|
1. Pham, C.T. Neutrophil serine proteases: specific regulators of inflammation. Nat. Rev. Immunol. 2006, 6: 541-550. 2. Ohbayashi, H. Neutrophil elastase inhibitors as treatment for COPD. Expert. Opin. Investig. Drugs. 2002, 11: 965-980. 3. Crocetti, L.; Quinn, M.T.; Schepetkin, I.A.; Giovannoni, M.P. A patenting perspective on human neutrophil elastase (HNE) inhibitors (2014-2018) and their therapeutic applications. Expert. Opin. Ther. Pat. 2019, 29: 555-578. 4. Pu, S.; Wang, D.; Liu, D.; Zhao, Y.; Qi, D.; He, J.; Zhou, G. Effect of sivelestat sodium in patients with acute lung injury or acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. BMC. Pulm. Med. 2017, 17: 148-157. 5. Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; Haren, F.; Larsson, A.; McAuley, D.F.; Ranieri, M.; Rubenfeld, G.; Thompson, B.T.; Wrigge, H.; Slutsky, A.S.; Pesenti, A. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016, 315: 788-800. 6. Rebetz, J.; Semple, J.W.; Kapur, R. The pathogenic involvement of neutrophils in acute respiratory distress syndrome and transfusion-related acute lung injury. Transfus. Med. Hemother. 2018, 45: 290-298. 7. Grommes, J.; Soehnlein, O. Contribution of neutrophils to acute lung injury. Mol. Med. 2011, 17: 293-307. 8. Ashbaugh, D.; Bigelow, D.; Petty, T. Acute respiratory distress in adults. Lancet. 1967, 319-323. 9. Bernard, G.R.; Brigham, K.L.; Carlet, J.; Falke, K.; Hudson, L.; Lamy, M.; Legall, J.R.; Morris, A.; Spragg, R. The American-European consensus conference on ARDS. Respir. Crit. Care Med. 1994, 149: 818-824. 10. Force, A.D.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin definition. JAMA. 2012, 307: 2526-2533. 11. Marc, M.; Becki, B.; Frederick, A.M.; Ernest, E.M.; Polly, E.P. The role of chronic alcohol abuse in the development of acute respiratory distress syndrome in adults. JAMA. 1996, 151: 51-54. 12. Calfee, C.S.; Matthay, M.A.; Eisner, M.D.; Benowitz, N.; Call, M.; Pittet, J.F.; Cohen, M.J. Active and passive cigarette smoking and acute lung injury after severe blunt trauma. Am. J. Respir. Crit. Care Med. 2011, 183: 1660-1665. 13. Calfee, C.S.; Matthay, M.A.; Kangelaris, K.N.; Siew, E.D.; Janz, D.R.; Bernard, G.R.; May, A.K.; Jacob, P.; Havel, C.; Benowitz, N.L.; Ware, L.B. Cigarette smoke exposure and the acute respiratory distress syndrome. Crit. Care Med. 2015, 43: 1790-1797. 14. Ware, L.B.; Zhao, Z.; Koyama, T.; May, A.K.; Matthay, M.A.; Lurmann, F.W.; Balmes, J.R.; Calfee, C.S. Long-Term Ozone Exposure increases the risk of developing the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2016, 193: 1143-1150. 15. John, P.R.; Zhiguo, Z.; Michael, G.S.; Tatsuki, K.; Jason, D.C.; Paul, N.L.; Chunxue, W.; Balmes, J.R.; Michael, A.M.; Carolyn, S.C.; Lorraine, B.W. Low to moderate air pollutant exposure and acute respiratory distress syndrome after severe trauma. AJRCCM. 2018, 199: 1-43. 16. Mangialardi, R.J.; Bernard, G.R.; Wheeler, A.P.; Christman, B.W.; Dupont, W.D.; Higgins, S.B.; Swindell, B.B. Hypoproteinemia predicts acute respiratory distress syndrome development, weight gain, and death in patients with sepsis. ibuprofen in sepsis study group. Crit. Care Med. 2000, 28: 3137-3145. 17. Fan, E.Y.; Fan, J. Regulation of alveolar macrophage death in acute lung inflammation. Respir. Res. 2018, 19: 50-63. 18. Abraham, E. Neutrophils and acute lung injury. Crit. Care Med. 2003, 31: 195-199. 19. Murray, P.J.; Allen, J.E.; Biswas, S K.; Fisher, E A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L B.; Lawrence, T.; Locati, M.; Mantovani, A.; Martinez, F.O.; Mege, J.L. Mosser, D.M.; Natoli, G.; Saeij, J.P.; Schultze, J.L.; Shirey, K.A.; Sica, A. Suttles, J.; Udalova, I.; Ginderachter, J.A.; Vogel, S.N.; Wynn, T.A. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014, 41: 14-20. 