|
1. Viens, L.J., et al., Human Papillomavirus-Associated Cancers - United States, 2008-2012. MMWR Morb Mortal Wkly Rep, 2016. 65(26): p. 661-6. 2. Banks, L., D. Pim, and M. Thomas, Human tumour viruses and the deregulation of cell polarity in cancer. Nat Rev Cancer, 2012. 12(12): p. 877-86. 3. Petrosky, E., et al., Use of 9-valent human papillomavirus (HPV) vaccine: updated HPV vaccination recommendations of the advisory committee on immunization practices. MMWR Morb Mortal Wkly Rep, 2015. 64(11): p. 300-4. 4. Moody, C.A. and L.A. Laimins, Human papillomavirus oncoproteins: pathways to transformation. Nat Rev Cancer, 2010. 10(8): p. 550-60. 5. Asiaf, A., et al., Review of the current knowledge on the epidemiology, pathogenesis, and prevention of human papillomavirus infection. Eur J Cancer Prev, 2014. 23(3): p. 206-24. 6. de Sanjose, S., et al., Human papillomavirus genotype attribution in invasive cervical cancer: a retrospective cross-sectional worldwide study. The Lancet Oncology, 2010. 11(11): p. 1048-1056. 7. Rosenberg, S.A., Cell transfer immunotherapy for metastatic solid cancer--what clinicians need to know. Nat Rev Clin Oncol, 2011. 8(10): p. 577-85. 8. Warburton, A., et al., HPV integration hijacks and multimerizes a cellular enhancer to generate a viral-cellular super-enhancer that drives high viral oncogene expression. PLoS Genet, 2018. 14(1): p. e1007179. 9. Guo, C., et al., Therapeutic cancer vaccines: past, present, and future. Adv Cancer Res, 2013. 119: p. 421-75. 10. Ahlmann, M. and G. Hempel, The effect of cyclophosphamide on the immune system: implications for clinical cancer therapy. Cancer Chemother Pharmacol, 2016. 78(4): p. 661-71. 11. Emadi, A., R.J. Jones, and R.A. Brodsky, Cyclophosphamide and cancer: golden anniversary. Nat Rev Clin Oncol, 2009. 6(11): p. 638-47. 12. Kanakry, C.G., et al., Aldehyde dehydrogenase expression drives human regulatory T cell resistance to posttransplantation cyclophosphamide. Sci Transl Med, 2013. 5(211): p. 211ra157. 13. Zhao, J., et al., Selective depletion of CD4+CD25+Foxp3+ regulatory T cells by low-dose cyclophosphamide is explained by reduced intracellular ATP levels. Cancer Res, 2010. 70(12): p. 4850-8. 14. Becher, B., S. Tugues, and M. Greter, GM-CSF: From Growth Factor to Central Mediator of Tissue Inflammation. Immunity, 2016. 45(5): p. 963-973. 15. Shi, Y., et al., Granulocyte-macrophage colony-stimulating factor (GM-CSF) and T-cell responses: what we do and don't know. Cell Res, 2006. 16(2): p. 126-33. 16. Lipson, E.J., et al., Safety and immunologic correlates of Melanoma GVAX, a GM-CSF secreting allogeneic melanoma cell vaccine administered in the adjuvant setting. J Transl Med, 2015. 13: p. 214. 17. Geary, S.M., et al., Proposed mechanisms of action for prostate cancer vaccines. Nat Rev Urol, 2013. 10(3): p. 149-60. 18. Lu, L., J. Barbi, and F. Pan, The regulation of immune tolerance by FOXP3. Nat Rev Immunol, 2017. 17(11): p. 703-717. 19. Zou, W., Regulatory T cells, tumour immunity and immunotherapy. Nat Rev Immunol, 2006. 6(4): p. 295-307.
|