|
1. Saharan, P., et al., Loop-mediated isothermal amplification (LAMP) based detection of bacteria: A Review. Vol. 13. 2014. 1920-1928. 2. Craw, P. and W. Balachandran, Isothermal Nucleic Acid Amplification Technologies for Point-of-Care Diagnostics: A Critical Review. Vol. 12. 2012. 2469-86. 3. Lawn, S.D. and M.P. Nicol, Xpert® MTB/RIF assay: development, evaluation and implementation of a new rapid molecular diagnostic for tuberculosis and rifampicin resistance. Future microbiology, 2011. 6(9): p. 1067-1082. 4. Juréen, P., J. Werngren, and S.E. Hoffner, Evaluation of the line probe assay (LiPA) for rapid detection of rifampicin resistance in Mycobacterium tuberculosis. Tuberculosis, 2004. 84(5): p. 311-316. 5. Gray, C.M., et al., Feasibility and Operational Performance of Tuberculosis Detection by Loop-Mediated Isothermal Amplification Platform in Decentralized Settings: Results from a Multicenter Study. Journal of Clinical Microbiology, 2016. 54(8): p. 1984. 6. Nakiyingi, L., et al., Performance of loop-mediated isothermal amplification assay in the diagnosis of pulmonary tuberculosis in a high prevalence TB/HIV rural setting in Uganda. BMC infectious diseases, 2018. 18(1): p. 87-87. 7. Organization, W. H. Global tuberculosis report 2017. 8. Lazcka, O., F.J.D. Campo, and F.X. Muñoz, Pathogen detection: A perspective of traditional methods and biosensors. Biosensors and Bioelectronics, 2007. 22(7): p. 1205-1217. 9. Váradi, L., et al., Methods for the detection and identification of pathogenic bacteria: past, present, and future. Chemical Society Reviews, 2017. 46(16): p. 4818-4832. 10. Mullis, K., et al., Specific enzymatic amplification of DNA in vitro: the polymerase chain reaction. Cold Spring Harbor symposia on quantitative biology, 1986. 51 Pt 1: p. 263-273. 11. Reynolds, J., R.B. Moyes, and D.P. Breakwell, Differential Staining of Bacteria: Acid Fast Stain. Current Protocols in Microbiology, 2009. 15(1): p. A.3H.1-A.3H.5. 12. Taiwan Guidelines for TB Diagnosis & Treatment. 13. Chien, A., D.B. Edgar, and J.M. Trela, Deoxyribonucleic acid polymerase from the extreme thermophile Thermus aquaticus. Journal of Bacteriology, 1976. 127(3): p. 1550-1557. 14. SantaLucia, J., A unified view of polymer, dumbbell, and oligonucleotide DNA nearest-neighbor thermodynamics. Proceedings of the National Academy of Sciences, 1998. 95(4): p. 1460-1465. 15. Kim, P., et al., Soft Lithography for Microfluidics: a Review. Vol. 2(1). 2008. 16. Saxena, L., C. Tanaji, and O. Verma, BIOCHIPS: REVOLUTION IN BIOSCIENCE : A REVIEW. Vol. 4. 2012. 974-9446. 17. Gale, K.B., et al., A Review of Current Methods in Microfluidic Device Fabrication and Future Commercialization Prospects. Inventions, 2018. 3(3). 18. Mairhofer, J., K. Roppert, and P. Ertl, Microfluidic systems for pathogen sensing: a review. Sensors (Basel, Switzerland), 2009. 9(6): p. 4804-4823. 19. Zhang, C., et al., PCR microfluidic devices for DNA amplification. Biotechnol Adv, 2006. 24(3): p. 243-84. 20. Lagally, E.T., et al., Integrated Portable Genetic Analysis Microsystem for Pathogen/Infectious Disease Detection. Analytical Chemistry, 2004. 76(11): p. 3162-3170. 21. Wittwer, C.T., G.C. Fillmore, and D.R. Hillyard, Automated polymerase chain reaction in capillary tubes with hot air. Nucleic Acids Research, 1989. 17(11): p. 4353-4357. 22. Nakane, J., et al., A method for parallel, automated, thermal cycling of submicroliter samples. Genome Res, 2001. 11(3): p. 441-7. 23. Oda, R.P., et al., Infrared-Mediated Thermocycling for Ultrafast Polymerase Chain Reaction Amplification of DNA. Analytical Chemistry, 1998. 70(20): p. 4361-4368. 