20. Matthay, M.A.; Zemans, R.L.; Zimmerman, G.A.; Arabi, Y.M.; Beitler, J.R.; Mercat, A.; Herridge, M.; Randolph, A.G.; Calfee, C.S. Acute respiratory distress syndrome. Nat. Rev. Dis. Primers. 2019, 5: 1-18. 21. Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013, 13: 159-175. 22. Li, H.Z.; Xin, T.H.; Hu, Y. Neutrophil extracellular traps contribute to the pathogenesis of acid-aspiration-induced ARDS. Oncotarget. 2017, 9: 1772-1784. 23. Sheridan, B.C.; Mcintyre, R.J.; Faumoore, E.E.; Moore, E.F.; Meldrum, D.R.; Fullerton, D.A.; Fullerton, D.A. Neutrophils mediate pulmonary vasomotor dysfunction in endotoxin-induced acute lung injury. J. Trauma. 1997, 42: 396-397. 24. Suratt, B.T.; Parsons, P.E. Mechanisms of acute lung injury acute respiratory distress syndrome. Clin. Chest Med. 2006, 27: 579-589. 25. Marsh, S.; Aldington, S.; Shirtcliffe, P. Smoking and COPD: what really are the risks? Eur. Respir. J. 2006, 4: 883–884. 26. Mulhall, P.; Criner, G. Non-pharmacological treatments for COPD. Respirology. 2016, 5: 791-809. 27. Lamprecht, B.; Mcburnie, M.A.; Vollmer, W.M. COPD in never smokers: results from the population-based burden of obstructive lung disease study. Chest. 2011, 4: 752-763. 28. Tilert, T.; Dillon, C.; Paulose, R.R. Estimating the U.S. prevalence of chronic obstructive pulmonary disease using pre-and post-bronchodilator spirometry: the national health and nutrition examination survey (NHANES) 2007-2010. Respir. Res. 2013, 14: 103. 29. Hooper, R.; Burney, P.; Vollmer, W.M. Risk factors for COPD spirometrically defined from the lower limit of normal in the BOLD project. Eur. Respir. J. 2012, 6: 1343-1353. 30. Thun, M.J.; Carter, B.D.; Feskanich, D. 50-year trends in smoking-related mortality in the United States. N. Engl. J. Med. 2013, 4: 351-364. 31. Barnes, P.J.; Burney, P.G.; Silverman, E.K.; Celli, B.R.; Vestbo, J.; Wedzicha, J.A.; Wouters, E.F. Chronic obstructive pulmonary disease. Nat Rev Dis Primers. 2015, 1: 150-176. 32. Antunes, M.A.; Rocco, P.R. Elastase-induced pulmonary emphysema: insights from experimental models. An. Acad. Bras. Cienc. 2011, 4: 1385-1396. 33. Shapiro, S.D.; Goldstein, N.M.; Houghton, M.G.; Kobayashi, D.K.; Kelley, D.; Belaaouaj, A. Neutrophil elastase contributes to cigarette smoke-induced emphysema in mice. Am. J. Pathol. 2003, 6: 2329-2335 34. Belvisi, M.G.; Bottomley, K.M. The role of matrix metalloproteinases (MMPs) in the pathophysiology of chronic obstructive pulmonary disease (COPD): a therapeutic role for inhibitors of MMPs? Inflammation Res. 2003, 3: 95-100. 35. Mariska, M.; Ger, R.; Frans, V.O. Neutrophils and emerging targets for treatment in chronic obstructive pulmonary Disease, Chronic Obstructive. Expert Rev. Clin. Immunol. 2013, 9: 1055-1068. 36. Reilly, P.; Jackson, P.L.; Noerager, B.; Parker, S.; Dransfield, M.; Gaggar, A. N-alpha-PGP and PGP, potential biomarkers and therapeutic targets for COPD. Respir. Res. 2009, 1: 1-38. 37. Paschalaki, K.E. Dysfunction of endothelial progenitor cells from smokers and COPD patients due to increased DNA damage and senescence. Stem Cells. 2013, 31: 2813-2826. 38. Chalmers, J.D.; Chang, A.B.; Chotirmall, S.H.; Dhar, R.; McShane, P.J. Bronchiectasis. Nat. Rev. Dis. Primers. 2018, 4: 45-63. 39. Gramegna, A.; Amati, F.; Terranova, L.; Sotgiu, G.; Tarsia, P.; Miglietta, D.; Calderazzo, M.A.; Aliberti, S.; Blasi, F. Neutrophil elastase in bronchiectasis. Respir. Res. 2017, 18: 211-224. 40. Gentzsch, M.; Dang, H.; Dang, Y.; Garcia, C.A.; Suchindran, H.; Boucher, R.C.; Stutts, M.J. The cystic fibrosis transmembrane conductance regulator impende proteolytic stimulation of the epithelial Na+ channel. J. Biol. Chem. 2010, 42: 32227-32232. 