跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.91) 您好!臺灣時間:2025/01/15 11:34
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:蕭名原
研究生(外文):SIAO,MING-YUAN
論文名稱:以化學浴法沉積硫化銦於石墨烯之元件光電特性研究
論文名稱(外文):Optoelectronic Properties of In2S3-graphene Composite Material by Chemical Bath Deposition
指導教授:丁初稷
指導教授(外文):DING,CHU-JI
口試委員:丁初稷謝雅萍朱聖緣許佳振
口試委員(外文):DING,CHU-JISIE,YA-PINGJHU,SHENG-YUANSYU,JIA-JHEN
口試日期:2019-07-30
學位類別:碩士
校院名稱:國立中正大學
系所名稱:光機電整合工程研究所
學門:工程學門
學類:機械工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:73
中文關鍵詞:光偵測器石墨烯硫化銻
外文關鍵詞:photodetectorgrapheneAntimony sulfide
相關次數:
  • 被引用被引用:0
  • 點閱點閱:73
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
石墨烯具有寬廣的吸收波長和極高的載子遷移率,適合作為光偵

測器,但因穿透率太高且照光後產生的載子復合速度太快而導致對光

的反應微弱。因此使用化學浴法成長硫化銦於表面上,藉此增強石墨

烯的光反應。我們利用堆疊不同層數的石墨烯和改變不同時間製作元

件並測量其光電特性。從實驗結果我們發現沉積 90 分鐘硫化銦/兩層

石墨烯元件具有最好的光響應度。因此,我們在這種元件上使用 405

nm 的雷射作為光源,研究不同電壓和光強度下的光電特性,並利用

氙燈測量硫化銦/石墨烯元件的全光譜光響應度。我們發現當光的波

長在 400 至 550 nm 之間時,光響應度都有超過 200 A / W ,而在

波長 500 nm 時有著最大響應度與比探測率,高達 413.55 A / W、
1.51 × 1012 Jones 。這些結果證明硫化銦/石墨烯元件可以提高石墨烯
的光吸收以及光響應度。
Graphene has a broad absorption wavelength and a very high carrier
mobility, and is suitable for use as a photodetector, but the response to
light is weak due to the high transmittance and the recombination speed
of the carrier generated after illumination. The In2S3 is grown on the
surface via chemical bath deposition method to enhance the photoreaction
of graphene. We stack different layers of graphene and change different
growth times and measure their photoresponsivity. From the experimental
results, we found that the In2S3/2 L graphene component deposited for 90
minutes has the best photoresponsivity. Therefore, we used a 405 nm
laser as the light source on this component to study the photoelectric
characteristics at different voltages and light intensity, and used a Xe
lamp to measure the full-spectrum photoresponsivity of the In2S3/2 L
graphene component. We found when the wavelength of light is between
400 and 550 nm, the optical responsivity exceeds 200 A / W.
The optimal photoresponse values are measured under the illumination
of a 500 nm laser at room temperature : spectral responsivity of 413.55 A
/ W, a detectivity of 1.51 × 1012 Jones. It was confirmed that the In2S3/2 L
graphene can improve the light absorption and photoresponsivity of
graphene.
目錄
摘要 .......................................................... I
Abstract ..................................................... II
誌謝 ......................................................... III
目錄 ......................................................... IV
圖目錄 ....................................................... VII
表目錄 ....................................................... IX
第一章 文獻回顧 ............................................... 1
1-1 前言 ..................................................... 1
1-2 石墨烯 (Graphene) 介紹 .................................... 1
1-3 製備石墨烯方法 ............................................. 3
1-3-1 機械剝離法 (Mechanical Exfoliation) ..................... 3
1-3-2 還原氧化石墨烯法 (Reduce graphene oxide).................. 3
1-3-3 電化學剝離法 (Electrochemical Exfoliation) ............... 4
1-3-4 化學氣象沉積法 (Chemical Vapor Deposition, CVD) .......... 4
1-3-5 碳化矽表面磊晶生長法 (SiC) ............................... 6
1-3-6 超臨界流體法(Supercritical Fluid, SCF) ................... 6
1-4 化學浴沉積法 (Chemical Bath Deposition, CBD ) .............. 7
1-5 硫化銦 (Indium (III) Sulfide, In2S3) ...................... 8
1-6 研究動機................................................... 9
