跳到主要內容

臺灣博碩士論文加值系統

(44.211.117.197) 您好!臺灣時間:2024/05/23 10:51
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:詹順翔
研究生(外文):Shun Hsiang Chan
論文名稱:調控金屬摻雜二氧化鈦電子傳輸層與鹼土金屬摻雜鈣鈦礦主動層之高效率太陽能電池
論文名稱(外文):High Performance of Solar Cells by Tuning Metal Doped TiO2 Electron Transport Layer and Alkaline Earth Metal Doped Perovskite Active Layer
指導教授:吳明忠吳明忠引用關係
指導教授(外文):M. C. Wu
學位類別:博士
校院名稱:長庚大學
系所名稱:化工與材料工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:113
中文關鍵詞:鈣鈦礦太陽能電池鋅摻雜二氧化鈦電子傳輸層遲滯現象鹼土金屬光電轉換效率
外文關鍵詞:perovskite solar cellzinc-doped TiO2electron transport layerhysteresisalkaline earth metalpower conversion efficiency
相關次數:
  • 被引用被引用:0
  • 點閱點閱:278
  • 評分評分:
  • 下載下載:4
  • 收藏至我的研究室書目清單書目收藏:0
近幾年鈣鈦礦太陽能電池的光電轉換效率提升的非常快速,因此在本博士論文提出高效率鈣鈦礦太陽能電池的製備,首先以金屬摻雜二氧化鈦做為電子傳輸層以提高元件的光電流並有效的減少遲滯現象,此外在另一項研究中,鹼土金屬離子可以有效的取代部分的鉛離子,此博士論文共分為三個部分進行探討,第一部分為鋅摻雜二氧化鈦電子傳輸層以提高元件的光電流,第二部分為介孔鋅摻雜二氧化鈦電子傳輸層以製備高效率之元件,第三部分探討鹼土金屬摻雜鈣鈦礦太陽能電池,並降低元件中的鉛含量。
在本論文的第一部分,我使用鋅摻雜二氧化鈦做為鈣鈦礦元件的電子傳輸層,不同摻雜濃度的鋅摻雜二氧化鈦可以由溶膠凝膠法進行製備,並針對二氧化鈦與鈣鈦礦主動層界面的電荷傳輸動力進行探討,當摻雜濃度小於5.0 mol%時,吸收行為、導電度與電荷分離效率皆可以隨著摻雜濃度提高而上升。使用5.0 mol%的鋅摻雜二氧化鈦,鈣鈦礦元件的短路電流密度則可以有效從18.5上升到22.3 mA/cm2,而效率可以從11.3上升到14.0%。
論文第二部分延續第一部分的主題,鈣鈦礦元件的效率可以使用介孔鋅摻雜二氧化鈦進一步提升,介孔鋅摻雜二氧化鈦可由溶膠凝膠法與水熱法進行製備,而為了檢測介孔鋅摻雜二氧化鈦的電子提取能力,我們使用克爾文探針力顯微鏡來分析鈣鈦礦層在不同波長照射下的表面電位變化,此外也使用紫外光光電子能譜進行能階匹配的分析,結果發現5.0 mol%的介孔鋅摻雜二氧化鈦與鈣鈦礦層具有最佳的能階匹配,且平均效率可以從13.1%大幅提升到16.8%並有效的減少遲滯現象,最高效率可達到18.3%。
本論文第三部分的主題為降低鈣鈦礦主動層的鉛含量,在此使用四種金屬離子(鎂、鈣、鍶與鋇離子)進行部分鉛離子取代,在這四種金屬離子中,鋇離子摻雜鈣鈦礦薄膜可以有效的提升元件效率,此外在3.0 mol%的鋇摻雜量下,元件的效率可以從11.8上升到14.0%,最高效率可達到14.9%且可以提升元件在1.0%相對溼度下的穩定性。最後我結合論文第二部分與第三部分的結果並搭配混合型陽離子,更進一步製備出介孔鋅摻雜二氧化鈦/鋇摻雜鈣鈦礦主動層之鈣鈦礦元件,其研究結果顯示出可以完整的消除遲滯現象。
Perovskite solar cells (PSCs) have drawn great attention due to its rapid improvement in photoelectric conversion efficiency in recent years. In this Ph. D. thesis, I address the challenges of developing and fabricating high-performance PSCs. I try to synthesize metal-doped TiO2 as the electron transport layer (ETL) to achieve high photocurrent and eliminate anomalous hysteresis. Moreover, I also develop a series of alkaline earth metal-doped perovskite-structured materials to reduce the toxic lead content of perovskite, which is an important issue to discuss. This Ph. D. thesis is divided into three parts: (Ⅰ) zinc-doped TiO2 ETL for high-photocurrent PSC, (Ⅱ) mesoscopic zinc-doped TiO2 ETL for high-efficiency PSC with reduced hysteresis, and (Ⅲ) the development of lead-reduced PSC by alkaline earth metal dopant.
In the 1st part of this work, the power conversion efficiency (PCE) is enhanced by using zinc-doped TiO2 (Zn-doped TiO2) as ETL. Various Zn-doped TiO2 compact layers with different doping concentrations were prepared by sol-gel method followed thermal treatment, and they were then used to fabricate PSC. Charge carrier dynamics between perovskite active layer and TiO2 compact layer is discussed. When the dopant concentration is less than 5.0 mol%, the absorption behavior, electrical conductivity, and charge separation efficiency will increase with the Zn doping concentration. The short-circuit current density of PSCs based on 5.0 mol% Zn-doped TiO2 is increased from 18.5 to 22.3 mA/cm2, and its PCE is significantly improved from 11.3 to 14.0%.