41. Le, G.M.; Descamps, D.; Roussel, D.; Saussereau, E.; Guillot, L.; Ruffin, M.; Tabary, O.; Hong, S.S.; Boulanger, P.; Paulais, M.; Malleret, L.; Belaaouaj, A.; Edelman, A.; Huerre, M.; Chignard, M.; Sallenave, J.M. Neutrophil elastase degrades cystic fibrosis transmembrane conductance regulator via calpains and disables channel function in vitro and in vivo. Am. J. Respir. Crit. Care Med. 2013, 2: 170-179. 42. Lerman, I.; Hammes, S.R. Neutrophil elastase in the tumor microenvironment. Steroids. 2018, 133: 96-101. 43. Sato, T.; Takahashi, S.; Mizumoto, T.; Harao, M.; Akizuki, M.; Takasugi, M.; Fukutomi, T.; Yamashita, J. Neutrophil elastase and cancer. Surg Oncol. 2006, 15: 217-222. 44. Gentles, A.J. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 2015, 8: 938-945. 45. Ouzounova, M. Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade. Nat. Commun. 2017, 8:149-179. 46. Moroy, G.; Alix, A.J.P.; Sapi, J.; Hornebeck, W.; Bourguet, E. Neutrophil elastase as a target in lung cancer. Anti-Cancer Agents in Medicinal Chemistry. 2012, 565-579. 47. Houghton, A.M. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat. Med. 2010, 2: 219-223. 48. Coffelt, S.B.; Wellenstein, M.D.; de Visser, K.E. Neutrophils in cancer: neutral no more. Nat. Rev. Cancer. 2016, 16: 431-446. 49. Hong, C.W. Current understanding in neutrophil differentiation and heterogeneity. Immune. Netw. 2017, 17: 298-306. 50. Andrassy, K.M. Comments on KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013, 84: 622-623. 51. Bronze, R.E.; Santos, S.A. Neutrophil elastase inhibitors and chronic kidney disease. Int. J. Biol. Sci. 2018, 14: 1343-1360. 52. Kenneth, P.; Steinberg, J.A.; Thomas, R.; Martin, R.J.; Cockrill, L.D. H. Evolution of bronchoalveolar cell populations in the adult respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 1994, 150: 113-120. 53. Dau, T.; Sarker, S.J.; Yildirim, A.O.; Eickelberg, O.; Jenne, D.E. Autoprocessing of neutrophil elastase near its active site reduces the efficiency of natural and synthetic elastase inhibitors. Nat. Commun. 2015, 6: 6722-6780. 54. Kawabata, K.H.; Matsuoka, S. The role of neutrophil elastase in acute lung injury. Eur. J. Pharmacol. 2002, 451: 1-10. 55. Dicamillo, S.J.; Carreras, I.; Panchenko, M.V.; Stone, P.J.; Nugent, M.A.; Foster, J.A.; Panchenko, M.P. Elastase-released epidermal growth factor recruits epidermal growth factor receptor and extracellular signal-regulated kinases to down-regulate tropoelastin mRNA in lung fibroblasts. J. Biol. Chem. 2002, 277: 938-946. 56. Kawabata, T.H., Shozo, M. The role of neutrophil elastase in acute lung injury. Eur. J. Pharmacol. 2002, 451: 1-10. 57. Hedy, H.; Ginzberg, V.C.; Qin, D. Neutrophil-mediated epithelial injury during transmigration: role of elastase. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 281: 705-717. 58. Chai, J.K.; Cai, J.H.; Deng, H.P.; Zou, X.F.; Liu, W.; Hu, Q.G.; Shen, C.A.; Yin, H.N.; Zhang, X.B.; Chi, Y.F.; Ma, L.; Feng, R. Role of neutrophil elastase in lung injury induced by burn-blast combined injury in rats. Burns. 2013, 39: 745-753. 59. Ware, L.B.; Matthay, M.A. The Acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342: 1334-1349. 60. Kaynar, A.M.; Houghton, A.M.; Lum, E.H.; Pitt, B.R.; Shapiro, S.D. Neutrophil elastase is needed for neutrophil emigration into lungs in ventilator-induced lung injury. Am. J. Respir. Cell Mol. Biol. 2008, 39: 53-60. 61. Papayannopoulos, V.; Metzler, K.D.; Hakkim, A.; Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell. Biol. 2010, 191: 677-691. 62. Korkmaz, B.; Moreau, T.; Gauthier, F. Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions. Biochimie. 2008, 90: 227-242. 63. Armstrong, L.; Godinho, S.I.; Uppington, K.M.; Whittington, H.A.; Millar, A.B. Tumour necrosis factor-alpha processing in interstitial lung disease: a potential role for exogenous proteinase-3. Clin. Exp. Immunol. 2009, 156: 336-343. 