跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/30 17:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:朱劭騫
研究生(外文):Shau Chian Chu
論文名稱:以多功能中空銀奈米載體進行局部投遞治療細菌性角膜炎
論文名稱(外文):Multifunctional Hollow Silver Nanocarriers for Topical Application of Medications in the Treatment of Bacterial Keratitis
指導教授:賴瑞陽
指導教授(外文):J. Y. Lai
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學工程研究所
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:86
中文關鍵詞:細菌性角膜炎乙醯膽鹼TGF-β(SB-431542)中空銀奈米
外文關鍵詞:Bacterial keratitisAcetylcholineTGF-β (SB-431542)Hollow silver nano
相關次數:
  • 被引用被引用:0
  • 點閱點閱:99
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄
指導教授推薦書.....................................................................................................................
口試委員會審定書.................................................................................................................
致謝.....................................................................................................................................iii
中文摘要..............................................................................................................................iv
ABSTRACT.......................................................................................................................... v
目錄 .....................................................................................................................................vi
圖目錄 ...............................................................................................................................viii
表目錄.................................................................................................................................. x
第 1 章 諸論 ................................................................................................................. - 1 -
1.1 研究動機.......................................................................................................... - 1 -
1.2 研究目的.......................................................................................................... - 2 -
第 2 章 文獻回顧.......................................................................................................... - 3 -
2.1 眼睛的重要性 .................................................................................................. - 3 -
2.2 細菌性角膜炎 .................................................................................................. - 5 -
2.3 銀奈米粒子的應用 .......................................................................................... - 8 -
2.4 中空奈米粒子 ................................................................................................ - 12 -
2.5 細菌性角膜炎選用藥物.................................................................................- 13 -
2.6 生物相容性與材料修飾.................................................................................- 14 -
第 3 章 實驗設計與方法............................................................................................- 15 -
3.1 材料 ...............................................................................................................- 15 -
3.2 實驗用設備.................................................................................................... - 16 -
3.3 實驗設計........................................................................................................ - 17 -
3.3.1 實驗流程示意圖 ............................................................................................ - 17 -
3.3.2 實驗設計........................................................................................................ - 17 -
3.4 實驗方法........................................................................................................ - 18 -
3.4.1 合成中空銀奈米粒子.....................................................................................- 18 -
3.4.2 晶格分析........................................................................................................- 19 -
3.4.3 光學特性分析 ................................................................................................ - 19 -
3.4.4 細胞相容性.................................................................................................... - 19 -
(1) 細胞型態分析................................................................................................- 20 -
(2) 細胞活性分析................................................................................................ - 20 -
3.4.5 抗菌試驗........................................................................................................- 21 -
(1) 液態抗菌........................................................................................................- 21 -
3.4.6 藥物釋放以及藥物自載體釋放濃度測試 ...................................................... - 22 -
3.4.7 臨床觀察........................................................................................................ - 23 -
3.4.8 角膜透明度及穿透度分析 .............................................................................- 24 -
第 4 章 結果與討論....................................................................................................- 25 -
4.1 光學特性 ........................................................................................................ - 25 -
4.2 材料鑑定-TEM(穿透式電子顯微鏡) ............................................................. - 28 -
4.3 DLS粒徑測試................................................................................................- 30 -
4.4 ZETA 電位測試 ............................................................................................- 31 -
4.5 SEM-EDS.......................................................................................................- 32 -
4.6 晶格分析........................................................................................................ - 35 -