1-7 純石墨烯光偵測器元件........................................ 11
1-7-1 偵測紫外光的純石墨烯光偵測器元件 .......................... 11
1-7-2 偵測可見光的純石墨烯光偵測器元件 .......................... 13
1-8 石墨烯複合材料光偵測器元件 ................................. 15
1-8-1 可見光光偵測器元件文獻回顧 ................................ 15
1-8-2 紫外光光偵測器元件文獻回顧 ................................ 17
1-8-3 硫化銦光偵測器元件文獻回顧 ................................ 17
1-9 光電導效應 (photoconductive effects)....................... 19
1-10 響應時間 (Response time) ................................. 19
第二章 實驗步驟 ................................................ 25
2-1 實驗藥品................................................... 25
2-2 實驗步驟 .................................................. 25
2-2-1 實驗流程圖 .............................................. 25
2-2-2 玻璃基板清洗 ............................................ 26
2-2-3 石墨烯轉印步驟 .......................................... 26
2-2-4 曝光顯影 ............................................... 27
2-2-5 硫化銦 (In2S3) 溶液配置 ................................. 27
2-2-6 化學浴沉積法成長硫化銦薄膜 ................................ 29
2-2-7 元件示意 .................................................29
2-3 實驗及量測設備 ............................................. 30
2-3-1 化學氣相沉積 (CVD) 系統................................... 30
2-3-2 旋轉塗佈機 (Spin coater) ................................ 31
2-3-3 拉曼光譜儀 (Raman spectrometer) ......................... 31
2-3-4 紫外光-可見光光譜儀 (UV-Vis spectrophotometer) ........... 32
2-3-5 電性量測設備 (I-V, I-T & Hall effect measurement system).. 32
2-3-6 X-ray 繞射分析儀 ......................................... 33
2-3-7 場發射掃描式電子顯微鏡 (FE-SEM) ........................... 34
2-3-8 X-射線光電子能譜儀(XPS) ................................... 34
第三章 結果與討論 ............................................... 42
3-1 純石墨烯UV-Vis 穿透吸收光譜分析 .............................. 42
3-2 純石墨烯拉曼光譜分析.......................................... 42
3-3 純石墨烯霍爾效應量測分析 ..................................... 43
3-4 硫化銦/石墨烯元件光電特性 .................................... 44
3-4-1 硫化銦/石墨烯元件機制 ...................................... 44
3-4-2 硫化銦/石墨烯元件 XRD 分析 ................................. 44
3-4-3 硫化銦/石墨烯元件 SEM 分析.................................. 45
3-4-4 堆疊不同層數的硫化銦/石墨烯元件光電特性分析 ................... 46
3-4-5 不同沉積時間硫化銦/石墨烯元件光電特性分析 ..................... 46
3-4-6 硫化銦/石墨烯元件 UV-Vis 穿透吸收光譜分析 .................... 47
3-4-7 硫化銦/石墨烯元件不同電壓分析 ................................ 49
3-4-8 硫化銦/石墨烯元件不同光強度分析 .............................. 49
3-4-9 硫化銦/石墨烯元件 Power Law 分析 ............................ 50
3-4-10 硫化銦/石墨烯元件光響應值 .................................. 51
3-5 XPS 分析 .................................................... 52
3-6 文獻比較...................................................... 52
第四章 結論....................................................... 66
參考文獻 ......................................................... 67
1 Jingang Wang, Fengcai Ma, Wenjie Liang, Rongming Wang, and
Mengtao Sun, Nanophotonics 6 (5), 943 (2017).

2 Andre K Geim and Philip Kim, Scientific American 298 (4), 90
(2008).

3 Yanwu Zhu, Shanthi Murali, Weiwei Cai, Xuesong Li, Ji Won Suk,
Jeffrey R Potts, and Rodney S Ruoff, Advanced materials 22 (35), 3906
(2010).

4 Eric Pop, David Mann, Qian Wang, Kenneth Goodson, and Hongjie
Dai, Nano letters 6 (1), 96 (2006).

5 Alexander A Balandin, Suchismita Ghosh, Wenzhong Bao, Irene
Calizo, Desalegne Teweldebrhan, Feng Miao, and Chun Ning Lau,
Nano letters 8 (3), 902 (2008).

6 Rahul Raveendran Nair, Peter Blake, Alexander N Grigorenko,
Konstantin S Novoselov, Tim J Booth, Tobias Stauber, Nuno MR Peres,
and Andre K Geim, Science 320 (5881), 1308 (2008).