64. Schreiber, A.; Pham, C.T.; Hu, Y.; Schneider, W.; Luft, F.C.; Kettritz, R. Neutrophil serine proteases promote IL-1beta generation and injury in necrotizing crescentic glomerulonephritis. J. Am. Soc. Nephrol. 2012, 23: 470-482. 65. Sugawara, A.U.; Tomonori, N.; Takahiro, Y.; Haruyasu, U.; Akiko, S.; Kazuo, H.; Katsuo, K.; Haruki, O.; Haruhiko, T. Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. Immunology. 2001, 6568-6575. 66. Van, P.P.; Wuyts, A.; Vandamme, J.; Opdenakker, G. Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4 and GRO-alpha and leaves rantes and MCP-2 intact. Blood. 2000, 96: 2673-2681. 67. Martin, K.R.; Witko, S.V. Proteinase 3: the odd one out that became an autoantigen. J. Leukoc. Biol. 2017, 102: 689-698. 68. Mihara, K.; Ramachandran, R.; Renaux, B.; Saifeddine, M.; Hollenberg, M.D. Neutrophil elastase and proteinase-3 trigger G protein-biased signaling through proteinase-activated receptor-1 (PAR1). J. Biol. Chem. 2013, 288: 979-990. 69. Kuckleburg, C.J.; Newman, P.J. Neutrophil proteinase 3 acts on protease-activated receptor-2 to enhance vascular endothelial cell barrier function. Arterioscler. Thromb. Vasc. Biol. 2013, 33: 275-284. 70. Twigg, M.S.; Brockbank, S.; Lowry, P.; Fitzgerald, S.P.; Taggart, C.; Weldon, S. The role of serine proteases and antiproteases in the cystic fibrosis lung. Mediators Inflamm. 2015, 1-10. 71. Burster, T.; Macmillan, H.; Hou, T.; Boehm, B.O.; Mellins, E.D. Cathepsin G: roles in antigen presentation and beyond. Mol. Immunol. 2010, 47: 658-665. 72. Gregory, A.D.; Houghton, A.M. Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res. 2011, 71: 2411-2416. 73. Brinkmann, V.R.; Goosmann, C. Neutrophil extracellular traps kill bacteria. Science. 2004, 303: 1524-1535. 74. Fuchs, T.A.; Abed, U.; Goosmann, C.; Hurwitz, R.; Schulze, I.; Wahn, V.; Weinrauch, Y.; Brinkmann, V.; Zychlinsky, A. Novel cell death program leads to neutrophil extracellular traps. J. Cell. Biol. 2007, 176: 231-241. 75. Narasaraju, T.; Yang, E.; Samy, R.P.; Ng, H.H.; Poh, W.P.; Liew, A.A.; Phoon, M.C.; Rooijen, N.; Chow, V.T. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am. J. Pathol. 2011, 179: 199-210. 76. Saffarzadeh, M.; Juenemann, C.; Queisser, M.A.; Lochnit, G.; Barreto, G.; Galuska, S.P.; Lohmeyer, J.; Preissner, K.T. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS. One. 2012, 7: 323-366. 77. Wartha, F.; Beiter, K.; Normark, S.; Henriques, N.B. Neutrophil extracellular traps: casting the NET over pathogenesis. Curr. Opin. Microbiol. 2007, 10: 52-56. 78. Engelmann, B.; Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 2013, 13: 34-45. 79. Massberg, S.; Grahl, L.; Bruehl, M.L.; Manukyan, D.; Pfeiler, S.; Goosmann, C.; Brinkmann, V.; Lorenz, M.; Bidzhekov, K.; Khandagale, A.B.; Konrad, I.; Kennerknecht, E.; Reges, K.; Holdenrieder, S.; Braun, S.; Reinhardt, C.; Spannagl, M.; Preissner, K.T.; Engelmann, B. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 2010, 16: 887-896. 80. Brinkmann, A.Z. Beneficial suicide: why neutrophils die to make NETs. Nat. Rev. Microbiol. 2007, 5: 577-582. 81. Mesa, M.A.; Vasquez, G. NETosis. Autoimmune. Dis. 2013, 2013: 1-7. 82. Kruger, P.S.; Mona, W.; Alexander, N.R.; Julia, H.D. Neutrophils: between host defence, immune modulation and tissue injury. Plos. Pathog. 2015, 11: 1-23. 83. Tremblay, G.M.; Janelle, M.F.; Bourbonnais, Y. Anti-inflammatory activity of neutrophil elastase inhibitors. Curr. Opin. Investig. Drugs. 2003, 4: 556-565. 84. 高冬娜、張茂 中性粒細胞彈性蛋白酶與急性肺損。 Chin. Crit. Care Med. 2006, 1: 210-212. 85. Zani, M.L.; Baranger, K.; Guyot, N.; Dallet, C.S.; Moreau, T. Protease inhibitors derived from elafin and SLPI and engineered to have enhanced specificity towards neutrophil serine proteases. Protein Sci. 2009, 18: 579-594. 