4.7 FT-IR .............................................................................................................- 40 -
4.8 熱重分析........................................................................................................ - 43 -
4.9 細胞相容性....................................................................................................- 47 -
4.10 抗菌能力........................................................................................................ - 51 -
4.11 藥物釋放以及藥物自載體釋放濃度測試 ......................................................- 54 -
4.12 動物實驗........................................................................................................ - 62-
4.13 角膜透明度測試 ............................................................................................ - 67 -
第 5 章 結論 ............................................................................................................... - 68 -
參考文獻 ........................................................................................................................- 69 -

圖目錄
圖2.1眼睛結構的示意圖................................................................................................. - 3 -
圖2.2角膜不同層的示意圖.............................................................................................- 5 -
圖2.3細菌性角膜炎受損機制圖[9].................................................................................- 6 -
圖2.4 AGNPS的毒性作用機制圖 ...................................................................................- 9 -
圖2.5細胞對AGNP誘導的毒性機制反應的示意圖....................................................- 10 -
圖2.6中空奈米示意圖 ..................................................................................................- 12 -
圖2.7 TGF-Β誘導作用的概述 ......................................................................................- 13 -
圖2.8 打開 TIGHT JUNCTION機制圖[34]。..............................................................- 14 -
圖3.1誘發細菌性角膜炎示意圖 ...................................................................................- 17 -
圖3.2 實驗設計.............................................................................................................- 17 -
圖4.1 利用紫外光-可見光分析之表面電漿共振特性。...............................................- 27 -
圖4.2銀奈米穿透式電子顯微鏡進行拍攝....................................................................- 29 -
圖4.3 SEM-EDX SILICA NPS。 ...................................................................................- 32 -
圖4.4 SEM-EDX SILICA@AG NPS。..........................................................................- 33 -
圖4.5 SEM-EDX HAG NPS。....................................................................................... - 33 -
圖4.6 SEM-EDX HAG-CS NPS。.................................................................................- 34 -
圖4.7 將SILICA NPS以X繞射分析其晶格結構結果圖............................................- 35 -
圖4.8 將SILICA@AG NPS以X繞射分析其晶格結構結果圖...................................- 36 -
圖4.9將製備之中空銀奈米粒子以X繞射分析其晶格結構結果圖。.........................- 37 -
圖4.10 將殼聚糖以X繞射分析其晶格結構結果圖。.................................................- 38 -
圖4.11殼聚醣(CHITOSAN)吸附中空銀奈米粒子以X繞射分析其晶格結構結果圖。- 39 -
圖4.12將製備樣品進行傅里葉轉換紅外光譜(FOURIER-TRANSFORM INFRARED SPECTROSCOPY) 結果圖。.........................................................................................- 42 -
圖4.13將製備之SILICA NPS以熱重分析 (THERMOGRAVIMETRY ANALYSIS)結果圖。................................................................................................................................ - 43 -
圖4.14將製備之中空銀奈米粒子以熱重分析 (THERMOGRAVIMETRY ANALYSIS)結果圖。............................................................................................................................- 44 -
圖4.15殼聚糖以熱重分析 (THERMOGRAVIMETRY ANALYSIS)結果圖。.............- 45 -
圖4.16殼聚醣吸附中空銀奈米粒子以熱重分析 (THERMOGRAVIMETRY ANALYSIS)結果圖。 ........................................................................................................................- 46 -
圖4.17測試細胞相容性,可以看到使用不同組別進行72小時相容性測試細胞型態分佈。................................................................................................................................ - 49 -
圖4.18測試細胞相容性,可以看到使用材料進行72小時相容性測試細胞數量分佈。 ..- 50 -
圖4.19以液態培養基觀察金黃色葡萄球菌動態生長圖。...........................................- 53 -
圖 4.20 ACH 自載體釋放結果圖.......................................................................................- 54 -
圖 4.21 TGF-Β 自載體釋放結果圖....................................................................................- 55 -
圖 4.22 藥物釋放累積圖.....................................................................................................- 56 -
圖 4.23 藥物自載體釋出細胞定性圖.................................................................................- 58 -
圖 4.24 藥物自載體釋放細胞定量圖.................................................................................- 59 -
圖 4.25TEER 值...................................................................................................................- 61 -
圖 4.26 於各觀察點進行細菌性角膜炎動物模式之臨床觀察。(A)術後第 12 小時觀察點
(B)術後第一天觀察點(C)術後第三天觀察點...................................................................- 65 -
圖 4.27 於各觀察點進行細菌性角膜炎之發炎狀態進行整體量化評估.........................- 66 -
圖 4.28 於各觀察點進行細菌性角膜炎動物模式之角膜透明度觀察.............................- 67 -

表目錄
表4-1 DLS粒徑測試 .....................................................................................................- 30 -
表4-2 ZETA電位測試...................................................................................................- 31 -
[1] Willoughby CE, Ponzin, D., Ferrari, S., Lobo, A., Landau, K., & Omidi, Y. Anatomy and physiology of the human eye: effects of mucopolysaccharidoses disease on structure and function - a review. Clinical & Experimental Ophthalmology 2010;38:2-11.
