跳到主要內容

臺灣博碩士論文加值系統

(44.192.115.114) 您好!臺灣時間:2023/09/27 03:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:陳翊婷
研究生(外文):Yi Ting Chen
論文名稱:野牡丹所含嗜中性白血球彈性蛋白酶抑制劑探索
論文名稱(外文):Exploring Neutrophil Elastase Inhibitors from Melastoma malabathricum
指導教授:謝珮文謝珮文引用關係
指導教授(外文):P. W. Hsieh
學位類別:碩士
校院名稱:長庚大學
系所名稱:中醫學系天然藥物
學門:醫藥衛生學門
學類:藥學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:217
中文關鍵詞:野牡丹嗜中性白血球彈力蛋白酶生物活性引導法casuarinin指紋圖譜
外文關鍵詞:Melastoma malabathricumneutrophil elastasebioactive-guided fractionationcasuarininfingerprint
相關次數:
  • 被引用被引用:0
  • 點閱點閱:95
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目錄
指導教授推薦書
口試委員會審定書
致謝 iii
中文摘要 v
英文摘要 vii
目錄 ix
圖目錄 xii
表目錄 xvii
第一章 緒論 1
第一節 前言 1
第二節 與 HNE 有相關之疾病 3
第三節 HNE抑制劑 31
第四節 野牡丹簡介及文獻回顧 40
第五節 研究背景與動機 64
第二章 實驗方法與設計 65
第一節 實驗設計 65
第二節 實驗儀器與材料 67
第三節 藥品與溶劑 70
第四節 野牡丹之萃取與分離純化 71
第五節 Casuarinin的製備 75
第六節 生物活性測定 78
第七節 檢量線建立 81
第八節 統計分析 81
第三章 實驗結果 82
第一節 候選中藥之篩選 82
第二節 野牡丹分離與純化 84
第三節 Casuarinin 的製備 91
第四節 野牡丹指紋圖譜之建立 100
第五節 結構解析 105
第四章 討論 146
第五章 結論 159
第六章 參考資料 162
第七章 附錄 185

圖目錄
Fig. 1-1 人類正常肺泡(左側)和ARDS患者肺泡示意圖 9
Fig. 1-2 COPD治療的潛在目標 13
Fig. 1-3 PMNs在腫瘤中的功能 16
Fig. 1-4 導致腎損傷之因素 18
Fig. 1-5 PR3在發炎反應及免疫系統中的角色 24
Fig. 1-6 嗜中性白血球絲胺酸蛋白酶在發炎反應中的機制 26
Fig. 1-7 嗜中性白血球反應機制 30
Fig. 1-8 Sivelestat 和 HNE 的交互作用 33
Fig. 1-9 Alvelestat 結構圖 34
Fig. 1-10 AE-3763 結構圖 35
Fig. 1-11 GW311616A 結構圖 35
Fig. 1-12 ZD-0892 結構圖 36
Fig. 1-13 野牡丹藥材圖 41
Fig. 2 實驗設計流程圖 66
Fig. 3-1 Casuarinin及劃分層 2MDE1、2MDE2 之 HPLC 層析圖比對結果圖 95
Fig. 3-2 Casuarinin 之 HPLC 層析圖 101
Fig. 3-3 Gallic acid 之 HPLC 層析圖 101
Fig. 3-4 Protocatechuic acid 之 HPLC 層析圖 102
Fig. 3-5 野牡丹指紋圖譜 102
Fig. 3-6 Casuarinin 檢量線 (calibration curve) 104
Fig. 3-7 3-Methoxy-4-hydroxyphenol-1-O-β-D-(6′-O-galloy-l)- glucopyranoside 結構圖 107
Fig. 3-8 3-Methoxy-4-hydroxyphenol-1-O-β-D-(6′-O-galloy-l)- glucopyranoside 之 ESI-MS 圖譜 108
Fig. 3-9 3-Methoxy-4-hydroxyphenol-1-O-β-D-(6′-O-galloy-l)- glucopyranoside 之1H-NMR 圖譜 (400MHz, CD3OD) 109