86. Nicolas, G.Z.; Marie, C.M.; Sandrine, D.C.; Thierry, M. Elafin and its precursor trappin-2 still inhibit neutrophil serine proteinases when they are covalently bound to extracellular matrix proteins by tissue transglutaminase. Biochemistry. 2005, 44: 15610-15618. 87. Zeiher, B.G.; Artigas, A.; Vincent, J.L.; Dmitrienko, A.; Jackson, K.; Thompson, B.T.; Bernard, G. Neutrophil elastase inhibition in acute lung injury: results of the STRIVE study. Crit. Care Med. 2004, 32: 1695-1702. 88. Kawabata, M.S.; Masafumi, S.; Katsuhiro, I.M. A novel inhibitor of human neutrophil elastase. Biochem. Biophys. Res. Commun. 1991, 177: 814-820. 89. Matsuzaki, K.; Hiramatsu, Y.; Homma, S.; Sato, S.; Shigeta, O.; Sakakibara, Y. Sivelestat reduces inflammatory mediators and preserves neutrophil deformability during simulated extracorporeal circulation. Ann. Thorac. Surg. 2005, 80: 611-617. 90. Tamakuma, S.; Ogawa, M.; Aikawa, N.; Kubota, T.; Hirasawa, H.; Ishizaka, A.; Taenaka, N.; Hamada, C.; Matsuoka, S.; Abiru, T. Relationship between neutrophil elastase and acute lung injury in humans. Pulm. Pharmacol. Ther. 2004, 17: 271-279. 91. Groutas, W.C.; Dou, D.; Alliston, K.R. Neutrophil elastase inhibitors. Expert. Opin. Ther. Pat. 2011, 21: 339-354. 92. Nussbaum, F.; Li, V.M. Neutrophil elastase inhibitors for the treatment of (cardio) pulmonary diseases: Into clinical testing with pre-adaptive pharmacophores. Bioorg. Med. Chem. Lett. 2015, 25: 4370-4381. 93. Stevens, T.; Ekholm, K.; Granse, M.; Lindahl, M.; Kozma, V.; Jungar, C.; Ottosson, T.; Hakansson, H.; Churg, A.; Wright, J. L.; Lal, H.; Sanfridson, A. AZD9668: pharmacological characterization of a novel oral inhibitor of neutrophil elastase. J. Pharmacol. Exp. Ther. 2011, 339: 313-320. 94. Clinicaltrials.gov. NCT study code NCT03636347. 2019. 95. Inoue, Y.; Omodani, T.; Shiratake, R.; Okazaki, H.; Kuromiya, A.; Kubo, T.; Sato, F. Development of a highly water-soluble peptide-based human neutrophil elastase inhibitor; AE-3763 for treatment of acute organ injury. Bioorg. Med. Chem. 2009, 17: 7477-7486. 96. Simon, J.F.; Michael, D.; Lee, A.; Martin, R.; Johnson, G.G.; Geoffrey, D.E; Clarke, A. The discovery of a potent, intracellular, orally bioavailable, long duration inhibitor of human neutrophil elastase-GW311616A a development candidate. Bioorganic. Med. Chem. Lett. 2001, 11: 895-898. 97. Ohbayashi, H. Neutrophil elastase inhibitors as treatment for COPD. Expert. Opin, Investig. Drugs. 2002, 11: 965-980. 98. Kyle, N.C.; Rabinovitch, S.I. Complete reversal of fatal pulmonary hypertension in rats by a serine elastase inhibitor. Nat. Med. 2000, 6: 698-702. 99. Siedle, B.; Hrenn, A.; Merfort, I. Natural compounds as inhibitors of human neutrophil elastase. Planta. Med. 2007, 73: 401-420. 100. Huang, Y.C.; Hwang, T.L.; Chang, C.S.; Yang, Y.L.; Shen, C.N.; Liao, W.Y.; Chen, S.C.; Liaw, C.C. Anti-inflammatory flavonoids from the rhizomes of Helminthostachys zeylanica. J. Nat. Prod. 2009, 72: 1273-1278. 101. Hwang, T.L.; Yeh, S.H.; Leu, Y.L.; Chern, C.Y.; Hsu, H.C. Inhibition of superoxide anion and elastase release in human neutrophils by 3'-isopropoxychalcone via a cAMP-dependent pathway. Br. J. Pharmacol. 2006, 148: 78-87. 102. Krenn, L.; Wollenweber, E.; Steyrleuthner, K.; Gorick, C.; Melzig, M.F. Contribution of methylated exudate flavonoids to the anti-inflammatory activity of Grindelia robusta. Fitoterapia. 2009, 80: 267-269. 103. Löser, B.; Kruse, S.O.; Melzig, M.F.; Nahrstedt, A. Inhibition of neutrophil elastase activity by cinnamic acid derivatives from Cimicifuga racemosa. Planta. Med. 2000, 66: 551-753. 104. Xu, G.H.; Ryoo, I.J.; Kim, Y.H.; Choo, S.J.; Yoo, I.D. Free radical scavenging and antielastase activities of flavonoids from the fruits of Thuja. orientalis. Arch. Pharm. Res. 2009, 32: 275-282. 105. Melzig, M.F.; Ciesielski, S. Inhibition of neutrophil elastase activity by phenolic compounds from plants. Pharmazie. 