24. Fermér, C., P. Nilsson, and M. Larhed, Microwave-assisted high-speed PCR. European Journal of Pharmaceutical Sciences, 2003. 18(2): p. 129-132. 25. Orrling, K., et al., An efficient method to perform milliliter-scale PCR utilizing highly controlled microwave thermocycling. Chemical Communications, 2004(7): p. 790-791. 26. Kim, J., et al., Gold Nanorod-based Photo-PCR System for One-Step, Rapid Detection of Bacteria. Nanotheranostics, 2017. 1(2): p. 178-185. 27. Lee, J.H., et al., Plasmonic Photothermal Gold Bipyramid Nanoreactors for Ultrafast Real-Time Bioassays. J Am Chem Soc, 2017. 139(24): p. 8054-8057. 28. Son, J.H., et al., Ultrafast photonic PCR. Light: Science & Applications, 2015. 4(7): p. e280-e280. 29. Abramowitz, S., Towards inexpensive DNA diagnostics. Trends in Biotechnology, 1996. 14(10): p. 397-401. 30. Notomi, T., et al., Loop-mediated isothermal amplification of DNA. Nucleic Acids Res, 2000. 28(12): p. E63. 31. Tomita, N., et al., Loop-mediated isothermal amplification (LAMP) of gene sequences and simple visual detection of products. Nat Protoc, 2008. 3(5): p. 877-82. 32. Kumar, Y., S. Bansal, and P. Jaiswal, Loop-Mediated Isothermal Amplification (LAMP): A Rapid and Sensitive Tool for Quality Assessment of Meat Products. Comprehensive Reviews in Food Science and Food Safety, 2017. 16(6): p. 1359-1378. 33. Hara-Kudo, Y., et al., Loop-mediated isothermal amplification for the rapid detection of Salmonella. FEMS Microbiology Letters, 2005. 253(1): p. 155-161. 34. Mori, Y., et al., Detection of Loop-Mediated Isothermal Amplification Reaction by Turbidity Derived from Magnesium Pyrophosphate Formation. Biochemical and Biophysical Research Communications, 2001. 289(1): p. 150-154. 35. Ranjbar, R., et al., Visual Detection of Enterohemorrhagic Escherichia coli O157:H7 Using Loop-Mediated Isothermal Amplification. Electronic physician, 2016. 8(6): p. 2576-2585. 36. Gadkar, V.J., et al., Real-time Detection and Monitoring of Loop Mediated Amplification (LAMP) Reaction Using Self-quenching and De-quenching Fluorogenic Probes. Scientific Reports, 2018. 8(1): p. 5548. 37. Mansour, S., et al., Loop-mediated isothermal amplification for diagnosis of 18 World Organization for Animal Health (OIE) notifiable viral diseases of ruminants, swine and poultry. 2015. 38. Goto, M., et al., Colorimetric detection of loop-mediated isothermal amplification reaction by using hydroxy naphthol blue. BioTechniques, 2009. 46(3): p. 167-172. 39. Safavieh, M., et al., Microfluidic electrochemical assay for rapid detection and quantification of Escherichia coli. Biosens Bioelectron, 2012. 31(1): p. 523-8. 40. Hongwarittorrn, I., N. Chaichanawongsaroj, and W. Laiwattanapaisal, Semi-quantitative visual detection of loop mediated isothermal amplification (LAMP)-generated DNA by distance-based measurement on a paper device. Talanta, 2017. 175: p. 135-142. 41. Junhai, N., et al., Evaluation of loop‐mediated isothermal amplification (LAMP) assays based on 5S rDNA‐IGS2 regions for detecting Meloidogyne enterolobii. Vol. 61. 2012. 42. R, A., et al., Development of a Loop-Mediated Isothermal Amplification Procedure as a Sensitive and Rapid Method for Detection of 'Candidatus Liberibacter solanacearum' in Potatoes and Psyllids. Vol. 102. 2012. 899-907. 43. Shi, Y., et al., Loop-Mediated Isothermal Amplification Assays for the Rapid Identification of Duck-Derived Ingredients in Adulterated Meat. Food Analytical Methods, 2017. 10(7): p. 2325-2331. 44. A Rigano, L., et al., Rapid and sensitive detection of Candidatus Liberibacter asiaticus by loop mediated isothermal amplification combined with a lateral flow dipstick. Vol. 14. 2014. 86. 