跳到主要內容

臺灣博碩士論文加值系統

(34.204.181.91) 您好!臺灣時間:2023/10/01 14:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:蘇上婷
研究生(外文):Shang Ting Su
論文名稱:環磷醯胺對於結合GVAX疫苗合併治療子宮頸癌模式對免疫反應的影響
論文名稱(外文):The Effects of Cyclophosphamide and GVAX Vaccine Combined Treatment for Cervical Cancer Model
指導教授:林錫賢
指導教授(外文):H. H. Lin
學位類別:碩士
校院名稱:長庚大學
系所名稱:生物醫學研究所
學門:生命科學學門
學類:生物化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:43
中文關鍵詞:微量化療藥免疫治療環磷醯胺調節型T細胞
外文關鍵詞:CyclophosphamideGVAXRegulatory T cell
相關次數:
  • 被引用被引用:0
  • 點閱點閱:297
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
環磷醯胺 (Cyclophosphamide, CTX),中文藥名為癌德星 (Endoxan®) ,是一和氮芥化學相關的合成烷化劑,具有抗腫瘤及免疫抑制的活性,在使用低藥劑的環磷醯胺 (Cyclophosphamide) 期間會有輕微的淋巴細胞清除 (lymphodepletion) 現象,在免疫系統回復的期間給予抗原會有效地增加免疫治療 (immunotherapy) 的效果。
本實驗室將癌細胞以慢病毒 (lentivirus) 轉型成GVAX疫苗,經序列優化 (codon-optimized) 過的巨噬細胞聚落刺激因子 (granulocyte-macrophage colony-stimulating factor, GM-CSF) 可增加GM-CSF的產量,使免疫作用加強,但是在腫瘤體積約200立方毫米的老鼠模型上治療效果不佳,為了解決此問題,因此選用cyclophosphamide化療用藥及GVAX疫苗搭配治療TC-1腫瘤小鼠模式,並找出適當施打的時間點進行治療,及施打GVAX疫苗前給藥的時間。
在資料數據整理過後,GVAX疫苗會促使腫瘤生長,在加入CTX治療過後腫瘤生長速度減緩,但是還是無法完全治癒腫瘤,其中我們發現單獨給予CTX的治療結果比預期的結果更佳,而CTX與GVAX合併治療的效果在引發免疫反應上有顯著的效果。
We use low-dose Cyclophosphamide (Endoxan®, CTX), a synthetic alkylating agent chemically related to the nitrogen mustards with antineoplastic and immunosuppressive activities, to make immune system lightly lymphodepletion. It initiates a good response on tumor flattening after we apply low-dose CTX to TC-1 tumor-bearing mice model, and also enhanced the effect of immunotherapy.
Our previous study suggested that GVAX vaccine, which transduced a fragment of codon-optimized GM-CSF by lentivirus, would enhance GM-CSF secretion. The efficacy did not achieve our expectation when the tumor size was about 200 mm3. To overcome the problem, we choose cyclophosphamide to treat TC-1 tumor-bearing murine model with GVAX vaccine to find out the best timing to apply cyclophosphamide before the GVAX vaccine was given.
After analyzing the GVAX treatment data, we found that the GVAX vaccine could facilitate tumor growth. We combined cyclophosphamide and GVAX to increase the efficacy of curing the tumor. After CTX treatment tumor growth slow down but tumor still could not be cured. CTX-only treatment seemed to the best effect in these treatment and CTX-GVAX combination treatment can induce immune responses significantly.
指導教授推薦書
論文口試委員審定書
致謝 iii
中文摘要 iv
Abstract v
目錄 vi
圖目錄 ix
第一章:緒論 - 1 -
1.1 人類乳突病毒(HPVs) - 1 -
1.1.1子宮頸癌與人類乳突病毒 - 1 -
1.1.2 HPV病毒致癌基因 - 2 -
1.1.3 人類乳突病毒疫苗 - 3 -
1.2 環磷醯胺 (Cyclophosphamide, CTX) - 4 -
1.3 顆粒球巨噬細胞群落刺激因子(granulocyte-macrophage colony-stimulating factor, GM-CSF) - 5 -
1.4 調節T細胞及腫瘤 - 7 -
1.4.1 調節T細胞(Regulatory T cell, Treg cell) - 7 -
1.4.2 Treg的抑制機制 - 7 -
1.5 實驗目的 - 8 -
第二章:材料方法 - 9 -
2.1 DNA 重組 - 9 -
2.2 細胞株 - 9 -
2.3 小鼠 - 10 -
2.4 藥劑 - 10 -
2.5 動物實驗 - 10 -
2.6 酵素免疫分析 (Enzyme-linked immunoSorbent assay, ELISA) - 11 -
2.7 淋巴球再刺激 - 12 -
2.8 全血染色分析 - 13 -
2.9 流式細胞儀分析 - 13 -
第三章:結果 - 15 -
3.1 TC-1/cGM穩定地大量表現GM-CSF - 15 -
3.2 建立穩定的腫瘤模式 - 15 -
3.3 決定給予每隻小鼠2 mg CTX作為此實驗之劑量 - 15 -
3.4 只給予CTX的單獨治療比CTX與GVAX合併治療對於腫瘤生長的趨勢無法改善 - 15 -
3.5 CTX與GVAX合併治療可以產生腫瘤免疫反應 - 16 -
3.6 在脾臟與淋巴結中Treg並沒有太多比例上的變化 - 17 -
3.7 在全血中Treg細胞並沒有明顯的變化 - 17 -
第四章:結論 - 18 -
參考資料 - 20 -