2001, 56: 967-970. 106. Lee, S.M.; Song, Y.H.; Uddin, Z.; Ban, Y.J.; Park, K.H. Prenylated flavonoids from Epimedium koreanum Nakai and their human neutrophil elastase inhibitory effects. Rec. Nat. Prod. 2017, 11: 514-520. 107. Kim, J.Y.; Lee, J.H.; Song, Y.H.; Jeong, W.M.; Tan, X.; Uddin, Z.P. Human neutrophil elastase inhibitory alkaloids from Chelidonium majus. L. J. Appl. Biol. Chem. 2015, 58: 281-285. 108. Uddin, Z.L., Z.; Song, Y.H.; Kim, J.Y.; Park, K.H. A rare flavonol having long chain fatty acid from Dodonaea viscosa which inhibits human neutrophil elastase (HNE). Tetrahedron. Lett. 2017, 58: 2507-2511. 109. Saleem, M.; Nazir, M.; Hussain, H.; Tousif, M.I.; Elsebai, M.F.; Riaz, N.; Akhtar, N. Natural phenolics as inhibitors of the human neutrophil elastase (HNE) release: an overview of natural anti-inflammatory discoveries during recent years. Antiinflamm. Antiallergy Agents Med. Chem. 2018, 17: 70-94. 110. Yen, C.T.; Hsieh, P.W.; Hwang, T.L.; Lan, Y.H.; Chang, F.R.; Wang, Y.C. Flavonol glycosides from Muehlenbeckia platyclada and their anti-inflammatory activity. Chem. Pharm. Bull. 2009, 57: 280-282. 111. Chen, Y.L.; Hwang, T.L.; Yu, H.P.; Fang, J.Y.; Chong, K.Y.; Chang, Y.W.; Chen, C.Y.; Yang, H.W.; Chang, W.Y.; Hsieh, P.W. Ilex kaushue and its bioactive component 3,5-dicaffeoylquinic acid protected mice from lipopolysaccharide-induced acute lung injury. Sci. Rep. 2016, 6: 1-12. 112. Chen, Y.L.; Hwang, T.L.; Fang, J.Y.; Lan, Y.H.; Chong, K.Y.; Hsieh, P.W. Polysaccharides from Kochia scoparia fruits protect mice from lipopolysaccharide-mediated acute lung injury by inhibiting neutrophil elastase. J. Funct. Foods. 2017, 38: 582-590. 113. Joffry, S.M.; Yob, N.J.; Rofiee, M.S.; Affandi, M.M.; Suhaili, Z.; Othman, F.; Akim, A.M.; Desa, M.N.; Zakaria, Z.A. Melastoma malabathricum (L.) Smith ethnomedicinal uses, chemical constituents, and pharmacological properties: a review. Evid. Based Complement Alternat. Med. 2012, 1-48. 114. 張晉維. 野牡丹科植物活性探討與大野牡丹莖部化學及生物 活性成分之研究. 林業研究專訊.2016, 23: 31-32. 115. Das, K.K. A new aliphatic constituent of Melastoma malabathricum Linn. J. Indian Chem. Soc. 1988, 65: 385-386. 116. Dinda, B.A. Flavonol-diglycoside from Melastoma melabathricum. J. Indian Chem. Soc. 1988, 65: 209-211. 117. Takashi, Y. Dimeric hydrolysable tannins from Melastoma malabathricum. Phytochemistry. 1992, 31: 2829-2833. 118. Takashi, Y. Tannins and related polyphenols of melastomataceous plants, three new complex tannins from Melastoma malabathricum L. Chem. Pharm. Bull. 1992, 40: 1727-1732. 119. Cheng, J.T.; Hsu, F.L.; Chen, H.F. Antihypertensive principles from the leaves of Melastoma candidum. Planta. Med. 1993, 59: 405-407. 120. Ishii, R,; Saito, K.; Horie, M.; Shibano, T.; Kitanaka, S.; Amano, F. Inhibitory effects of hydrolyzable tannins from Melastoma dodecandrum Lour. on nitric oxide production by a murine macrophage-like cell line, RAW264.7, activated with lipopolysaccharide and interferon-gamma. Biol. Pharm. Bull. 1999, 22: 647-653. 121. Lee, M.H.; Lin, R.D.; Shen, L.Y.; Yang, L.L.; Yen, K.Y.; Hou, W.C. Monoamine oxidase B and free radical scavenging activities of natural flavonoids in Melastoma candidum D. Don. J. Agric. Food. Chem. 2001, 49: 5551-5555. 122. Zhang, C.; Fang, Y.X. Studies on the chemical constituents of Chinese herb Melastoma dodecandrum. Zhongguo Zhong Yao Za Zhi. 2003, 28: 429-431. 123. Sulaiman, M.R.; Somchit, M.N.; Israf, D.A.; Ahmad, Z.; Moin, S. Antinociceptive effect of Melastoma malabathricum ethanolic extract in mice. Fitoterapia. 2004, 75: 667-672. 124. Susanti, D.; Sirat, H.M. Antioxidant and cytotoxic flavonoids from the flowers of Melastoma malabathricum L. Food Chem. 2007, 103: 710-716. 125. Mazura, M.P.; Susanti, D.; Rasadah, M.A. Anti-inflammatory action of components from Melastoma malabathricum. Pharm. Biol. 2007, 45: 372-375. 