In 2nd part of this work, the photovoltaic performance is further enhanced by using various mesoscopic zinc-doped TiO2 (meso-Zn:TiO2) as the ETL. The Zn:TiO2 nanoparticles (Zn:TiO2 NPs) with various zinc doping levels are synthesized by combining sol-gel and hydrothermal method. Furthermore, the photo-assisted Kelvin probe force microscopy (KPFM) is used to analyze the surface potential of perovskite film coated on various concentrations of meso-Zn:TiO2 to understand the electron extraction behavior under the illumination of light with different wavelengths. Moreover, the energy levels of various meso-Zn:TiO2 are estimated by ultraviolet photoelectron spectroscopy (UPS) and UV-Vis absorption spectroscopy. I discover that the 5.0 mol% meso-Zn:TiO2 with perovskite exhibits the optimal band alignment. Finally, the average PCE of PSCs based on meso-Zn:TiO2 is enhanced from 13.1 to 16.8% with the reduction of hysteresis, and the as-fabricated PSC yield a champion PCE of 18.3%.
In 3rd part of this work, I focus on the lead-reduced PSC by doping alkaline earth metal into methylammonium lead halide. Four kinds of alkaline earth metal cations (Mg2+, Ca2+, Sr2+, and Ba2+) are investigated to replace lead cations partially. Among these four alkaline earth metals, Ba2+ is most suitable for Pb2+ replacement in perovskite film and exhibits the best PCE. The Ba2+-doped perovskite films are stable which can be processed in the environment containing moisture (1.0% relative humidity). At the optimal 3.0 mol% Ba2+ replacement, the PCE of the fabricated solar cell is increased from 11.8 to 14.0%, and the PCE of champion devices is as high as 14.9% with increased storage stability. Finally, I combined the meso-Zn:TiO2 ETL and Ba2+-doped perovskite active layer to fabricate mixed-cation PSCs. The Ba2+-doped perovskite active layer shows high crystallinity that could further eliminate J-V hysteresis. When Ba-doped perovskite active layer combines with meso-Zn:TiO2 ETL, the J-V hysteresis effect can be completely eliminated.
Contents
指導教授推薦書
口試委員會審定書
致謝 iii
摘要 iv
Abstract vi
Contents viii
List of Tables x
List of Figures xi
Chapter 1 Introduction 1
1.1 Perovskite solar cells 1
1.2 Hysteresis phenomena in perovskite solar cells 4
1.3 TiO2 electron transport layer for perovskite solar cell 7
1.4 Lead-free/reduced perovskite solar cell 11
1.5 Mixed-cation perovskite solar cell 15
1.6 Motivation 17
Chapter 2 Experimental Section 19
2.1 Chemicals 19
2.2 Materials and sample preparation 20
2.2.1 Synthesis of methylammonium iodide 20
2.2.2 Preparation of Zn-doped TiO2 precursor solution 20
2.2.3 Synthesis of meso-Zn:TiO2 paste 21
2.2.4 Preparation of perovskite precursor solution 22
2.2.5 Preparation of spiro-OMeTAD solution 22
2.3 Fabrication of perovskite solar cells 22
2.3.1 Fabrication of planar perovskite solar cells 22
2.3.2 Fabrication of mesoporous perovskite solar cells 23
2.4 Instruments 25
2.5 Characterization of Materials and Devices 26
2.5.1 Photovoltaic performance of perovskite solar cell 26
2.5.2 Morphology observation 26
2.5.3 Optical property 27
2.5.4 Crystal structure 28
Chapter 3 Results and Discussion 29
3.1 Enhanced short-circuit current density of perovskite solar cells using zinc-doped TiO2 as electron transport layer 29
3.2 Enhancing efficiency of perovskite solar cells using mesoscopic zinc-doped TiO2 as electron transport layer through band alignment 43
3.3 Enhancing perovskite solar cell performance and stability by doping alkaline earth metal in methylammonium lead halide 64
Chapter 4 Conclusion 82
Chapter 5 Recommendation 84
References 85
Appendix 93

List of Tables
Table 1.1 Photovoltaic performance of PSCs with metal-doped TiO2 10
Table 1.2 List of PCE and lead content of CH3NH3M1-xPbxX3 PSC 14
Table 2.1 List of chemicals used in this study 19
Table 2.2 List of instruments used in this study 25
Table 3.1 Summary of conductivity of various Zn-doped TiO2 compact layers 33
Table 3.2 Summary of measured fast decay time (τ1), slow decay time (τ2), and PL average decay (τavg) for CH3NH3PbI3-xClx/Zn-doped TiO2 37
Table 3.3 Characteristics of PSCs with different Zn doping concentration in the TiO2 compact layer 39
Table 3.4 The theoretical and experimental atomic ratios of Zn/Zn+Ti in pristine TiO2 and various Zn-doped TiO2 41
Table 3.5 The ratios of Zn/Zn+Ti in 5.0 mol% Zn-doped TiO2 thick film measured by EDS analysis 42
Table 3.6 Photovoltaic performance of various PSCs based on different ETL 48
Table 3.7 Summary of decay time and PL average decay time for CH3NH3PbI3/meso-Zn:TiO2/dense TiO2/FTO 48
Table 3.8 Summary of measured fast and slow decay time and PL average decay for the film of Ba2+-doped perovskite/TiO2/FTO 73
Table 3.9 Characteristics of the pristine perovskite film and various alkaline earth metal-doped PSCs 74