Fig. 3-10 3-Methoxy-4-hydroxyphenol-1-O-β-D-(6′-O-galloy-l)- glucopyranoside 之 13C-NMR 圖譜 (100MHz, CD3OD) 110
Fig. 3-11 3-Methoxy-4-hydroxyphenol-1-O-β-D-(6′-O-galloy-l)- glucopyranoside 之 1H-13C HSQC 圖譜 (400MHz, CD3OD) 111
Fig. 3-12 3-Methoxy-4-hydroxyphenol-1-O-β-D-(6′-O-galloy-l)- glucopyranoside 之 1H-13C COSY 圖譜 (400MHz, CD3OD)
112
Fig. 3-13 3-Methoxy-4-hydroxyphenol-1-O-β-D-(6′-O-galloy-l)- glucopyranoside 之 1H-13C HMBC 圖譜 (400MHz, CD3OD) 113
Fig. 3-14 Casuarinin 結構圖 117
Fig. 3-15 Casuarinin 之 ESI-MS 圖譜 119
Fig. 3-16 Casuarinin 之 1H-NMR 圖譜 (400MHz, CD3OD) 120
Fig. 3-17 Casuarinin 之 13C-NMR 圖譜 (100MHz, CD3OD) 121
Fig. 3-18 Casuarinin 之 1H-13C HSQC 圖譜 (400MHz, CD3OD) 122
Fig. 3-19 Casuarinin 之 1H-1H COSY 圖譜 (400MHz, CD3OD)
123
Fig. 3-20 Casuarinin 之 1H-13C HMBC 圖譜 (400MHz, CD3OD) 124
Fig. 3-21 Ferulaldehyde 結構圖 126
Fig. 3-22 Ferulaldehyde 之 1H-NMR 圖譜 (400MHz, CD3OD)
127
Fig. 3-23 Ferulaldehyde 之 1H-1H NOESY 圖譜 (400MHz, CD3OD) 128
Fig. 3-24 Sinapaldehyde 結構圖 130
Fig. 3-25 Sinapaldehyde 之 1H-NMR 圖譜 (400MHz, CD3Cl3)
131
Fig. 3-26 Sinapaldehyde 之 13C-NMR 圖譜 (100MHz, CD3Cl3)
132
Fig. 3-27 Sinapaldehyde 之 1H-1H NOESY 圖譜 (400MHz, CD3Cl3) 133
Fig. 3-28 Ellagic acid 結構圖 135
Fig. 3-29 Ellagic acid 之 1H-NMR 圖譜 (400MHz, CD3OD) 136
Fig. 3-30 Ellagic acid 之 13C-NMR 圖譜 (100MHz, CD3OD) 137
Fig. 3-31 Gallic acid 結構圖 139
Fig. 3-32 Gallic acid 之 1H-NMR 圖譜 (400MHz, CD3OD) 140
Fig. 3-33 Gallic acid 之 13C-NMR 圖譜 (100MHz, CD3OD) 141
Fig. 3-34 Protocatechuic acid 結構圖 143
Fig. 3-35 Protocatechuic acid 之 1H-NMR 圖譜 (100MHz, CD3OD) 144
Fig. 3-36 Protocatechuic acid 之 13C-NMR 圖譜 (100MHz, CD3OD) 145
Fig. 4-1 王不留行 (左) 及野牡丹 (右) 藥材比較圖 147
Fig. 4-2 Arimoniin (左) 及 Pedunculagin (右) 結構圖 150
Fig. 4-3 Caffeic acid、Quinic acid、3,5-Dicaffeoylquinic acid 結構圖 152
Fig. 4-4 Tannin 類化合物分類圖 152
Fig. 4-5 1,2,3,4,6-pentagalloyl-glucose 結構圖 153
Fig. 4-6 HHDP (左) 及 Ellagic acid (右) 結構圖 154
Fig. 4-7 Flavan-3-ol (左) 及 Catechin (右) 結構圖 154
Fig. 4-8 Stenophyllanin C 結構圖 155