126. Wang, Y.C.; Hsu, H.W.; Liao, W.L. Antibacterial activity of Melastoma candidum D. Don. J. Food Sci. Technol. 2008, 41: 1793-1798. 127. Mohamed, Z.; Ibrahim, N. Selective inhibition of genes in Methicillin Resistant Staphylococcus aureus (MRSA) treated with Melastoma malabathricum methanol extract. Sains. Malays. 2008, 37: 107-113. 128. Lin, S.; Li, Y.C.; Guo, Y.Y.; Guo, S.M.; Que, H.Q.; Qi, Y.P. Chemical constituents of Melastoma dodecandrum (II). Zhongguo Zhong Yao Za Zhi. 2009, 40: 1192-1195. 129. Sunilson, J.A.; Anandarajagopal, K.; Kumari, A.V.; Mohan, S. Antidiarrhoeal activity of leaves in Melastoma malabathricumi linn. Indian J. Pharm. Sci. 2009, 71: 691-695. 130. Sirat, H.M.; Susanti, D.; Ahmad, F.; Takayama, H.; Kitajima, M. Amides, triterpene and flavonoids from the leaves of Melastoma malabathricum L. J. Nat. Med. 2010, 64: 492-495. 131. Wong, K.C.; Hagali, D.M.; Boey, P.L. Chemical constituents and antibacterial activity of Melastoma malabathricum L. Nat. Prod. Res. 2012, 26: 609-618. 132. Lee, I.S. 2″,4″-O-Diacetylquercitrin, a novel advanced glycation end-product formation and aldose reductase inhibitor from Melastoma sanguineum. Chem. Pharm. Bull. 2013, 61: 662-665. 133. Mourouge, S.A. Bio-guided study on Melastoma malabathricum Linn leaves and elucidation of its biological activities. Am. J. Appl. Sci. 2013, 10: 767-778. 134. Yang, G.X.; Zhang, R.Z.; Lou, B.; Cheng, K.J.; Xiong, J.; Hu, J.F. Chemical constituents from Melastoma dodecandrum and their inhibitory activity on interleukin-8 production in HT-29 cells. Nat. Prod. Res. 2014, 28: 1383-1387. 135. Cheng, M.F. Chemical constituents of flavonoids and their glycosides in Melastoma dodecandrum. Zhongguo Zhong Yao Za Zhi. 2014, 39: 3301-3305. 136. Suleiman, D.; Amirah, W.A. Phytochemical screening, total phenolic and total flavonoid content, and antioxidant activity of different parts of Melastoma malabathricum. J. Teknologi. 2015, 77: 63-68. 137. Ibrahim, N., Said, Z., Yaacob, W.A., Aqma, W.S.; Hanafiah, R.M. Antibacterial and biofilm inhibition activities of Melastoma malabathricum stem bark extract against Streptococcus mutants. Malays. J. Microbiol. 2015, 11: 199-206. 138. Wan, W.N.; Zabidi, Z.; Kamisan, F.H.; Yahya, F.; Ismail, N.A.; Nor, N.S.; Mamat, S.S.; Hassan, H.; Mohtarrudin, N.; Zakaria, Z.A. Anti-ulcer activity of the aqueous extract of Melastoma malabathricum L. leaf in rats. Pak. J. Pharm. Sci. 2016, 29: 35-38. 139. Sembiring, E.N.; Elya, B.; Sauriasari, R. Inhibitory effect on arginase and total phenolic content determination of extracts from different parts of Melastoma malabathricum L. J. Young Pharm. 2018, 10: 114-117. 140. Hamid, H.A.; Ramli, A.N.M.; Zamri, N.; Yusoff, M.M. UPLC-QTOF/MS-based phenolic profiling of Melastomaceae, their antioxidant activity and cytotoxic effects against human breast cancer cell MDA-MB-231. Food Chem. 2018, 265: 253-259. 141. Zhao, C.N.; Zhang, J.J.; Li, Y.; Meng, X.; Li, H.B. Microwave-assisted extraction of phenolic compounds from Melastoma sanguineum fruit: optimization and identification. Molecules. 2018, 23: 1-11. 142. Amalia, T.; Saputri, F.C.; Surini, S. Total phenolic contents, quercetin determination and anti elastase activity of Melastoma malabathricum L. leaves extract from different method of extractions. Pharmacogn. Res. 2019, 11: 124-128. 143. Hwang, T.L.; Wang, W.H.; Wang, T.Y.; Yu, H.P.; Hsieh, P.W. Synthesis and pharmacological characterization of 2-aminobenzaldehyde oxime analogs as dual inhibitors of neutrophil elastase and proteinase 3. Bioorg. Med. Chem. 2015, 23: 1123-1134. 144. Yang, S.C.; Chang, S.H.; Hsieh, P.W.; Huang, Y.T.; Ho, C.M.; Tsai, Y.F.; Hwang, T.L. Dipeptide HCH6-1 inhibits neutrophil activation and protects against acute lung injury by blocking FPR1. Free Radic. Biol. Med. 2017, 106: 254-269. 