Table 3.10. The stoichiometric ratio of elements as determined by EDS for pristine perovskite and 3.0 mol% Ba-doped perovskite film 77

List of Figures
Figure 1.1 The efficiency chart of PSCs by different research groups 2
Figure 1.2 The typical structure of perovskite (e.g. CH3NH3PbX3) 3
Figure 1.3 Schematic diagrams of PSCs in (a) p-i-n and (b) n-i-p structure 4
Figure 1.4 J-V curves of PSC (a) with and (b) without hysteresis 5
Figure 1.5 Diffusion paths for (a) I vacancy, (b) CH3NH3 vacancy, (c) Pb vacancy, and (d) iodine interstitials 6
Figure 1.6 Schematic diagram of energy level of (a) p-i-n structure and (b) n-i-p structure PSC 7
Figure 1.7 (a) I-V curves of non-doped TiO2 NPs and Co-doped TiO2 NPs and (b) corresponding J-V curves of PSCs. (c) Diagram of energy levels and (d) J-V curves of PSCs with Li-doped TiO2. (e) The cross-section SEM image and (f) J-V curves of PSCs with Ta-doped TiO2 NR arrays 9
Figure 1.8 (a) Simulated crystal structure of CH3NH3SnI3 and (b) J-V curve of CH3NH3SnI3 PSC. (c) J-V curves of FASnI3 PSC and (d) histogram of the solar cell reproducibility. (e) J-V curve of the CsSnI3 PSC and (f) EQE spectrum and integrated Jsc 12
Figure 1.9 (a) J-V curves and (b) EQE spectra of PSC with and without Al3+ doping. (c) Diffuse reflectance UV-Vis spectra for the CH3NH3PbI3, and CH3NH3Pb1-xBxI3, with B=Sn, Sr, Cd, Ca, and x=0.10. (d) J-V curves of Sr-doped PSCs with different doping concentration 13
Figure 1.10 (a) UV-vis-NIR absorption and photoluminescence spectrum for the FAPbI3 single crystal . (b) Tauc plot and energy level of FAPbI3 single crystal. Thermal stability of perovskite film (c) without and (d) with Cs+ doping. (e) J-V curves of Rb+-doped PSCs 16
Figure 1.11 Plot of tolerance factors versus octahedral factors of CH3NH3MI3 (M=Mg, Ca, Sr and Ba) 18
Figure 2.1 Flow chart of preparation of Zn-doped TiO2 precursor solution 21
Figure 2.2 Schematic diagram of preparation of fabrication of mesoscopic PSC 24
Figure 2.3 Photographs of KPFM measurement under wavelength-switchable LED light source illumination. (a) 470 nm, (b) 530 nm, (c) 656 nm, (d) 850 nm, and (e) white light 27
Figure 3.1 Synchrotron X-ray spectra of (a) pristine TiO2 and various Zn-doped TiO2 and (b) magnified spectra 29
Figure 3.2 (a) Absorption spectra and (b) the plot of (αhν)2 versus hν of pristine TiO2 and various Zn-doped TiO2 compact layer 31
Figure 3.3 The current density-electric field (J-E) curves of the various Zn-doped TiO2 compact layers and the inset is the schematic diagram of testing structure 32
Figure 3.4 SEM images of (a) pristine TiO2 compact layer and various Zn-doped TiO2 compact layers, including (b) 1.0 mol% Zn-TiO2, (c) 3.0 mol% Zn-TiO2, (d) 5.0 mol% Zn-TiO2, and (e) 7.0 mol% Zn-TiO2. (f) The RMS roughness distribution of various Zn-doped TiO2 compact layers are measured by AFM 34
Figure 3.5 AFM images of (a) pristine TiO2 compact layer and various Zn-doped TiO2 compact layers, including (b) 1.0 mol% Zn-TiO2, (c) 3.0 mol% Zn-TiO2, (d) 5.0 mol% Zn-TiO2, and (e) 7.0 mol% Zn-TiO2 35
Figure 3.6 Photoluminescence spectra using (a) static and (b) time-resolved of CH3NH3PbI3-xClx/Zn-doped TiO2/FTO measured at room temperature 37
Figure 3.7 (a) The schematic diagram of PSC structure. (b) J-V curves, (c) the plots of photovoltaic characteristics, and (d) EQE spectra of the PSCs with different Zn-doped TiO2 compact layer 40
Figure 3.8 EDS spectra at separated six positions of 5.0 mol% Zn-doped TiO2 film 42
Figure 3.9 The SEM images showing the surface microstructure of (a) non-doped meso-TiO2 and various meso-Zn:TiO2, including (b) 1.0 mol%, (c) 3.0 mol%, (d) 5.0 mol%, and (e) 7.0 mol%. (f) The particle size distribution of the meso-TiO2 with different Zn doping level 44
Figure 3.10 (a) XRD patterns, (b) UV-vis absorption spectra, and (c) Tauc plots of various meso-Zn:TiO2. (d) J-V curves of various PSCs based on different TiO2-based ETL. (e) PL spectra and (f) transient TRPL plots of the device based on the following structure: CH3NH3PbI3/meso-Zn:TiO2/dense TiO2/FTO 47
Figure 3.11 UPS spectra of the meso-TiO2 with different Zn doping level. (a) Secondary-electron cut-off, and (b) the valence-band region 50
Figure 3.12 Schematic energy level diagram of various meso-Zn:TiO2 from UPS measurements 51
Figure 3.13 2D GIWAXS patterns of CH3NH3PbI3/meso-TiO2/dense TiO2/FTO, where the meso-TiO2 is (a) without and (b) with 5.0 mol% Zn doping. (c) 1D patterns of out-of-plane line cut. The images of the contact angles of water on (d) non-doped meso-TiO2 and (e) 5.0 mol% meso-Zn:TiO2 52
Figure 3.14 Azimuthal intensity plots that corresponding to Figure 3.13(a) and 3.13(b) along the ring at q=10 nm-1, produced by the (110) plane of the CH3NH3PbI3 film 53