[2] Rowsey TG, Karamichos D. The role of lipids in corneal diseases and dystrophies: a systematic review. Clinical and Translational Medicine 2017;6(1).
[3] van de Pol C, Soya, K., & Hwang, D. G. . Objective assessment of transient corneal haze and its relation to visual performance after photorefractive keratectomy. . American journal of ophthalmology 2001;132(2):204-10.
[4] Al-Hazzaa SA, & Tabbara, K. F. Bacterial Keratitis after Penetrating Keratoplasty. Ophthalmology 2007;114(6):1073-9.e2.
[5] Clemens LE, Jaynes, J., Lim, E., Kolar, S. S., Reins, R. Y., Baidouri, H., ... & Woodburn, K. W. Designed Host Defense Peptides for the Treatment of Bacterial Keratitis. Investigative ophthalmology & visual science 2017; 58(14):6273-81.
[6] Sadrai Z, Hajrasouliha AR, Chauhan S, Saban DR, Dastjerdi MH, Dana R. Effect of topical azithromycin on corneal innate immune responses. Invest Ophthalmol Vis Sci 2011;52(5):2525-31.
[7] Kasetsuwan N, Tanthuvanit P, Reinprayoon U. The efficacy and safety of 0.5% Levofloxacin versus fortified Cefazolin and Amikacin ophthalmic solution for the treatment of suspected and culture-proven cases of infectious bacterial keratitis: a comparative study. Asian Biomedicine 2011;5(1):77-83.
[8] Sensoy D, Cevher E, Sarici A, Yilmaz M, Ozdamar A, Bergisadi N. Bioadhesive sulfacetamide sodium microspheres: evaluation of their effectiveness in the treatment of bacterial keratitis caused by Staphylococcus aureus and Pseudomonas aeruginosa in a rabbit model. Eur J Pharm Biopharm 2009;72(3):487-95.
[9] Lorenzo-Morales J, Martin-Navarro CM, Lopez-Arencibia A, Arnalich-Montiel F, Pinero JE, Valladares B. Acanthamoeba keratitis: an emerging disease gathering importance worldwide? Trends Parasitol 2013;29(4):181-7.
[10] Dajcs JJ, Moreau JM, Stroman DW, Schlech BA, Ke TL, Thibodeaux BA, et al. The effectiveness of tobramycin and Ocuflox® in a prophylaxis model of Staphylococcus keratitis. Current Eye Research 2009;23(1):60-3.
[11] Jonsson P, Lindberg, M. A. R. T. I. N., Haraldsson, I. N. G. E. R., & Wadström, T. VirulenceofStaphylococcusaureus ina MouseMastitisModel: StudiesofAlphaHemolysin,Coagulase,andProteinA as Possible Virulence Determinants with Protoplast Fusion and Gene Cloning. Infection and immunity 1985;49(3):765-9.
[12] Madaria AR, Kumar A, Zhou C. Large scale, highly conductive and patterned transparent films of silver nanowires on arbitrary substrates and their application in touch screens. Nanotechnology 2011;22(24):245201.
[13] Franci G, Falanga A, Galdiero S, Palomba L, Rai M, Morelli G, et al. Silver Nanoparticles as Potential Antibacterial Agents. Molecules 2015;20(5):8856-74.
[14] Maquart FX, Pasco S, Ramont L, Hornebeck W, Monboisse JC. An introduction to matrikines: extracellular matrix-derived peptides which regulate cell activity. Implication in tumor invasion. Crit Rev Oncol Hematol 2004;49(3):199-202.
[15] Grabowska E, Zaleska A, Sorgues S, Kunst M, Etcheberry A, Colbeau-Justin C, et al. Modification of Titanium(IV) Dioxide with Small Silver Nanoparticles: Application in Photocatalysis. The Journal of Physical Chemistry C 2013;117(4):1955-62.
[16] Ye X, Carp, R. I., Schmued, L. C., & Scallet, A. C. Fluoro-Jade and silver methods: application to the neuropathology of scrapie, a transmissible spongiform encephalopathy. Brain Research Protocols 2001;8(2):104–12.
[17] Farajzadeh M, & Matin, A. A. A New PVC-Activated Charcoal Fiber Coated on Silver Wire; Application in Determination of n-Alkanes in the Headspace of Soil Samples by SPME-GC. Analytical sciences 2002;18(1):77-81.