Fig. 4-9 Arimoniin (左) 及 Pedunculagin (右) 分子嵌合圖 156
Fig. 5-1 野牡丹分離純化之流程圖 (1) 160
Fig. 5-2 野牡丹分離純化之流程圖 (2) 161
Appendix Fig. A-1 野牡丹 DNA 之分析結果 185
Appendix Fig. A-2 候選中草藥之篩選 186
Appendix Fig. A-3 Casuarinin 檢量線 188

表目錄
Table 1-1 Berlin definition 5
Table 1-2 具有 HNE 抑制活性的天然物 37
Table 3-1 野牡丹水萃物之產量產率結果 83
Table 3-2 野牡丹水萃物之 HNE 活性評估結果 83
Table 3-3 水萃物分層萃取之產量產率與HNE活性評估結果 84
Table 3-4 MDE 分離純化之產量產率與HNE活性評估結果 85
Table 3-5 MDE2分離純化之產量產率與HNE活性評估結果 86
Table 3-6 MDE2-2分離純化之產量與產率與HNE活性評估結果 87
Table 3-7 MDE4分離純化之產量與產率與 HNE 活性評估結果 88
Table 3-8 MDE4-4分離純化之產量與產率與 HNE 活性評估結果 89
Table 3-9 MDE4-3分離純化之產量與產率與 HNE 活性評估結果 90
Table 3-10 新水萃物萃取之產量產率與HNE活性評估結果 92


Table 3-11 新水萃物分層萃取產量產率與HNE活性評估結果
93
Table 3-12 2MDE 分離純化之產量產率結果 94
Table 3-13 2MDE1 分離純化之產量產率 96
Table 3-14 2MDE1-2 分離純化之產量產率 97
Table 3-15 七個化合物 HNE、PR3及CG 抑制活性測試結果
99
Table 3-16 不同濃度之casuarinin 層析峰面積 104
Table 3-17 3-Methoxy-4-hydroxyphenol-1-O-β-D-(6′-O-galloy-l)-glucopyranoside 1H 、13C 和 HMBC 圖譜數據整理表 (400 MHz, CD3OD) 107
Table 3-18 Casuarinin 1H 、13C 和 HMBC 圖譜數據整理表 (400MHz, CD3OD) 117
Table 3-19 Ferulaldehyde 1H 和13C 圖譜數據整理表 (400MHz, CD3OD) 126
Table 3-20 Sinapaldehyde 1H 和13C 圖譜數據整理表 (400MHz, CD3Cl3) 130
Table 3-21 Ellagic acid 1H 和13C 圖譜數據整理表 (400MHz, CD3OD) 135
Table 3-22 Gallic acid 1H 和13C 圖譜數據整理表 (400MHz, CD3OD) 139
Table 3-23 Protocatechuic acid 1H 和13C 圖譜數據整理表 (400MHz, CD3OD) 143
Appendix Table A-1 椿皮 (Ailanthus altissima) 之水萃物產量產率及 HNE 活性評估結果 187
Appendix Table A-2 王不留行 (Vaccaria segetalis) 水萃物 HNE 活性評估結果 187
1. Pham, C.T. Neutrophil serine proteases: specific regulators of inflammation. Nat. Rev. Immunol. 2006, 6: 541-550.
2. Ohbayashi, H. Neutrophil elastase inhibitors as treatment for COPD. Expert. Opin. Investig. Drugs. 2002, 11: 965-980.
3. Crocetti, L.; Quinn, M.T.; Schepetkin, I.A.; Giovannoni, M.P. A patenting perspective on human neutrophil elastase (HNE) inhibitors (2014-2018) and their therapeutic applications. Expert. Opin. Ther. Pat. 2019, 29: 555-578.