7 Sasha Stankovich, Dmitriy A Dikin, Geoffrey HB Dommett, Kevin
M Kohlhaas, Eric J Zimney, Eric A Stach, Richard D Piner, SonBinh T
Nguyen, and Rodney S Ruoff, nature 442 (7100), 282 (2006).

8 Jixin Zhu, Ting Zhu, Xiaozhu Zhou, Yanyan Zhang, Xiong Wen Lou,
Xiaodong Chen, Hua Zhang, Huey Hoon Hng, and Qingyu Yan,
Nanoscale 3 (3), 1084 (2011).

9 Wenhui Shi, Jixin Zhu, Dao Hao Sim, Yee Yan Tay, Ziyang Lu,
Xiaojun Zhang, Yogesh Sharma, Madhavi Srinivasan, Hua Zhang, and
Huey Hoon Hng, Journal of Materials Chemistry 21 (10), 3422 (2011).
10 Xinming Li, Hongwei Zhu, Kunlin Wang, Anyuan Cao, Jinquan Wei,
Chunyan Li, Yi Jia, Zhen Li, Xiao Li, and Dehai Wu, Advanced
materials 22 (25), 2743 (2010).

11 Chun‐Hua Lu, Juan Li, Jing‐Jing Liu, Huang‐Hao Yang, Xi Chen,
and Guo‐Nan Chen, Chemistry–A European Journal 16 (16), 4889
(2010).

12 Kostya S Novoselov, Andre K Geim, Sergei V Morozov, D Jiang, Y_
Zhang, Sergey V Dubonos, Irina V Grigorieva, and Alexandr A Firsov,
science 306 (5696), 666 (2004).

13 Benjamin Collins Brodie, Philosophical Transactions of the Royal
Society of London (149), 249 (1859).

14 S William, JR Hummers, and Richard E Offeman, J. Am. Chem.
Soc 80 (6), 1339 (1958).

15 Yuxi Xu, Hua Bai, Gewu Lu, Chun Li, and Gaoquan Shi, Journal of
the American Chemical Society 130 (18), 5856 (2008).

16 Jun Ito, Jun Nakamura, and Akiko Natori, Journal of applied
physics 103 (11), 113712 (2008).

17 Ching-Yuan Su, Ang-Yu Lu, Yanping Xu, Fu-Rong Chen, Andrei N
Khlobystov, and Lain-Jong Li, ACS nano 5 (3), 2332 (2011).

18 Qingkai Yu, Jie Lian, Sujitra Siriponglert, Hao Li, Yong P Chen, and
Shin-Shem Pei, Appl. Phys. Lett. 93 (11), 113103 (2008).

19 HoKwon Kim, Cecilia Mattevi, M Reyes Calvo, Jenny C Oberg,
Luca Artiglia, Stefano Agnoli, Cyrus F Hirjibehedin, Manish Chhowalla,
and Eduardo Saiz, ACS nano 6 (4), 3614 (2012).

20 Claire Berger, Zhimin Song, Tianbo Li, Xuebin Li, Asmerom Y
Ogbazghi, Rui Feng, Zhenting Dai, Alexei N Marchenkov, Edward H
Conrad, and Phillip N First, The Journal of Physical Chemistry B 108
(52), 19912 (2004).

21 Pooria Moozarm Nia, Pei Meng Woi, and Yatimah Alias, Applied
Surface Science 413, 56 (2017).

22 SS Kale, RS Mane, CD Lokhande, KC Nandi, and Sung-Hwan Han,
Materials Science and Engineering: B 133 (1-3), 222 (2006).

23 Y. Sharma and P. Srivastava, Materials Chemistry and Physics 135
(2-3), 385 (2012).

24 RS Mane and CD Lokhande, Materials Chemistry and physics 65
(1), 1 (2000).

25 PM Sirimanne, Y Yasaki, N Sonoyama, and T Sakata, Materials
chemistry and physics 78 (1), 234 (2003).

26 MAM Seyam, Vacuum 63 (3), 441 (2001).

27 B Yahmadi, N Kamoun, C Guasch, and R Bennaceur, Materials
Chemistry and Physics 127 (1-2), 239 (2011).

28 Xuming Xie and Guozhen Shen, Nanoscale 7 (11), 5046 (2015).

29 Shinjita Acharya, Mrinal Dutta, Suresh Sarkar, Durga Basak, Supriyo
Chakraborty, and Narayan Pradhan, Chem. Mat. 24 (10), 1779 (2012).