[18] Latenser BA. Silver deposits in cutaneous burn scar tissue is a common phenomenon following application of a silver dressing. Yearbook of Critical Care Medicine 2010;2010:116-7.
[19] Jarrett F, Ellerbe, S., & Demling, R. . Acute Leukopenia during Topical Burn Therapy with Silver Sulfadiazine. The American Journal of Surgery 1978;135(6):818-9.
[20] Yüce K, Zeyneloglu, H. B., Biikulmez, O., & Kisnisci, H. A. . Outpatient Management of Bartholin Gland Abscesses and Cysts with Silver Nitrate. Australian and New Zealand journal of obstetrics and gynaecology 1994;34(1):93-6.
[21] Brook I, Martin, W. J., & Finegold, S. M. Finegold, Effect of silver nitrate application on the conjunctival flora of the newborn: and the occurrence of clostridial conjunctivitis. Journal of pediatric ophthalmology and strabismus 1978;15(3):179-83.
[22] Kim T-H, Sung AY. Effects of Ag/Pt Nanoparticles on the Physical Properties of Copolymers Containing 2-Fluoro-5-Methylanisole. Journal of Nanoscience and Nanotechnology 2013;13(9):5966-75.
[23] Fazly Bazzaz BS, Khameneh B, Jalili-Behabadi M-m, Malaekeh-Nikouei B, Mohajeri SA. Preparation, characterization and antimicrobial study of a hydrogel (soft contact lens) material impregnated with silver nanoparticles. Contact Lens and Anterior Eye 2014;37(3):149-52.
[24] Hamblin M, Samanta T, Roymahapatra G, Porto WF, Seth S, Ghorai S, et al. N, N′-Olefin Functionalized Bis-Imidazolium Gold(I) Salt Is an Efficient Candidate to Control Keratitis-Associated Eye Infection. PLoS ONE 2013;8(3).
[25] Ye F, Guo H, Zhang H, He X. Polymeric micelle-templated synthesis of hydroxyapatite hollow nanoparticles for a drug delivery system. Acta Biomater 2010;6(6):2212-8.
[26] Fleiszig SM, & Evans, D. J. . The pathogenesis of bacterial keratitis: studies with Pseudomonas aeruginosa. Clinical and Experimental Optometry 2002;85(5):271-8.
[27] Kalishwaralal K, Barathmanikanth S, Pandian SR, Deepak V, Gurunathan S. Silver nano - a trove for retinal therapies. J Control Release 2010;145(2):76-90.
[28] Euler G. Good and bad sides of TGFbeta-signaling in myocardial infarction. Front Physiol 2015;6:66.
[29] Laping NJ, Grygielko, E., Mathur, A., Butter, S., Bomberger, J., Tweed, C., ... & Gaster, L. . Inhibition of transforming growth factor (TGF)-β1–induced extracellular matrix with a novel inhibitor of the TGF-β type I receptor kinase activity: SB-431542. Molecular pharmacology 2002;62(1):58-64.
[30] Gurunathan S, Lee K-J, Kalishwaralal K, Sheikpranbabu S, Vaidyanathan R, Eom SH. Antiangiogenic properties of silver nanoparticles. Biomaterials 2009;30(31):6341-50.
[31] Darroudi M, Ahmad, M. B., Abdullah, A. H., Ibrahim, N. A., & Shameli, K. Effect of accelerator in green synthesis of silver nanoparticles. International journal of molecular sciences 2010;11(10):3898-905.
[32] Marquart ME, O'Callaghan RJ. Infectious Keratitis: Secreted Bacterial Proteins That Mediate Corneal Damage. Journal of Ophthalmology 2013;2013:1-9.
[33] Ilium L. Chitosan and Its Use as a Pharmaceutical Excipient. Pharmaceutical research 1998;15(9):1326-31.
[34] Yeh T-H, Hsu L-W, Tseng MT, Lee P-L, Sonjae K, Ho Y-C, et al. Mechanism and consequence of chitosan-mediated reversible epithelial tight junction opening. Biomaterials 2011;32(26):6164-73.
[35] Lai JY. Biofunctionalization of gelatin microcarrier with oxidized hyaluronic acid for corneal keratocyte cultivation. Colloids Surf B Biointerfaces 2014;122:277-86.