Figure 3.15 AFM topographic image and cross-sectional measurement along the red line of two types of CH3NH3PbI3/meso-TiO2/dense TiO2/FTO films without (a) and with (b) 5.0 mol% Zn doping in meso-TiO2. The corresponding CPD images and cross-sectional analyses of CPD data under different wavelengths of light, including (c, d) 470 nm, (e, f) 530 nm, (g, h) 636 nm, (i, j) 850 nm, and (k, l) white light 55
Figure 3.16 Bar charts of ΔCPD v.s. different wavelengths of light for CH3NH3PbI3/meso-TiO2/dense TiO2/FTO structure with non-doped meso-TiO2 and 5.0 mol% meso-Zn:TiO2 56
Figure 3.17 (a) I-V curves of the device with the following structure: FTO/dense TiO2/meso-TiO2/Au without and with 5.0 mol% Zn doping. (b) I-V curves of ohmic region (I∝V) and (c) J-V2 curve of Child’s region (I∝V2) 58
Figure 3.18 (a) Jsc and (b) Voc are dependent on light intensity of PSC without and with 5.0 mol% meso-Zn:TiO2 60
Figure 3.19 (a) The schematic diagram and the (b) cross-section SEM image of PSC with 5.0 mol% meso-Zn:TiO2 (scale bar = 500 nm). (c) J-V curves of PSCs without and with 5.0 mol% meso-Zn:TiO2 under reverse and forward scans. (d) PCE distribution and (e) EQE spectra of PSCs with either the pristine or 5.0 mol% meso-Zn:TiO2. (f) The J-V curve of champion device 62
Figure 3.20 Long-term stability of PSCs with non-doped meso-TiO2¬ and 5.0 mol% meso-Zn:TiO2 under (a) ambient atmosphere (∼30% relative humidity, 25 oC) and (b) glovebox system (N2 with H2O <0.1 ppm and O2 <0.1 ppm) 63
Figure 3.21 (a) XRD patterns of perovskite film without and with alkaline earth metal doping, and (b) the magnified XRD patterns in the range of 2θ between 13.8 ~ 15.5 degree at the plane of (110) 65
Figure 3.22 SEM images of (a) the pristine perovskite film, (b) 3.0 mol% Mg2+-doped perovskite film, (c) 3.0 mol% Ca2+-doped perovskite film, (d) 3.0 mol% Sr2+-doped perovskite film, and (e) 3.0 mol% Ba2+-doped perovskite film 66
Figure 3.23 (a) Absorption spectra and (b) Tauc plots of the pristine perovskite film and various Ba2+-doped perovskite films with different doping levels 67
Figure 3.24 (a) XRD patterns of perovskite films without and with Ba2+ doping, (b) the magnified XRD patterns at 2θ between 14.0 ~ 14.6 degrees, and (c) the calculated crystallite sizes for perovskite films without and with Ba2+ doping 68
Figure 3.25 SEM images of (a) the pristine perovskite film, (b) 1.0 mol%, (c) 3.0 mol%, (d) 5.0 mol%, and (e) 10.0 mol% Ba2+-doped perovskite films. (f) The Rq distribution of various perovskite films was measured by AFM 69
Figure 3.26 AFM images of (a) the pristine perovskite film, (b) 1.0 mol%, (c) 3.0 mol%, (d) 5.0 mol%, and (e) 10.0 mol% Ba2+-doped perovskite films 70
Figure 3.27 (a) Photoluminescence spectra and (b) time-resolved photoluminescence characterization of perovskite films without and with various amount of Ba2+ doping 72
Figure 3.28 (a, d) The schematic diagram, (b, e) photoluminescence spectra and (c, f) time-resolved photoluminescence decays of pristine perovskite and 3.0 mol% Ba-doped perovskite film on (a, b, c) the glass substrate and (d, e, f) the TiO2/FTO glass substrate 73
Figure 3.29 (a) The schematic diagram and the cross-section SEM image of Ba2+-doped PSC (3.0 mol% sample). (b) The J-V curves and (c) PCE distribution of the PSCs fabricated from perovskite film without and with various Ba2+ doping. (d) The J-V curve of champion device. (e) EQE spectra of PSCs with either the pristine or 3.0 mol% Ba2+-doped perovskite film 76
Figure 3.30 The stability of PSCs with the pristine and 3.0 mol% Ba2+-doped perovskite film when stored in (a) the glovebox system with integrated gas purification system and (b) the glovebox system without integrated gas purification system 78
Figure 3.31 In-situ GIWAX measurement of (a) MA0.4FA0.6PbI3-yCly and (b) MA0.4FA0.6Pb0.95Ba0.05I3-yCly film during annealing process 80
Figure 3.32 J-V curves of (a) 0.0 mol%, (b) 5.0 mol%, and (c) 10.0 mol% Ba-doped mixed-cation PSC with different scan direction 81
Figure 5.1 Schematic diagram of (a) blade coating and (b) slot die coating for perovskite film fabrication 84
1. A. Kojima, K. Teshima, Y. Shirai and T. Miyasaka, Journal of the American Chemical Society, 2009, 131, 6050-6051.
2. https://www.nrel.gov/pv/assets/pdfs/pv-efficiencies-07-17-2018.pdf.
3. D. Wang, M. Wright, N. K. Elumalai and A. Uddin, Solar Energy Materials and Solar Cells, 2016, 147, 255-275.
4. G. Kieslich, S. Sun and A. K. Cheetham, Chemical Science, 2015, 6, 3430-3433.
5. Z. Li, M. Yang, J.-S. Park, S.-H. Wei, J. J. Berry and K. Zhu, Chemistry of Materials, 2016, 28, 284-292.
6. Z.-K. Tang, Z.-F. Xu, D.-Y. Zhang, S.-X. Hu, W.-M. Lau and L.-M. Liu, Scientific Reports, 2017, 7, 7843.
7. S. Adjokatse, H.-H. Fang and M. A. Loi, Materials Today, 2017, 20, 413-424.
8. Y. Yamada, T. Nakamura, M. Endo, A. Wakamiya and Y. Kanemitsu, Journal of the American Chemical Society, 2014, 136, 11610-11613.