4. Pu, S.; Wang, D.; Liu, D.; Zhao, Y.; Qi, D.; He, J.; Zhou, G. Effect of sivelestat sodium in patients with acute lung injury or acute respiratory distress syndrome: a meta-analysis of randomized controlled trials. BMC. Pulm. Med. 2017, 17: 148-157.
5. Bellani, G.; Laffey, J.G.; Pham, T.; Fan, E.; Brochard, L.; Esteban, A.; Gattinoni, L.; Haren, F.; Larsson, A.; McAuley, D.F.; Ranieri, M.; Rubenfeld, G.; Thompson, B.T.; Wrigge, H.; Slutsky, A.S.; Pesenti, A. Epidemiology, patterns of care, and mortality for patients with acute respiratory distress syndrome in intensive care units in 50 countries. JAMA. 2016, 315: 788-800.
6. Rebetz, J.; Semple, J.W.; Kapur, R. The pathogenic involvement of neutrophils in acute respiratory distress syndrome and transfusion-related acute lung injury. Transfus. Med. Hemother. 2018, 45: 290-298.
7. Grommes, J.; Soehnlein, O. Contribution of neutrophils to acute lung injury. Mol. Med. 2011, 17: 293-307.
8. Ashbaugh, D.; Bigelow, D.; Petty, T. Acute respiratory distress in adults. Lancet. 1967, 319-323.
9. Bernard, G.R.; Brigham, K.L.; Carlet, J.; Falke, K.; Hudson, L.; Lamy, M.; Legall, J.R.; Morris, A.; Spragg, R. The American-European consensus conference on ARDS. Respir. Crit. Care Med. 1994, 149: 818-824.
10. Force, A.D.; Ranieri, V.M.; Rubenfeld, G.D.; Thompson, B.T.; Ferguson, N.D.; Caldwell, E.; Fan, E.; Camporota, L.; Slutsky, A.S. Acute respiratory distress syndrome: The Berlin definition. JAMA. 2012, 307: 2526-2533.
11. Marc, M.; Becki, B.; Frederick, A.M.; Ernest, E.M.; Polly, E.P. The role of chronic alcohol abuse in the development of acute respiratory distress syndrome in adults. JAMA. 1996, 151: 51-54.
12. Calfee, C.S.; Matthay, M.A.; Eisner, M.D.; Benowitz, N.; Call, M.; Pittet, J.F.; Cohen, M.J. Active and passive cigarette smoking and acute lung injury after severe blunt trauma. Am. J. Respir. Crit. Care Med. 2011, 183: 1660-1665.
13. Calfee, C.S.; Matthay, M.A.; Kangelaris, K.N.; Siew, E.D.; Janz, D.R.; Bernard, G.R.; May, A.K.; Jacob, P.; Havel, C.; Benowitz, N.L.; Ware, L.B. Cigarette smoke exposure and the acute respiratory distress syndrome. Crit. Care Med. 2015, 43: 1790-1797.
14. Ware, L.B.; Zhao, Z.; Koyama, T.; May, A.K.; Matthay, M.A.; Lurmann, F.W.; Balmes, J.R.; Calfee, C.S. Long-Term Ozone Exposure increases the risk of developing the acute respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 2016, 193: 1143-1150.
15. John, P.R.; Zhiguo, Z.; Michael, G.S.; Tatsuki, K.; Jason, D.C.; Paul, N.L.; Chunxue, W.; Balmes, J.R.; Michael, A.M.; Carolyn, S.C.; Lorraine, B.W. Low to moderate air pollutant exposure and acute respiratory distress syndrome after severe trauma. AJRCCM. 2018, 199: 1-43.
