Sharma†, “Hybrid LiFi — WiFi Indoor Broadcasting System,” Personal, Indoor, and Mobile Radio Communications (PIMRC), IEEE 28th Annual International Symposium on, 2017
[3] N. Lorrière, E. Bialic, M. Pasquinelli, G. Chabriel, J. Barrère, L. Escoubas, L. Escoubas, “An OFDM Testbed for LiFi Performance Characterization of Photovoltaic Modules,” Global LIFI Congress (GLC), , 2018
[4]鍾明君, “Improvement of Joint Optimization Scheme with High-diversity Imaging Receiver in MIMO VLC Systems,” 國立中正大學通訊系碩士論文, June, 2018. (指導教授:李昌明博士)
[4] M. Rubaiyat Hossain Mondal*, and Rumana Binte Faruque, “Hybrid Diversity Combined OFDM for LiFi,” IEEE International Conference on, Telecommunications and Photonics (ICTP), 2017
[5]Jianwiel Niu, Wenfang Song, Chuang Liu, Lei Shu, and Canfeng Chen, “NECAS: Near Field Communication System for Smartphones Based on Visible Light,” IEEE Wireless Communications and Networking Conference (WCNC), Track 3 (Mobile and Wireless Networks) ,pp.2426-2431, April 2014.
[6]Shih-Hao Chen, and Chi-Wai Chow, “Color-filter-free Spatial Visible Light Communication Using RGB-LED and Mobile-phone Camera,” Optics Express, Volume 22, Issue 25, pp. 30713–30718, Dec. 2014.
[7] Ratan Kumar Mondal, Nirzhar Saha , and Yeong Min Jang, “Performance Analysis of Spatial Multiplexing in MIMO Based Visible Light Communication System,” Electrical Information and Communication Technology (EICT), International Conference on, 2013
[8] Taek Keun Lyu, and Xin Wang “Capacity of Precoding for MU-MIMO Systems,” Information and Communication Technology Convergence (ICTC), International Conference on, 2015
[9] Chin-Wei Hsu, Chi-Wai Chow I-Cheng Lu , Yen-Liang Liu , Chien-Hung Yeh , and Yang Liu, “High Speed Imaging 3 × 3 MIMO Phosphor White-Light LED Based Visible Light Communication System,” IEEE Photonics Journal, Volume: 8, Issue: 6, Dec. 2016
[10] Te Chen, Lu Liu, Bo Tu, Zhong Zheng, and Weiwei Hu, “High Spatial Diversity Imaging Receiver Using Fisheye Lens for Indoor MIMO VLCs,” IEEE Photonics Technology Letters ,Volume: 26, Issue: 22, Nov.15, 15 2014.
[11] Te Chen, Zhong Zheng, Lu Liu, and Weiwei Hu, “High-diversity Space Division Multiplexing Visible Light Communication Utilizing a Fisheye-lens-based Imaging Receiver,” Optical Fiber Communications Conference and Exhibition (OFC), 2015.
[12] Poompat Saengudomlert, “Transmit Beamforming for Line-of-sight MIMO VLC with IM/DD Under Illumination Constraints,” Electrical Engineering/Electronics, Computer, Telecommunications and Information Technology (ECTI-CON), 12th International Conference on, 2015
[13] Kai Ying, Hua Qian, Robert J. Baxley and Saijie Yao, “Joint Optimization of Pre-coder and Equalizer in MIMO VLC Systems,” IEEE Journal on Selected Areas in Communications, Volume: 33, Issue: 9, Sept. 2015.
[14] Jun-Ming Dong, Yi-jun Zhu, Yan-Yu Zhang, and Zheng-Guo Sun, “Illumination-Adapted Transceiver Design for Quadrichromatic Light-Emitting Diode Based Visible Light Communication,” IEEE Photonics Journal ( Early Access )
[15] Renhai Feng, Mingjun Dai, Hui Wang, Bin Chen and Xiaohui Lin, “Linear Precoding for Multiuser Visible-Light Communication with Field-of-View Diversity,” IEEE Photonics Journal, Volume: 8, Issue: 2, April 2016.
[16] Paul Fahamuel Mmbaga, John Thompson and Harald Haas, “Performance Analysis of Indoor Diffuse VLC MIMO Channels Using Angular Diversity Detectors,” Journal of Lightwave Technology, Volume: 34, Issue: 4, Feb.15, 15 2016.
[17] P. Fahamuel, J. Thompson and H. Haas, “Improved Indoor VLC MIMO Channel Capacity Using Mobile Receiver with Angular Diversity Detectors,” Global Communications Conference (GLOBECOM), IEEE, 2014
[18] 梁介修, “建立於具備雙鏡頭智慧型手機之可見光通訊系統,” 國立中正大學通訊系碩士論文, August, 2016. (指導教授:李昌明博士)
[19] Rajesh Mehra, Rupinder Verma, “Area Efficient FPGA Implementation of Sobel Edge Detector for Image Processing Applications.,” International Journal of Computer Applications (0975 – 8887) Volume 56– No.16, October 2012.
[20] Parth H. Pathak, Xiaotao Feng, Pengfei Hu, and Prasant Mohapatra, “Visible Light Communication, Networking, and Sensing: A Survey, Potential and Challenges. ,” IEEE COMMUNICATIONS SURVEYS & TUTORIALS, VOL. 17, NO. 4, FOURTH QUARTER 2015
[21] Rayana Boubezari, Hoa Le Minh, Zabih Ghassemlooy, and Ahmed Bouridane,” Smartphone Camera Based Visible Light Communication.,” JOURNAL OF LIGHTWAVE TECHNOLOGY, VOL. 34, NO. 17, SEPTEMBER 1, 2016
[22] Ashwin Ashok, Shubham Jain, Marco Gruteser, Narayan Mandayam, Wenjia Yuan, Kristin Dana,” Capacity of Pervasive Camera Based Communication Under Perspective Distortions,” 2014 IEEE International Conference on Pervasive Computing and Communications (PerCom)

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top