圖目錄
圖 一 TC-1/CGM可以穩定表現GM-CSF - 23 -
圖 二 腫瘤模式建立 - 24 -
圖 三 2 MG CTX的使用劑量會使腫瘤明顯的延緩生長 - 25 -
圖 四 在第一輪的實驗合併治療有延緩腫瘤的生長趨勢 - 26 -
圖 五 第四次實驗只給予CTX治療的組別大部分腫瘤消失 - 27 -
圖 六 第五次實驗只給予CTX治療的組別大部分腫瘤消失 - 28 -
圖 七 在第一、四、五次實驗中只要有給予CTX生存率較好 - 29 -
圖 八 CTX及GVAX合併治療可以增加CD4及CD8 T細胞免疫反應 - 30 -
圖 九 CTX及GVAX合併治療可以增加TH2免疫反應 - 31 -
圖 十 TREG細胞在脾臟及淋巴結所佔的T細胞比例 - 32 -
圖 十一 全血分析 - 33 -
1. Viens, L.J., et al., Human Papillomavirus-Associated Cancers - United States, 2008-2012. MMWR Morb Mortal Wkly Rep, 2016. 65(26): p. 661-6.
2. Banks, L., D. Pim, and M. Thomas, Human tumour viruses and the deregulation of cell polarity in cancer. Nat Rev Cancer, 2012. 12(12): p. 877-86.
3. Petrosky, E., et al., Use of 9-valent human papillomavirus (HPV) vaccine: updated HPV vaccination recommendations of the advisory committee on immunization practices. MMWR Morb Mortal Wkly Rep, 2015. 64(11): p. 300-4.
4. Moody, C.A. and L.A. Laimins, Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer, 2010. 10(8): p. 550-60.
5. Asiaf, A., et al., Review of the current knowledge on the epidemiology, pathogenesis, and prevention of human papillomavirus infection. Eur J Cancer Prev, 2014. 23(3): p. 206-24.
6. de Sanjose, S., et al., Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. The Lancet Oncology, 2010. 11(11): p. 1048-1056.
7. Rosenberg, S.A., Cell transfer immunotherapy for metastatic solid cancer--what clinicians need to know. Nat Rev Clin Oncol, 2011. 8(10): p. 577-85.
8. Warburton, A., et al., HPV integration hijacks and multimerizes a cellular enhancer to generate a viral-cellular super-enhancer that drives high viral oncogene expression. PLoS Genet, 2018. 14(1): p. e1007179.
9. Guo, C., et al., Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res, 2013. 119: p. 421-75.
10. Ahlmann, M. and G. Hempel, The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol, 2016. 78(4): p. 661-71.
11. Emadi, A., R.J. Jones, and R.A. Brodsky, Cyclophosphamide and cancer: golden anniversary. Nat Rev Clin Oncol, 2009. 6(11): p. 638-47.
12. Kanakry, C.G., et al., Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci Transl Med, 2013. 5(211): p. 211ra157.
13. Zhao, J., et al., Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res, 2010. 70(12): p. 4850-8.
14. Becher, B., S. Tugues, and M. Greter, GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation. Immunity, 2016. 45(5): p. 963-973.
15. Shi, Y., et al., Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don't know. Cell Res, 2006. 16(2): p. 126-33.
16. Lipson, E.J., et al., Safety and immunologic correlates of Melanoma GVAX, a GM-CSF secreting allogeneic melanoma cell vaccine administered in the adjuvant setting. J Transl Med, 2015. 13: p. 214.
17. Geary, S.M., et al., Proposed mechanisms of action for prostate cancer vaccines. Nat Rev Urol, 2013. 10(3): p. 149-60.
18. Lu, L., J. Barbi, and F. Pan, The regulation of immune tolerance by FOXP3. Nat Rev Immunol, 2017. 17(11): p. 703-717.
19. Zou, W., Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol, 2006. 6(4): p. 295-307.
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top