30 Hilal Cansizoglu, Mehmet F Cansizoglu, Fumiya Watanabe, and
Tansel Karabacak, ACS applied materials & interfaces 6 (11), 8673
(2014).

31 Xing Xiong, Qi Zhang, Lin Gan, Xing Zhou, Xiaonan Xing, Huiqiao
Li, and Tianyou Zhai, Nano Research 9 (12), 3848 (2016).

32 Nilima Chaudhari, Lily Mandal, Onkar Game, Sambhaji Warule,
Deodatta Phase, Sandesh Jadkar, and Satishchandra Ogale, ACS
applied materials & interfaces 7 (32), 17671 (2015).

33 Hans Melchior, Mahlon B Fisher, and Frank R Arams, Proceedings
of the IEEE 58 (10), 1466 (1970).

34 Ivan Nikitskiy, Stijn Goossens, Dominik Kufer, Tania Lasanta,
Gabriele Navickaite, Frank HL Koppens, and Gerasimos Konstantatos,
Nature communications 7, 11954 (2016).

35 Nihar R Pradhan, Jonathan Ludwig, Zhengguang Lu, Daniel Rhodes,
Michael M Bishop, Komalavalli Thirunavukkuarasu, Stephen A McGill,
Dmitry Smirnov, and Luis Balicas, ACS applied materials & interfaces
7 (22), 12080 (2015).

36 Xiaomu Wang, Zhenzhou Cheng, Ke Xu, Hon Ki Tsang, and Jian-Bin
Xu, Nature Photonics 7 (11), 888 (2013).

37 LS Panchakarla, KS Subrahmanyam, SK Saha, Achutharao
Govindaraj, HR Krishnamurthy, UV Waghmare, and CNR Rao,
Advanced Materials 21 (46), 4726 (2009).

38 Fengnian Xia, Damon B Farmer, Yu-ming Lin, and Phaedon Avouris,
Nano letters 10 (2), 715 (2010).

39 P Rani and VK Jindal.

40 Qian Liu, Beidou Guo, Ziyu Rao, Baohong Zhang, and Jian Ru
Gong, Nano letters 13 (6), 2436 (2013).

41 Tapas Kuila, Saswata Bose, Ananta Kumar Mishra, Partha Khanra,
Nam Hoon Kim, and Joong Hee Lee, Progress in Materials Science 57
(7), 1061 (2012).

42 GAKPA Giovannetti, PA Khomyakov, G Brocks, VM vd Karpan, J
Van den Brink, and Paul J Kelly, Physical review letters 101 (2),
026803 (2008).

43 Yufang Xie, Kashif Javaid, Junhua Gao, Hongliang Zhang, Lingyan
Liang, Fei Zhuge, Hongtao Cao, Le Wang, and Yicheng Lu, Journal of
Materials Chemistry C 5 (26), 6480 (2017).

44 Qinwei An, Xianquan Meng, Ke Xiong, and Yunlei Qiu, Journal of
Materials Chemistry C 5 (28), 7057 (2017).

45 Linghui Zhu, Xuehui Gu, Fengdong Qu, Jiaqi Zhang, Caihui Feng,
Jingran Zhou, Shengping Ruan, and Bonan Kang, Journal of the
American Ceramic Society 96 (10), 3183 (2013).

46 Vikram Patil, Aaron Capone, Stefan Strauf, and Eui-Hyeok Yang,
Scientific reports 3, 2791 (2013).

47 Jianxiong Li, Ping Yu, Chengchun Tang, Hua Cheng, Junjie Li, Shuqi
Chen, and Jianguo Tian, Advanced Optical Materials 5 (12), 1700152
(2017).
48 Kai Zhang, Tao Luo, Haoran Chen, Zheng Lou, and Guozhen Shen,
Journal of Materials Chemistry C 5 (13), 3330 (2017).

49 Xitao Guo, Wenhui Wang, Haiyan Nan, Yuanfang Yu, Jie Jiang,
Weiwei Zhao, Jinhuan Li, Zainab Zafar, Nan Xiang, and Zhonghua Ni,
Optica 3 (10), 1066 (2016).