9. N. Marinova, W. Tress, R. Humphry-Baker, M. I. Dar, V. Bojinov, S. M. Zakeeruddin, M. K. Nazeeruddin and M. Grätzel, ACS Nano, 2015, 9, 4200-4209.
10. B. Vaagensmith, K. M. Reza, M. D. N. Hasan, H. Elbohy, N. Adhikari, A. Dubey, N. Kantack, E. Gaml and Q. Qiao, ACS Applied Materials & Interfaces, 2017, 9, 35861-35870.
11. J. Cao, H. Yu, S. Zhou, M. Qin, T.-K. Lau, X. Lu, N. Zhao and C.-P. Wong, Journal of Materials Chemistry A, 2017, 5, 11071-11077.
12. C.-H. Chiang and C.-G. Wu, Nature Photonics, 2016, 10, 196.
13. D. Liu, Q. Wang, C. J. Traverse, C. Yang, M. Young, P. S. Kuttipillai, S. Y. Lunt, T. W. Hamann and R. R. Lunt, ACS Nano, 2018, 12, 876-883.
14. S. Guarnera, A. Abate, W. Zhang, J. M. Foster, G. Richardson, A. Petrozza and H. J. Snaith, The Journal of Physical Chemistry Letters, 2015, 6, 432-437.
15. Q. An, P. Fassl, Y. J. Hofstetter, D. Becker-Koch, A. Bausch, P. E. Hopkinson and Y. Vaynzof, Nano Energy, 2017, 39, 400-408.
16. M. A. Mejía Escobar, S. Pathak, J. Liu, H. J. Snaith and F. Jaramillo, ACS Applied Materials & Interfaces, 2017, 9, 2342-2349.
17. K.-H. Jung, J.-Y. Seo, S. Lee, H. Shin and N.-G. Park, Journal of Materials Chemistry A, 2017, 5, 24790-24803.
18. W. Ke, G. Fang, J. Wang, P. Qin, H. Tao, H. Lei, Q. Liu, X. Dai and X. Zhao, ACS Applied Materials & Interfaces, 2014, 6, 15959-15965.
19. I. Jeong, Y. H. Park, S. Bae, M. Park, H. Jeong, P. Lee and M. J. Ko, ACS Applied Materials & Interfaces, 2017, 9, 36865-36874.
20. S. Ameen, M. Nazim, M. S. Akhtar, M. K. Nazeeruddin and H.-S. Shin, Nanoscale, 2017, 9, 17544-17550.
21. J. H. Heo, H. J. Han, D. Kim, T. K. Ahn and S. H. Im, Energy & Environmental Science, 2015, 8, 1602-1608.
22. N. Y. Nia, F. Matteocci, L. Cina and A. D. Carlo, ChemSusChem, 2017, 10, 3854-3860.
23. N. J. Jeon, J. H. Noh, Y. C. Kim, W. S. Yang, S. Ryu and S. I. Seok, Nature Materials, 2014, 13, 897.
24. S. Dae Ho, J. Min Hyeok, L. Min Ho, H. Jin Hyuck, P. Jin Kyoung, S. Shi-Joon, K. Dae-Hwan, H. Ki-Ha and I. Sang Hyuk, Journal of Physics D: Applied Physics, 2016, 49, 473001.
25. B. Chen, M. Yang, S. Priya and K. Zhu, The Journal of Physical Chemistry Letters, 2016, 7, 905-917.
26. J. M. Azpiroz, E. Mosconi, J. Bisquert and F. De Angelis, Energy & Environmental Science, 2015, 8, 2118-2127.
27. T. Zhu and S.-P. Gao, The Journal of Physical Chemistry C, 2014, 118, 11385-11396.
28. H. Yu, S. Zhang, H. Zhao, G. Will and P. Liu, Electrochimica Acta, 2009, 54, 1319-1324.
29. J. van de Lagemaat, N. G. Park and A. J. Frank, The Journal of Physical Chemistry B, 2000, 104, 2044-2052.
30. G. S. Han, Y. H. Song, Y. U. Jin, J.-W. Lee, N.-G. Park, B. K. Kang, J.-K. Lee, I. S. Cho, D. H. Yoon and H. S. Jung, ACS Applied Materials & Interfaces, 2015, 7, 23521-23526.
31. Y. Xu, T. Liu, Z. Li, B. Feng, S. Li, J. Duan, C. Ye, J. Zhang and H. Wang, Applied Surface Science, 2016, 388, 89-96.
32. I. Jeon, S. Seo, Y. Sato, C. Delacou, A. Anisimov, K. Suenaga, E. I. Kauppinen, S. Maruyama and Y. Matsuo, The Journal of Physical Chemistry C, 2017, 121, 25743-25749.
33. S. Dharani, H. K. Mulmudi, N. Yantara, P. T. Thu Trang, N. G. Park, M. Graetzel, S. Mhaisalkar, N. Mathews and P. P. Boix, Nanoscale, 2014, 6, 1675-1679.
34. X. Wu, P. Liu, L. Ma, Q. Zhou, Y. Chen, J. Lu and S.-e. Yang, Solar Energy Materials and Solar Cells, 2016, 152, 111-117.
35. P. Chen, Y. Wang, M. Wang, X. Zhang, L. Wang and Y. Liu, Journal of Energy Chemistry, 2015, 24, 717-721.
36. S. Sidhik, A. Cerdan Pasarán, D. Esparza, T. López Luke, R. Carriles and E. De la Rosa, ACS Applied Materials & Interfaces, 2018, 10, 3571-3580.