145. 陳威廷.中藥五被子所含二肽基肽酶-1與嗜中性白血球彈性蛋白酶抑制劑之探索. 長庚大學中醫系天然藥物研究所 2018, 68. 146. Reiko, S.; Gen, I.N. Phenol glucoside gallates from Mallotus japonicus. Phytochemistry. 1989, 28: 2443-2446. 147. Naisheng, B., Kan, H. Active compounds from Lagerstroemia speciosa, insulin-like glucose uptake-stimulatory inhibitory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. J. Agric. Food Chem. 2008, 56: 11668-11674. 148. He, Z.; Lian, W.; Liu, J.W. Isolation, structural characterization and neuraminidase inhibitory activities of polyphenolic constituents from Flos caryophylli. Phytochemistry Lett. 2017, 19: 160-167. 149. Hongmei, C.Y.; Quanhua Y. Chemical constituents of Senecio obtusatus. Chem. Nat. Compd. 2013, 49: 753-754. 150. Jiang, T.L.; Ben, L.Y. Mono-aromatic constituents of Dendrobium longicornu. Chem. Nat. Compd. 2009, 45: 234-236. 151. Dong, M.; Liu, D.; Li, H.M.; Yan, S.L.; Li, R.T.; Chen, X.Q. Chemical compounds from Swertia bimaculata. Chem. Nat. Compd. 2018, 54: 964-969. 152. Wang, H.Q.; Peng, C.Z.; Chen, Y.G. Phenolics from Elaeocarpus braceanus. Chem. Nat. Compd. 2015, 51: 1167-1168. 153. Bai, X.; Pan, R.; Li, M.; Li, X.; Zhang, H. HPLC profile of longan (cv. shixia) pericarp-sourced phenolics and their antioxidant and cytotoxic effects. Molecules. 2019, 24: 619-628. 154. Lee, S.J.; Jang, H.J.; Kim, Y.; Oh, H.M.; Lee, S.y.; Jung, K.S.; Kim, Y.H.; Lee, W.S.; Lee, S.W.; Rho, M.C. Inhibitory effects of IL-6-induced STAT3 activation of bioactive compounds derived from Salvia plebeia R.Br. Process Biochem. 2016, 51: 2222-2229. 155. Andrea, H.; Thomas, S.; Andreas, L.; Schwager, J.; Christoph, M.S.; Irmgard, M. Plant phenolics inhibit neutrophil elastase. Planta Med. 2006, 72: 1127-1131. 156. Yoshida, T.; Amakura, Y.; Yoshimura, M. Structural features and biological properties of ellagitannins in some plant families of the order Myrtales. Int. J. Mol. Sci. 2010, 11: 79-106. 157. Schofield, P.; Mbugua, D.; Pell, A., Analysis of condensed tannins: A review. Anim. Feed. Sci. Tech. 2001, 91: 21-40. 158. Formagio, A.S.; Volobuff, C.R.; Santiago, M.; Cardoso, C.L.; Vieira, M.C.; Valdevina, P.Z. Evaluation of antioxidant activity, total flavonoids, tannins and phenolic compounds in Psychotria leaf extracts. Antioxidants (Basel). 2014, 3: 745-757. 159. Abid, M.; Yaich, H.; Cheikhrouhou, S.; Khemakhem, I.; Bouaziz, M.; Attia, H.; Ayadi, M.A. Antioxidant properties and phenolic profile characterization by LC-MS/MS of selected Tunisian pomegranate peels. J. Food. Sci. Technol. 2017, 54: 2890-2901. 160. Okuda, T.; Yoshida, T.; Ashida, M. Casuarictin and casuarinin, two new ellagitannins from Casuarina stricta. HETEROCYCLES, 1981, 16: 1681-1685. 161. Song, J.H.; Kang, K.S.; Choi, Y.K. Protective effect of casuarinin against glutamate-induced apoptosis in HT22 cells through inhibition of oxidative stress-mediated MAPK phosphorylation. Bioorg. Med. Chem. Lett. 2017, 27: 5109-5113. 162. Kuo, P.L.; Hsu, Y.L.; Lin, T.C.; Lin, L.T.; Chang, J.K.; Lin, C.C. Casuarinin from the bark of Terminalia arjuna induces apoptosis and cell cycle arrest in human breast adenocarcinoma MCF-7 cells. Planta Med. 2005, 71: 237-243 163. Kuo, P.L.; Hsu, Y.L.; Lin, T.C.; Lin, L.T.; Chang, J.K.; Lin, C.C. Induction of cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells by casuarinin from the bark of Terminalia arjuna Linn. Anti Cancer Drugs. 2005, 16: 409-415. 164. Kwon, D.J.; Bae, Y.S.; Ju, S.M.; Goh, A.R.; Choi, S.Y.; Park, J. Casuarinin suppresses TNF-alpha-induced ICAM-1 expression via blockade of NF-kappaB activation in HaCaT cells. Biochem. Biophys. Res. Commun. 2011, 409: 780-785. 165. Ajala, O.S.; Jukov, A.; Ma, C.M. Hepatitis C virus inhibitory hydrolysable tannins from the fruits of Terminalia chebula. Fitoterapia. 2014, 99: 117-123
|