16. Mangialardi, R.J.; Bernard, G.R.; Wheeler, A.P.; Christman, B.W.; Dupont, W.D.; Higgins, S.B.; Swindell, B.B. Hypoproteinemia predicts acute respiratory distress syndrome development, weight gain, and death in patients with sepsis. ibuprofen in sepsis study group. Crit. Care Med. 2000, 28: 3137-3145.
17. Fan, E.Y.; Fan, J. Regulation of alveolar macrophage death in acute lung inflammation. Respir. Res. 2018, 19: 50-63.
18. Abraham, E. Neutrophils and acute lung injury. Crit. Care Med. 2003, 31: 195-199.
19. Murray, P.J.; Allen, J.E.; Biswas, S K.; Fisher, E A.; Gilroy, D.W.; Goerdt, S.; Gordon, S.; Hamilton, J.A.; Ivashkiv, L B.; Lawrence, T.; Locati, M.; Mantovani, A.; Martinez, F.O.; Mege, J.L. Mosser, D.M.; Natoli, G.; Saeij, J.P.; Schultze, J.L.; Shirey, K.A.; Sica, A. Suttles, J.; Udalova, I.; Ginderachter, J.A.; Vogel, S.N.; Wynn, T.A. Macrophage activation and polarization: nomenclature and experimental guidelines. Immunity. 2014, 41: 14-20.
20. Matthay, M.A.; Zemans, R.L.; Zimmerman, G.A.; Arabi, Y.M.; Beitler, J.R.; Mercat, A.; Herridge, M.; Randolph, A.G.; Calfee, C.S. Acute respiratory distress syndrome. Nat. Rev. Dis. Primers. 2019, 5: 1-18.
21. Kolaczkowska, E.; Kubes, P. Neutrophil recruitment and function in health and inflammation. Nat. Rev. Immunol. 2013, 13: 159-175.
22. Li, H.Z.; Xin, T.H.; Hu, Y. Neutrophil extracellular traps contribute to the pathogenesis of acid-aspiration-induced ARDS. Oncotarget. 2017, 9: 1772-1784.
23. Sheridan, B.C.; Mcintyre, R.J.; Faumoore, E.E.; Moore, E.F.; Meldrum, D.R.; Fullerton, D.A.; Fullerton, D.A. Neutrophils mediate pulmonary vasomotor dysfunction in endotoxin-induced acute lung injury. J. Trauma. 1997, 42: 396-397.
24. Suratt, B.T.; Parsons, P.E. Mechanisms of acute lung injury acute respiratory distress syndrome. Clin. Chest Med. 2006, 27: 579-589.
25. Marsh, S.; Aldington, S.; Shirtcliffe, P. Smoking and COPD: what really are the risks? Eur. Respir. J. 2006, 4: 883–884.
26. Mulhall, P.; Criner, G. Non-pharmacological treatments for COPD. Respirology. 2016, 5: 791-809.
27. Lamprecht, B.; Mcburnie, M.A.; Vollmer, W.M. COPD in never smokers: results from the population-based burden of obstructive lung disease study. Chest. 2011, 4: 752-763.
28. Tilert, T.; Dillon, C.; Paulose, R.R. Estimating the U.S. prevalence of chronic obstructive pulmonary disease using pre-and post-bronchodilator spirometry: the national health and nutrition examination survey (NHANES) 2007-2010. Respir. Res. 2013, 14: 103.
29. Hooper, R.; Burney, P.; Vollmer, W.M. Risk factors for COPD spirometrically defined from the lower limit of normal in the BOLD project. Eur. Respir. J. 2012, 6: 1343-1353.
30. Thun, M.J.; Carter, B.D.; Feskanich, D. 50-year trends in smoking-related mortality in the United States. N. Engl. J. Med. 2013, 4: 351-364.
31. Barnes, P.J.; Burney, P.G.; Silverman, E.K.; Celli, B.R.; Vestbo, J.; Wedzicha, J.A.; Wouters, E.F. Chronic obstructive pulmonary disease. Nat Rev Dis Primers. 2015, 1: 150-176.