37. X. Hou, J. Zhou, S. Huang, W. Ou-Yang, L. Pan and X. Chen, Chemical Engineering Journal, 2017, 330, 947-955.
38. Q. Cui, X. Zhao, H. Lin, L. Yang, H. Chen, Y. Zhang and X. Li, Nanoscale, 2017, 9, 18897-18907.
39. X. Gu, Y. Wang, T. Zhang, D. Liu, R. Zhang, P. Zhang, J. Wu, Z. D. Chen and S. Li, Journal of Materials Chemistry C, 2017, 5, 10754-10760.
40. D. Liu, S. Li, P. Zhang, Y. Wang, R. Zhang, H. Sarvari, F. Wang, J. Wu, Z. Wang and Z. D. Chen, Nano Energy, 2017, 31, 462-468.
41. J. H. Heo, M. S. You, M. H. Chang, W. Yin, T. K. Ahn, S.-J. Lee, S.-J. Sung, D. H. Kim and S. H. Im, Nano Energy, 2015, 15, 530-539.
42. F. Giordano, A. Abate, J. P. Correa Baena, M. Saliba, T. Matsui, S. H. Im, S. M. Zakeeruddin, M. K. Nazeeruddin, A. Hagfeldt and M. Graetzel, Nature Communications, 2016, 7, 10379.
43. J. Wang, M. Qin, H. Tao, W. Ke, Z. Chen, J. Wan, P. Qin, L. Xiong, H. Lei, H. Yu and G. Fang, Applied Physics Letters, 2015, 106, 121104.
44. M. Yang, R. Guo, K. Kadel, Y. Liu, K. O'Shea, R. Bone, X. Wang, J. He and W. Li, Journal of Materials Chemistry A, 2014, 2, 19616-19622.
45. X. Yin, Y. Guo, Z. Xue, P. Xu, M. He and B. Liu, Nano Research, 2015, 8, 1997-2003.
46. J. Song, S. P. Li, Y. L. Zhao, J. Yuan, Y. Zhu, Y. Fang, L. Zhu, X. Q. Gu and Y. H. Qiang, Journal of Alloys and Compounds, 2017, 694, 1232-1238.
47. B. Roose, K. C. Gödel, S. Pathak, A. Sadhanala, J. P. C. Baena, B. D. Wilts, H. J. Snaith, U. Wiesner, M. Grätzel, U. Steiner and A. Abate, Advanced Energy Materials, 2016, 6, 1501868.
48. X. Zhang, Z. Bao, X. Tao, H. Sun, W. Chen and X. Zhou, RSC Advances, 2014, 4, 64001-64005.
49. Q. Cai, Y. Zhang, C. Liang, P. Li, H. Gu, X. Liu, J. Wang, Z. Shentu, J. Fan and G. Shao, Electrochimica Acta, 2018, 261, 227-235.
50. H. Zhou, Q. Chen, G. Li, S. Luo, T.-b. Song, H.-S. Duan, Z. Hong, J. You, Y. Liu and Y. Yang, Science, 2014, 345, 542-546.
51. M.-C. Wu, S.-H. Chan, M.-H. Jao and W.-F. Su, Solar Energy Materials and Solar Cells, 2016, 157, 447-453.
52. C. Shun-Hsiang, L. Tz-Feng, W. Ming-Chung, C. Shih-Hsuan, S. Wei-Fang and L. Chao-Sung, Japanese Journal of Applied Physics, 2018, 57, 04FM06.
53. N. K. Noel, S. D. Stranks, A. Abate, C. Wehrenfennig, S. Guarnera, A.-A. Haghighirad, A. Sadhanala, G. E. Eperon, S. K. Pathak, M. B. Johnston, A. Petrozza, L. M. Herz and H. J. Snaith, Energy & Environmental Science, 2014, 7, 3061-3068.
54. F. Hao, C. C. Stoumpos, D. H. Cao, R. P. H. Chang and M. G. Kanatzidis, Nature Photonics, 2014, 8, 489.
55. S. Shao, J. Liu, G. Portale, H.-H. Fang, G. R. Blake, G. H. ten Brink, L. J. A. Koster and M. A. Loi, Advanced Energy Materials, 2018, 8, 1702019.
56. T.-B. Song, T. Yokoyama, S. Aramaki and M. G. Kanatzidis, ACS Energy Letters, 2017, 2, 897-903.
57. J. T.-W. Wang, Z. Wang, S. Pathak, W. Zhang, D. W. deQuilettes, F. Wisnivesky-Rocca-Rivarola, J. Huang, P. K. Nayak, J. B. Patel, H. A. Mohd Yusof, Y. Vaynzof, R. Zhu, I. Ramirez, J. Zhang, C. Ducati, C. Grovenor, M. B. Johnston, D. S. Ginger, R. J. Nicholas and H. J. Snaith, Energy & Environmental Science, 2016, 9, 2892-2901.
58. J. Navas, A. Sanchez-Coronilla, J. J. Gallardo, N. Cruz Hernandez, J. C. Pinero, R. Alcantara, C. Fernandez-Lorenzo, D. M. De los Santos, T. Aguilar and J. Martin-Calleja, Nanoscale, 2015, 7, 6216-6229.
59. D. Pérez‐del‐Rey, D. Forgács, E. M. Hutter, T. J. Savenije, D. Nordlund, P. Schulz, J. J. Berry, M. Sessolo and H. J. Bolink, Advanced Materials, 2016, 28, 9839-9845.
60. F. Hao, C. C. Stoumpos, P. Guo, N. Zhou, T. J. Marks, R. P. H. Chang and M. G. Kanatzidis, Journal of the American Chemical Society, 2015, 137, 11445-11452.
61. C. M. Tsai, N. Mohanta, C. Y. Wang, Y. P. Lin, Y. W. Yang, C. L. Wang, C. H. Hung and E. W. G. Diau, Angewandte Chemie International Edition, 2017, 56, 13819-13823.