45. Ravan, H. and R. Yazdanparast, Development and evaluation of a loop-mediated isothermal amplification method in conjunction with an enzyme-linked immunosorbent assay for specific detection of Salmonella serogroup D. Anal Chim Acta, 2012. 733: p. 64-70. 46. Ni, X.-W., et al., A comparison of loop-mediated isothermal amplification (LAMP) with other surveillance tools for Echinococcus granulosus diagnosis in canine definitive hosts. PloS one, 2014. 9(7): p. e100877-e100877. 47. Iwamoto, T., T. Sonobe, and K. Hayashi, Loop-Mediated Isothermal Amplification for Direct Detection of Mycobacterium tuberculosis Complex, M. avium, and M. intracellulare in Sputum Samples. Journal of Clinical Microbiology, 2003. 41(6): p. 2616-2622. 48. Gudnason, H., et al., Comparison of multiple DNA dyes for real-time PCR: effects of dye concentration and sequence composition on DNA amplification and melting temperature. Nucleic acids research, 2007. 35(19): p. e127-e127. 49. Radvanszky, J., et al., Comparison of different DNA binding fluorescent dyes for applications of high-resolution melting analysis. Clinical Biochemistry, 2015. 48(9): p. 609-616. 50. Sun, Y., et al., A lab-on-a-chip system with integrated sample preparation and loop-mediated isothermal amplification for rapid and quantitative detection of Salmonella spp. in food samples. Lab on a Chip, 2015. 15(8): p. 1898-1904. 51. Garrido-Maestu, A., et al., Combination of Microfluidic Loop-Mediated Isothermal Amplification with Gold Nanoparticles for Rapid Detection of Salmonella spp. in Food Samples. Frontiers in Microbiology, 2017. 8: p. 2159. 52. Chen, W., et al., Mobile Platform for Multiplexed Detection and Differentiation of Disease-Specific Nucleic Acid Sequences, Using Microfluidic Loop-Mediated Isothermal Amplification and Smartphone Detection. Analytical Chemistry, 2017. 89(21): p. 11219-11226. 53. Luo, K., et al. An integrated array-based emulsion droplet microfluidic device for digital loop-mediated isothermal amplification (LAMP) analysis. in 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). 2016. 54. Ma, Y.D., et al. A self-driven microfluidic chip through a rapid surface modification of PDMS and its application for digital loop-mediated amplification (LAMP). in 2016 IEEE 11th Annual International Conference on Nano/Micro Engineered and Molecular Systems (NEMS). 2016. 55. Ma, Y.-D., et al., A microfluidic chip capable of generating and trapping emulsion droplets for digital loop-mediated isothermal amplification analysis. Lab on a Chip, 2018. 18(2): p. 296-303. 56. Grigorchuk, N.I., Radiative damping of surface plasmon resonance in spheroidal metallic nanoparticle embedded in a dielectric medium. Journal of the Optical Society of America B, 2012. 29(12): p. 3404-3411. 57. Qiu, J. and W.D. Wei, Surface Plasmon-Mediated Photothermal Chemistry. The Journal of Physical Chemistry C, 2014. 118(36): p. 20735-20749. 58. Francois, A., et al., Surface scattering plasmon resonance fibre sensors: Demonstration of rapid influenza A virus detection. Vol. 8028. 2011. 59. Sciacca, B., et al., Radiative-surface plasmon resonance for the detection of apolipoprotein E in medical diagnostics applications. Nanomedicine: Nanotechnology, Biology and Medicine, 2013. 9(4): p. 550-557. 60. Yasun, E., et al., Cancer cell sensing and therapy using affinity tag-conjugated gold nanorods. Interface Focus, 2013. 3(3). 61. Zha, Z., et al., Uniform Polypyrrole Nanoparticles with High Photothermal Conversion Efficiency for Photothermal Ablation of Cancer Cells. Advanced Materials, 2012. 25(5): p. 777-782. 