32. Antunes, M.A.; Rocco, P.R. Elastase-induced pulmonary emphysema: insights from experimental models. An. Acad. Bras. Cienc. 2011, 4: 1385-1396.
33. Shapiro, S.D.; Goldstein, N.M.; Houghton, M.G.; Kobayashi, D.K.; Kelley, D.; Belaaouaj, A. Neutrophil elastase contributes to cigarette smoke-induced emphysema in mice. Am. J. Pathol. 2003, 6: 2329-2335
34. Belvisi, M.G.; Bottomley, K.M. The role of matrix metalloproteinases (MMPs) in the pathophysiology of chronic obstructive pulmonary disease (COPD): a therapeutic role for inhibitors of MMPs? Inflammation Res. 2003, 3: 95-100.
35. Mariska, M.; Ger, R.; Frans, V.O. Neutrophils and emerging targets for treatment in chronic obstructive pulmonary Disease, Chronic Obstructive. Expert Rev. Clin. Immunol. 2013, 9: 1055-1068.
36. Reilly, P.; Jackson, P.L.; Noerager, B.; Parker, S.; Dransfield, M.; Gaggar, A. N-alpha-PGP and PGP, potential biomarkers and therapeutic targets for COPD. Respir. Res. 2009, 1: 1-38.
37. Paschalaki, K.E. Dysfunction of endothelial progenitor cells from smokers and COPD patients due to increased DNA damage and senescence. Stem Cells. 2013, 31: 2813-2826.
38. Chalmers, J.D.; Chang, A.B.; Chotirmall, S.H.; Dhar, R.; McShane, P.J. Bronchiectasis. Nat. Rev. Dis. Primers. 2018, 4: 45-63.
39. Gramegna, A.; Amati, F.; Terranova, L.; Sotgiu, G.; Tarsia, P.; Miglietta, D.; Calderazzo, M.A.; Aliberti, S.; Blasi, F. Neutrophil elastase in bronchiectasis. Respir. Res. 2017, 18: 211-224.
40. Gentzsch, M.; Dang, H.; Dang, Y.; Garcia, C.A.; Suchindran, H.; Boucher, R.C.; Stutts, M.J. The cystic fibrosis transmembrane conductance regulator impende proteolytic stimulation of the epithelial Na+ channel. J. Biol. Chem. 2010, 42: 32227-32232.
41. Le, G.M.; Descamps, D.; Roussel, D.; Saussereau, E.; Guillot, L.; Ruffin, M.; Tabary, O.; Hong, S.S.; Boulanger, P.; Paulais, M.; Malleret, L.; Belaaouaj, A.; Edelman, A.; Huerre, M.; Chignard, M.; Sallenave, J.M. Neutrophil elastase degrades cystic fibrosis transmembrane conductance regulator via calpains and disables channel function in vitro and in vivo. Am. J. Respir. Crit. Care Med. 2013, 2: 170-179.
42. Lerman, I.; Hammes, S.R. Neutrophil elastase in the tumor microenvironment. Steroids. 2018, 133: 96-101.
43. Sato, T.; Takahashi, S.; Mizumoto, T.; Harao, M.; Akizuki, M.; Takasugi, M.; Fukutomi, T.; Yamashita, J. Neutrophil elastase and cancer. Surg Oncol. 2006, 15: 217-222.
44. Gentles, A.J. The prognostic landscape of genes and infiltrating immune cells across human cancers. Nat. Med. 2015, 8: 938-945.
45. Ouzounova, M. Monocytic and granulocytic myeloid derived suppressor cells differentially regulate spatiotemporal tumour plasticity during metastatic cascade. Nat. Commun. 2017, 8:149-179.