[36] Shrivastava S, Bera T, Roy A, Singh G, Ramachandrarao P, Dash D. Characterization of enhanced antibacterial effects of novel silver nanoparticles. Nanotechnology 2007;18(22).
[37] Oksuz H, Duran N, Tamer C, Cetin M, Silici S. Effect of Propolis in the Treatment of Experimental Staphylococcus aureus Keratitis in Rabbits. Ophthalmic Research 2005;37(6):328-34.
[38] Callegan MC, Hobden, J. A., Hill, J. M., Insler, M. S., & O'Callaghan, R. J. . Topical antibiotic therapy for the treatment of experimental Staphylococcus aureus keratitis. Investigative ophthalmology & visual science 1992;33(11):3017-23.
[39] Metin CO, Baran JR, Jr., Nguyen QP. Adsorption of surface functionalized silica nanoparticles onto mineral surfaces and decane/water interface. J Nanopart Res 2012;14(11):1246.
[40] Amendola V, Meneghetti M. Laser ablation synthesis in solution and size manipulation of noble metal nanoparticles. Phys Chem Chem Phys 2009;11(20):3805-21.
[41] Aziz SB, Abidin ZHZ. Role of Hard-Acid/Hard-Base Interaction on Structural and Dielectric Behavior of Solid Polymer Electrolytes Based on Chitosan-XCF3SO3 (X = Li+, Na+, Ag+). Journal of Polymers 2014;2014:1-9.
[42] B. Aziz S. Investigation of Metallic Silver Nanoparticles through UV-Vis and Optical Micrograph Techniques. International Journal of Electrochemical Science 2017:363-73.
[43] Deng Z, Chen, M., & Wu, L. Novel method to fabricate SiO2/Ag composite spheres and their catalytic, surface-enhanced Raman scattering properties. The Journal of Physical Chemistry C 2007;111(31):11692-8.
[44] Poh S, Lin JB, Panitch A. Release of anti-inflammatory peptides from thermosensitive nanoparticles with degradable cross-links suppresses pro-inflammatory cytokine production. Biomacromolecules 2015;16(4):1191-200.
[45] Al Tarazi S, Volpe L, Antonelli L, Jafer R, Batani D, d'Esposito A, et al. Deposition of SiOxlayer by plasma-enhanced chemical vapor deposition for the protection of silver (Ag) surfaces. Radiation Effects and Defects in Solids 2014;169(3):217-24.
[46] Nallathambi G, Ramachandran T, Rajendran V, Palanivelu R. Effect of silica nanoparticles and BTCA on physical properties of cotton fabrics. Materials Research 2011;14(4):552-9.
[47] Adak D, Sarkar M, Maiti M, Tamang A, Mandal S, Chattopadhyay B. Anti-microbial efficiency of nano silver–silica modified geopolymer mortar for eco-friendly green construction technology. RSC Advances 2015;5(79):64037-45.
[48] Phanjom P, & Ahmed, G. Biosynthesis of silver nanoparticles by Aspergillus oryzae (MTCC No. 1846) and its characterizations. Nanoscience and Nanotechnology 2015;5(1): 14-21.
[49] Mohanasrinivasan V, Mishra M, Paliwal JS, Singh SK, Selvarajan E, Suganthi V, et al. Studies on heavy metal removal efficiency and antibacterial activity of chitosan prepared from shrimp shell waste. 3 Biotech 2013;4(2):167-75.
[50] Tinio JVG, Simfroso KT, Peguit ADMV, Candidato RT. Influence of OH−Ion Concentration on the Surface Morphology of ZnO-SiO2Nanostructure. Journal of Nanotechnology 2015;2015:1-7.
[51] Peszke J, Dulski M, Nowak A, Balin K, Zubko M, Sułowicz S, et al. Unique properties of silver and copper silica-based nanocomposites as antimicrobial agents. RSC Advances 2017;7(45):28092-104.
[52] Narasimha G, Janardhan, A., Alzohairy, M., Khadri, H., & Mallikarjuna, K. . Extracellular synthesis, characterization and antibacterial activity of Silver nanoparticles by Actinomycetes isolative. International Journal of Nano Dimension 2013;4(1):77-83.
[53] Halada GP, Jha P, Cuiffo M, Acquah K, Carl S. Aqueous Electrochemical Synthesis of Stable Silver Metal Nanoparticles onto a Chitosan Matrix on Stainless Steel. ECS Transactions 2014;58(42):19-32.