62. Y. Ogomi, A. Morita, S. Tsukamoto, T. Saitho, N. Fujikawa, Q. Shen, T. Toyoda, K. Yoshino, S. S. Pandey, T. Ma and S. Hayase, The Journal of Physical Chemistry Letters, 2014, 5, 1004-1011.
63. Q. Shen, Y. Ogomi, J. Chang, T. Toyoda, K. Fujiwara, K. Yoshino, K. Sato, K. Yamazaki, M. Akimoto, Y. Kuga, K. Katayama and S. Hayase, Journal of Materials Chemistry A, 2015, 3, 9308-9316.
64. Z. Yang, A. Rajagopal, C. C. Chueh, S. B. Jo, B. Liu, T. Zhao and A. K. Y. Jen, Advanced Materials, 2016, 28, 8990-8997.
65. F. Hao, C. C. Stoumpos, R. P. H. Chang and M. G. Kanatzidis, Journal of the American Chemical Society, 2014, 136, 8094-8099.
66. Z. K. Wang, M. Li, Y. G. Yang, Y. Hu, H. Ma, X. Y. Gao and L. S. Liao, Advanced Materials, 2016, 28, 6695-6703.
67. F. Zuo, S. T. Williams, P. W. Liang, C. C. Chueh, C. Y. Liao and A. K. Y. Jen, Advanced Materials, 2014, 26, 6454-6460.
68. H. Zhang, H. Wang, S. T. Williams, D. Xiong, W. Zhang, C. C. Chueh, W. Chen and A. K. Y. Jen, Advanced Materials, 2017, 29, 1606608.
69. X. Shai, L. Zuo, P. Sun, P. Liao, W. Huang, E.-P. Yao, H. Li, S. Liu, Y. Shen, Y. Yang and M. Wang, Nano Energy, 2017, 36, 213-222.
70. M. T. Klug, A. Osherov, A. A. Haghighirad, S. D. Stranks, P. R. Brown, S. Bai, J. T. W. Wang, X. Dang, V. Bulovic, H. J. Snaith and A. M. Belcher, Energy & Environmental Science, 2017, 10, 236-246.
71. T. Singh and T. Miyasaka, Advanced Energy Materials, 2018, 8, 1700677.
72. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt and M. Gratzel, Energy & Environmental Science, 2016, 9, 1989-1997.
73. D. Luo, L. Zhao, J. Wu, Q. Hu, Y. Zhang, Z. Xu, Y. Liu, T. Liu, K. Chen, W. Yang, W. Zhang, R. Zhu and Q. Gong, Advanced Materials, 2017, 29, 1604758.
74. Y. Liu, J. Sun, Z. Yang, D. Yang, X. Ren, H. Xu, Z. Yang and S. Liu, Advanced Optical Materials, 2016, 4, 1829-1837.
75. M. Saliba, T. Matsui, J.-Y. Seo, K. Domanski, J.-P. Correa-Baena, M. K. Nazeeruddin, S. M. Zakeeruddin, W. Tress, A. Abate, A. Hagfeldt and M. Grätzel, Energy & Environmental Science, 2016, 9, 1989-1997.
76. M. Saliba, T. Matsui, K. Domanski, J.-Y. Seo, A. Ummadisingu, S. M. Zakeeruddin, J.-P. Correa-Baena, W. R. Tress, A. Abate, A. Hagfeldt and M. Grätzel, Science, 2016, DOI: 10.1126/science.aah5557.
77. A. H. Ghanbari Niaki, A. M. Bakhshayesh and M. R. Mohammadi, Solar Energy, 2014, 103, 210-222.
78. K.-P. Wang and H. Teng, Physical Chemistry Chemical Physics, 2009, 11, 9489-9496.
79. F. Zhu, P. Zhang, X. Wu, L. Fu, J. Zhang and D. Xu, ChemPhysChem, 2012, 13, 3731-3737.
80. M. Pazoki, T. J. Jacobsson, A. Hagfeldt, G. Boschloo and T. Edvinsson, Physical Review B, 2016, 93, 144105.
81. H.-S. Kim, C.-R. Lee, J.-H. Im, K.-B. Lee, T. Moehl, A. Marchioro, S.-J. Moon, R. Humphry-Baker, J.-H. Yum, J. E. Moser, M. Grätzel and N.-G. Park, Scientific Reports, 2012, 2, 591.
82. D. Liu and T. L. Kelly, Nature Photonics, 2013, 8, 133.
83. M.-C. Wu, C.-H. Chen, W.-K. Huang, K.-C. Hsiao, T.-H. Lin, S.-H. Chan, P.-Y. Wu, C.-F. Lu, Y.-H. Chang, T.-F. Lin, K.-H. Hsu, J.-F. Hsu, K.-M. Lee, J.-J. Shyue, K. Kordás and W.-F. Su, Scientific Reports, 2017, 7, 40896.
84. Z. Fu, J. Zhang, X. Yang and W. Cao, Chin. Sci. Bull., 2011, 56, 2001-2008.
85. S. M. Yoon, S. J. Lou, S. Loser, J. Smith, L. X. Chen, A. Facchetti and T. Marks, Nano Letters, 2012, 12, 6315-6321.
86. T.-j. Chen and P. Shen, The Journal of Physical Chemistry C, 2009, 113, 328-332.
87. G. M. Zeer, E. G. Zelenkova, N. S. Nikolaeva, S. M. Zharkov, S. I. Pochekutov, O. N. Ledyaeva, A. B. Sartpaeva and A. A. Mikheev, Glass Ceram, 2015, 72, 242-245.
88. S. Chen, J. R. Manders, S.-W. Tsang and F. So, Journal of Materials Chemistry, 2012, 22, 24202-24212.
89. R. Wang, H. Tan, Z. Zhao, G. Zhang, L. Song, W. Dong and Z. Sun, Journal of Materials Chemistry A, 2014, 2, 7313-7318.