46. Moroy, G.; Alix, A.J.P.; Sapi, J.; Hornebeck, W.; Bourguet, E. Neutrophil elastase as a target in lung cancer. Anti-Cancer Agents in Medicinal Chemistry. 2012, 565-579.
47. Houghton, A.M. Neutrophil elastase-mediated degradation of IRS-1 accelerates lung tumor growth. Nat. Med. 2010, 2: 219-223.
48. Coffelt, S.B.; Wellenstein, M.D.; de Visser, K.E. Neutrophils in cancer: neutral no more. Nat. Rev. Cancer. 2016, 16: 431-446.
49. Hong, C.W. Current understanding in neutrophil differentiation and heterogeneity. Immune. Netw. 2017, 17: 298-306.
50. Andrassy, K.M. Comments on KDIGO 2012 clinical practice guideline for the evaluation and management of chronic kidney disease. Kidney Int. 2013, 84: 622-623.
51. Bronze, R.E.; Santos, S.A. Neutrophil elastase inhibitors and chronic kidney disease. Int. J. Biol. Sci. 2018, 14: 1343-1360.
52. Kenneth, P.; Steinberg, J.A.; Thomas, R.; Martin, R.J.; Cockrill, L.D. H. Evolution of bronchoalveolar cell populations in the adult respiratory distress syndrome. Am. J. Respir. Crit. Care Med. 1994, 150: 113-120.
53. Dau, T.; Sarker, S.J.; Yildirim, A.O.; Eickelberg, O.; Jenne, D.E. Autoprocessing of neutrophil elastase near its active site reduces the efficiency of natural and synthetic elastase inhibitors. Nat. Commun. 2015, 6: 6722-6780.
54. Kawabata, K.H.; Matsuoka, S. The role of neutrophil elastase in acute lung injury. Eur. J. Pharmacol. 2002, 451: 1-10.
55. Dicamillo, S.J.; Carreras, I.; Panchenko, M.V.; Stone, P.J.; Nugent, M.A.; Foster, J.A.; Panchenko, M.P. Elastase-released epidermal growth factor recruits epidermal growth factor receptor and extracellular signal-regulated kinases to down-regulate tropoelastin mRNA in lung fibroblasts. J. Biol. Chem. 2002, 277: 938-946.
56. Kawabata, T.H., Shozo, M. The role of neutrophil elastase in acute lung injury. Eur. J. Pharmacol. 2002, 451: 1-10.
57. Hedy, H.; Ginzberg, V.C.; Qin, D. Neutrophil-mediated epithelial injury during transmigration: role of elastase. Am. J. Physiol. Gastrointest. Liver Physiol. 2001, 281: 705-717.
58. Chai, J.K.; Cai, J.H.; Deng, H.P.; Zou, X.F.; Liu, W.; Hu, Q.G.; Shen, C.A.; Yin, H.N.; Zhang, X.B.; Chi, Y.F.; Ma, L.; Feng, R. Role of neutrophil elastase in lung injury induced by burn-blast combined injury in rats. Burns. 2013, 39: 745-753.
59. Ware, L.B.; Matthay, M.A. The Acute respiratory distress syndrome. N. Engl. J. Med. 2000, 342: 1334-1349.
60. Kaynar, A.M.; Houghton, A.M.; Lum, E.H.; Pitt, B.R.; Shapiro, S.D. Neutrophil elastase is needed for neutrophil emigration into lungs in ventilator-induced lung injury. Am. J. Respir. Cell Mol. Biol. 2008, 39: 53-60.
61. Papayannopoulos, V.; Metzler, K.D.; Hakkim, A.; Zychlinsky, A. Neutrophil elastase and myeloperoxidase regulate the formation of neutrophil extracellular traps. J. Cell. Biol. 2010, 191: 677-691.
62. Korkmaz, B.; Moreau, T.; Gauthier, F. Neutrophil elastase, proteinase 3 and cathepsin G: physicochemical properties, activity and physiopathological functions. Biochimie. 2008, 90: 227-242.