[54] Fernandes Queiroz M, Melo KR, Sabry DA, Sassaki GL, Rocha HA. Does the use of chitosan contribute to oxalate kidney stone formation? Mar Drugs 2014;13(1):141-58.
[55] Lin B, Zhou S. Poly(ethylene glycol)-grafted silica nanoparticles for highly hydrophilic acrylic-based polyurethane coatings. Progress in Organic Coatings 2017;106:145-54.
[56] Gasaymeh SS, Radiman, S., Heng, L. Y., Saion, E., & Saeed, G. M. . Synthesis and characterization of silver/polyvinilpirrolidone (Ag/PVP) nanoparticles using gamma irradiation techniques. The African Review of Physics 2010;4.
[57] Novák I, Jurkovič P, Matyšovský J, Sysel P, Špirková M, Šoltes L. Key Elements on Surface Properties of Polyimide Copolymers. Key Engineering Materials, Volume 1. 2014, p. 63-9.
[58] Koczkur KM, Mourdikoudis S, Polavarapu L, Skrabalak SE. Polyvinylpyrrolidone (PVP) in nanoparticle synthesis. Dalton Transactions 2015;44(41):17883-905.
[59] Piao MJ, Kang KA, Lee IK, Kim HS, Kim S, Choi JY, et al. Silver nanoparticles induce oxidative cell damage in human liver cells through inhibition of reduced glutathione and induction of mitochondria-involved apoptosis. Toxicol Lett 2011;201(1):92-100.
[60] Carrington LM, Boulton M. Hepatocyte growth factor and keratinocyte growth factor regulation of epithelial and stromal corneal wound healing. J Cataract Refract Surg 2005;31(2):412-23.
[61] Panáček A, Kvitek, L., Prucek, R., Kolář, M., Večeřová, R., Pizúrová, N., ... & Zbořil, R. . Silver colloid nanoparticles: synthesis, characterization, and their antibacterial activity. The Journal of Physical Chemistry B 2006;110(33):16248-53.
[62] Subha V, Ramadoss P, Renganathan S. Incorporation of biotransformed silver nanoparticles in plant polysaccarides resin and their effect on sustained drug release. Polymer Science Series B 2016;58(1):61-72.
[63] Poudel BK, Soe ZC, Ruttala HB, Gupta B, Ramasamy T, Thapa RK, et al. In situ fabrication of mesoporous silica-coated silver-gold hollow nanoshell for remotely controllable chemo-photothermal therapy via phase-change molecule as gatekeepers. Int J Pharm 2018;548(1):92-103.
[64] Bhosai SJ, Lin CC, Greene J, Bloomer MM, Jeng BH. Rapid corneal adrenochrome deposition from topical ibopamine in the setting of infectious keratitis. Eye (Lond) 2013;27(1):105-6.
[65] Barbari GR, Dorkoosh F, Amini M, Sharifzadeh M, Atyabi F, Balalaie S, et al. A novel nanoemulsion-based method to produce ultrasmall, water-dispersible nanoparticles from chitosan, surface modified with cell-penetrating peptide for oral delivery of proteins and peptides. International Journal of Nanomedicine 2017;Volume 12:3471-83.
[66] Dajcs JJ, Austin, M. S., Sloop, G. D., Moreau, J. M., Hume, E. B., Thompson, H. W., ... & O’Callaghan, R. J. Corneal pathogenesis of Staphylococcus aureus strain Newman. Investigative ophthalmology & visual science 2002;43(4):1109-15.
[67] Meyers-Elliott RH, & Chitjian, P. A. . Immunopathogenesis of corneal inflammation in herpes simplex virus stromal keratitis: role of the polymorphonuclear leukocyte. Investigative ophthalmology & visual science 1981; 20(6):784-98.
[68] McClintic SM, Prajna NV, Srinivasan M, Mascarenhas J, Lalitha P, Rajaraman R, et al. Visual outcomes in treated bacterial keratitis: four years of prospective follow-up. Invest Ophthalmol Vis Sci 2014;55(5):2935-40.
[69] Callegan MC, Engel, L. S., Hill, J. M., & O'Callaghan, R. J. . Corneal virulence of Staphylococcus aureus: roles of alpha-toxin and protein A in pathogenesis. Infection and immunity 1994;62(6): 2478-82.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top