50 Fawen Guo, Bin Yang, Yongbo Yuan, Zhengguo Xiao, Qingfeng
Dong, Yu Bi, and Jinsong Huang, Nature nanotechnology 7 (12), 798
(2012).

51 Ivo Borriello, Giovanni Cantele, and Domenico Ninno, Nanoscale
5 (1), 291 (2013).

52 William S Hummers Jr and Richard E Offeman, Journal of the
american chemical society 80 (6), 1339 (1958).
53 Min Yi and Zhigang Shen, Journal of Materials Chemistry A 3 (22),
11700 (2015).

54 FHL Koppens, T Mueller, Ph Avouris, AC Ferrari, MS Vitiello, and
M Polini, Nature nanotechnology 9 (10), 780 (2014).

55 B Yahmadi, N Kamoun, R Bennaceur, M Mnari, M Dachraoui, and K
Abdelkrim, Thin Solid Films 473 (2), 201 (2005).

56 Zhiqiang Tu, Zhuchen Liu, Yongfeng Li, Fan Yang, Liqiang Zhang,
Zhen Zhao, Chunming Xu, Shangfei Wu, Hongwen Liu, and Haitao Yang,
Carbon 73, 252 (2014).

57 Attila J Mozer, G Dennler, NS Sariciftci, M Westerling, A Pivrikas,
Ronald Österbacka, and Gytis Juška, Physical Review B 72 (3), 035217
(2005).

58 Andrew Zane, Ranfang Zuo, Frederick A Villamena, Antal
Rockenbauer, Ann Marie Digeorge Foushee, Kristin Flores, Prabir K
Dutta, and Amber Nagy, International journal of nanomedicine 11, 6459
(2016).

59 R Robles, N Barreau, A Vega, S Marsillac, JC Bernede, and A
Mokrani, Optical Materials 27 (4), 647 (2005).

60 Vadim Savvateev, Aharon Yakimov, and Dan Davidov, Advanced
materials 11 (7), 519 (1999).

61 Uday Muhsin Nayef, Kadhim A Hubeatir, and Zahraa J
Abdulkareem, Optik-International Journal for Light and Electron Optics
127 (5), 2806 (2016).

62 Feng-Xia Liang, Deng-Yue Zhang, Jiu-Zhen Wang, Wei-Yu Kong,
Zhi-Xiang Zhang, Yi Wang, and Lin-Bao Luo, Optics express 24 (23),
25922 (2016).

63 Xiong Gong, Minghong Tong, Yangjun Xia, Wanzhu Cai, Ji Sun
Moon, Yong Cao, Gang Yu, Chan-Long Shieh, Boo Nilsson, and Alan J
Heeger, Science 325 (5948), 1665 (2009).

64 Po-Han Chang, Shang-Yi Liu, Yu-Bing Lan, Yi-Chen Tsai, Xue-Qian
You, Chia-Shuo Li, Kuo-You Huang, Ang-Sheng Chou, Tsung-Chin
Cheng, and Juen-Kai Wang, Scientific reports 7, 46281 (2017).

65 N Revathi, P Prathap, YPV Subbaiah, and KT Ramakrishna Reddy,
Journal of Physics D: Applied Physics 41 (15), 155404 (2008).

66 Xianliang Fu, Xuxu Wang, Zhixin Chen, Zizhong Zhang, Zhaohui Li,
Dennis YC Leung, Ling Wu, and Xianzhi Fu, Applied Catalysis B:
Environmental 95 (3-4), 393 (2010).

67 Shu‐Hong Yu, Lei Shu, Yong‐Sheng Wu, Jian Yang, Yi Xie, and Yi‐
Tai Qian, Journal of the American Ceramic Society 82 (2), 457 (1999).

68 W. J. Huang, L. Gan, H. T. Yang, N. Zhou, R. Y. Wang, W. H. Wu, H.
Q. Li, Y. Ma, H. B. Zeng, and T. Y. Zhai, Advanced Functional
Materials 27 (36) (2017).

69 X. Xiong, Q. Zhang, L. Gan, X. Zhou, X. N. Xing, H. Q. Li, and T. Y.
Zhai, Nano Research 9 (12), 3848 (2016).

70 J. Tang, G. Konstantatos, S. Hinds, S. Myrskog, A. G. Pattantyus-
Abraham, J. Clifford, and E. H. Sargent, Acs Nano 3 (2), 331 (2009).
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