62. Song, J., et al., Sequential Drug Release and Enhanced Photothermal and Photoacoustic Effect of Hybrid Reduced Graphene Oxide-Loaded Ultrasmall Gold Nanorod Vesicles for Cancer Therapy. ACS Nano, 2015. 9(9): p. 9199-9209. 63. Zhang, Z., et al., Mesoporous Silica-Coated Gold Nanorods as a Light-Mediated Multifunctional Theranostic Platform for Cancer Treatment. Advanced Materials, 2012. 24(11): p. 1418-1423. 64. Bilici, K., et al., Investigation of the factors affecting the photothermal therapy potential of small iron oxide nanoparticles over the 730–840 nm spectral region. Photochemical & Photobiological Sciences, 2018. 17(11): p. 1787-1793. 65. Wang, Y., et al., Synthesis of Core–Shell Graphitic Carbon@Silica Nanospheres with Dual-Ordered Mesopores for Cancer-Targeted Photothermochemotherapy. ACS Nano, 2014. 8(8): p. 7870-7879. 66. Han, L., et al., A magnetic polypyrrole/iron oxide core/gold shell nanocomposite for multimodal imaging and photothermal cancer therapy. Talanta, 2017. 171: p. 32-38. 67. G, C. and F. Luigi, Organic Solar Cells: Problems and Perspectives. Vol. 2010. 2010. 68. Yang, J., et al., Convertible Organic Nanoparticles for Near-Infrared Photothermal Ablation of Cancer Cells. Angewandte Chemie International Edition, 2011. 50(2): p. 441-444. 69. Wang, X., et al., Enhanced photothermal therapy of biomimetic polypyrrole nanoparticles through improving blood flow perfusion. Biomaterials, 2017. 143: p. 130-141. 70. Yigit, M.V., A. Moore, and Z. Medarova, Magnetic Nanoparticles for Cancer Diagnosis and Therapy. Pharmaceutical Research, 2012. 29(5): p. 1180-1188. 71. Umut, E., Surface Modification of Nanoparticles Used in Biomedical Applications, in Modern Surface Engineering Treatments. 2013. 72. Guerrini, L., R.A. Alvarez-Puebla, and N. Pazos-Perez, Surface Modifications of Nanoparticles for Stability in Biological Fluids. Materials (Basel), 2018. 11(7). 73. Zhu, N., et al., Surface Modification of Magnetic Iron Oxide Nanoparticles. Nanomaterials (Basel, Switzerland), 2018. 8(10): p. 810. 74. Sperling, R.A. and W.J. Parak, Surface modification, functionalization and bioconjugation of colloidal inorganic nanoparticles. Philosophical Transactions of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2010. 368(1915): p. 1333-1383. 75. Jain, A. and K. Cheng, The principles and applications of avidin-based nanoparticles in drug delivery and diagnosis. Journal of controlled release : official journal of the Controlled Release Society, 2017. 245: p. 27-40. 76. Diamandis, E.P. and T.K. Christopoulos, The biotin-(strept)avidin system: principles and applications in biotechnology. Clinical Chemistry, 1991. 37(5): p. 625. 77. Pandey, B.D., et al., Development of an in-house loop-mediated isothermal amplification (LAMP) assay for detection of Mycobacterium tuberculosis and evaluation in sputum samples of Nepalese patients. J Med Microbiol, 2008. 57(Pt 4): p. 439-43. 78. Wang, H.-Y., et al., Development of a high sensitivity TaqMan-based PCR assay for the specific detection of Mycobacterium tuberculosis complex in both pulmonary and extrapulmonary specimens. Scientific Reports, 2019. 9(1): p. 113. 79. Zhang, J., et al., Photothermal lysis of pathogenic bacteria by platinum nanodots decorated gold nanorods under near infrared irradiation. Journal of Hazardous Materials, 2018. 342: p. 121-130. 80. Chen, J., et al., BEAMing LAMP: single-molecule capture and on-bead isothermal amplification for digital detection of hepatitis C virus in plasma. Chemical Communications, 2018. 54(3): p. 291-294. 81. Denis, J.A., et al., The Role of BEAMing and Digital PCR for Multiplexed Analysis in Molecular Oncology in the Era of Next-Generation Sequencing. Molecular Diagnosis & Therapy, 2017. 21(6): p. 587-600.
|