90. J. Tian, Q. Zhang, E. Uchaker, R. Gao, X. Qu, S. Zhang and G. Cao, Energy & Environmental Science, 2013, 6, 3542-3547.
91. M.-C. Wu, J. Hiltunen, A. Sápi, A. Avila, W. Larsson, H.-C. Liao, M. Huuhtanen, G. Tóth, A. Shchukarev, N. Laufer, Á. Kukovecz, Z. Kónya, J.-P. Mikkola, R. Keiski, W.-F. Su, Y.-F. Chen, H. Jantunen, P. M. Ajayan, R. Vajtai and K. Kordás, ACS Nano, 2011, 5, 5025-5030.
92. M. Salazar-Villanueva, A. Cruz-López, A. A. Zaldívar-Cadena, A. Tovar-Corona, M. L. Guevara-Romero and O. Vazquez-Cuchillo, Materials Science in Semiconductor Processing, 2017, 58, 8-14.
93. L. Yang, Y. Zhang, W. Ruan, B. Zhao, W. Xu and J. R. Lombardi, Journal of Raman Spectroscopy, 2010, 41, 721-726.
94. T. T. Loan, V. H. Huong, V. T. Tham and N. N. Long, Physica B: Condensed Matter, 2018, 532, 210-215.
95. Z. Li, Y. Hou, B. Ma, X. Wu, Z. Xing and K. Li, Environmental Progress & Sustainable Energy, 2016, 35, 1121-1124.
96. P. Li, C. Liang, Y. Zhang, F. Li, Y. Song and G. Shao, ACS Applied Materials & Interfaces, 2016, 8, 32574-32580.
97. W. Melitz, J. Shen, A. C. Kummel and S. Lee, Surface Science Reports, 2011, 66, 1-27.
98. R. H. Bube, Journal of Applied Physics, 1962, 33, 1733-1737.
99. W. Chandra, L. K. Ang, K. L. Pey and C. M. Ng, Applied Physics Letters, 2007, 90, 153505.
100. F. Xie, C.-C. Chen, Y. Wu, X. Li, M. Cai, X. Liu, X. Yang and L. Han, Energy & Environmental Science, 2017, 10, 1942-1949.
101. J. Liu, G. Wang, Z. Song, X. He, K. Luo, Q. Ye, C. Liao and J. Mei, Journal of Materials Chemistry A, 2017, 5, 9097-9106.
102. M. A. Contreras, K. Ramanathan, J. AbuShama, F. Hasoon, D. L. Young, B. Egaas and R. Noufi, Progress in Photovoltaics: Research and Applications, 2005, 13, 209-216.
103. H.-S. Kim and N.-G. Park, The Journal of Physical Chemistry Letters, 2014, 5, 2927-2934.
104. W. Qiu, T. Merckx, M. Jaysankar, C. Masse de la Huerta, L. Rakocevic, W. Zhang, U. W. Paetzold, R. Gehlhaar, L. Froyen, J. Poortmans, D. Cheyns, H. J. Snaith and P. Heremans, Energy & Environmental Science, 2016, 9, 484-489.
105. X. Ren, Z. Yang, D. Yang, X. Zhang, D. Cui, Y. Liu, Q. Wei, H. Fan and S. Liu, Nanoscale, 2016, 8, 3816-3822.
106. M. Yang, T. Zhang, P. Schulz, Z. Li, G. Li, D. H. Kim, N. Guo, J. J. Berry, K. Zhu and Y. Zhao, Nature Communications, 2016, 7, 12305.
107. Y. Luo, F. Meng, E. Zhao, Y.-Z. Zheng, Y. Zhou and X. Tao, Journal of Power Sources, 2016, 311, 130-136.
108. P. W. Liang, C. Y. Liao, C. C. Chueh, F. Zuo, S. T. Williams, X. K. Xin, J. Lin and A. K. Y. Jen, Advanced Materials, 2014, 26, 3748-3754.
109. J. You, L. Meng, T.-B. Song, T.-F. Guo, Y. Yang, W.-H. Chang, Z. Hong, H. Chen, H. Zhou, Q. Chen, Y. Liu, N. De Marco and Y. Yang, Nature Nanotechnology, 2015, 11, 75.
110. R. Ihly, A.-M. Dowgiallo, M. Yang, P. Schulz, N. J. Stanton, O. G. Reid, A. J. Ferguson, K. Zhu, J. J. Berry and J. L. Blackburn, Energy & Environmental Science, 2016, 9, 1439-1449.
111. N. D. Pham, V. T. Tiong, P. Chen, L. Wang, G. J. Wilson, J. Bell and H. Wang, Journal of Materials Chemistry A, 2017, 5, 5195-5203.
112. J. K. Nam, S. U. Chai, W. Cha, Y. J. Choi, W. Kim, M. S. Jung, J. Kwon, D. Kim and J. H. Park, Nano Letters, 2017, 17, 2028-2033.
113. J. K. Nam, M. S. Jung, S. U. Chai, Y. J. Choi, D. Kim and J. H. Park, The Journal of Physical Chemistry Letters, 2017, 8, 2936-2940.
114. C. H. Chiang and C. G. Wu, ChemSusChem, 2016, 9, 2666-2672.
115. L. Chao, Z. Wang, Y. Xia, Y. Chen and W. Huang, Journal of Energy Chemistry, 2018, 27, 1091-1100.
116. L. Han, Nature Energy, 2018, 3, 545-546.
117. M. Yang, D. H. Kim, T. R. Klein, Z. Li, M. O. Reese, B. J. Tremolet de Villers, J. J. Berry, M. F. A. M. van Hest and K. Zhu, ACS Energy Letters, 2018, 3, 322-328.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