63. Armstrong, L.; Godinho, S.I.; Uppington, K.M.; Whittington, H.A.; Millar, A.B. Tumour necrosis factor-alpha processing in interstitial lung disease: a potential role for exogenous proteinase-3. Clin. Exp. Immunol. 2009, 156: 336-343.
64. Schreiber, A.; Pham, C.T.; Hu, Y.; Schneider, W.; Luft, F.C.; Kettritz, R. Neutrophil serine proteases promote IL-1beta generation and injury in necrotizing crescentic glomerulonephritis. J. Am. Soc. Nephrol. 2012, 23: 470-482.
65. Sugawara, A.U.; Tomonori, N.; Takahiro, Y.; Haruyasu, U.; Akiko, S.; Kazuo, H.; Katsuo, K.; Haruki, O.; Haruhiko, T. Neutrophil proteinase 3-mediated induction of bioactive IL-18 secretion by human oral epithelial cells. Immunology. 2001, 6568-6575.
66. Van, P.P.; Wuyts, A.; Vandamme, J.; Opdenakker, G. Neutrophil gelatinase B potentiates interleukin-8 tenfold by aminoterminal processing, whereas it degrades CTAP-III, PF-4 and GRO-alpha and leaves rantes and MCP-2 intact. Blood. 2000, 96: 2673-2681.
67. Martin, K.R.; Witko, S.V. Proteinase 3: the odd one out that became an autoantigen. J. Leukoc. Biol. 2017, 102: 689-698.
68. Mihara, K.; Ramachandran, R.; Renaux, B.; Saifeddine, M.; Hollenberg, M.D. Neutrophil elastase and proteinase-3 trigger G protein-biased signaling through proteinase-activated receptor-1 (PAR1). J. Biol. Chem. 2013, 288: 979-990.
69. Kuckleburg, C.J.; Newman, P.J. Neutrophil proteinase 3 acts on protease-activated receptor-2 to enhance vascular endothelial cell barrier function. Arterioscler. Thromb. Vasc. Biol. 2013, 33: 275-284.
70. Twigg, M.S.; Brockbank, S.; Lowry, P.; Fitzgerald, S.P.; Taggart, C.; Weldon, S. The role of serine proteases and antiproteases in the cystic fibrosis lung. Mediators Inflamm. 2015, 1-10.
71. Burster, T.; Macmillan, H.; Hou, T.; Boehm, B.O.; Mellins, E.D. Cathepsin G: roles in antigen presentation and beyond. Mol. Immunol. 2010, 47: 658-665.
72. Gregory, A.D.; Houghton, A.M. Tumor-associated neutrophils: new targets for cancer therapy. Cancer Res. 2011, 71: 2411-2416.
73. Brinkmann, V.R.; Goosmann, C. Neutrophil extracellular traps kill bacteria. Science. 2004, 303: 1524-1535.
74. Fuchs, T.A.; Abed, U.; Goosmann, C.; Hurwitz, R.; Schulze, I.; Wahn, V.; Weinrauch, Y.; Brinkmann, V.; Zychlinsky, A. Novel cell death program leads to neutrophil extracellular traps. J. Cell. Biol. 2007, 176: 231-241.
75. Narasaraju, T.; Yang, E.; Samy, R.P.; Ng, H.H.; Poh, W.P.; Liew, A.A.; Phoon, M.C.; Rooijen, N.; Chow, V.T. Excessive neutrophils and neutrophil extracellular traps contribute to acute lung injury of influenza pneumonitis. Am. J. Pathol. 2011, 179: 199-210.
76. Saffarzadeh, M.; Juenemann, C.; Queisser, M.A.; Lochnit, G.; Barreto, G.; Galuska, S.P.; Lohmeyer, J.; Preissner, K.T. Neutrophil extracellular traps directly induce epithelial and endothelial cell death: a predominant role of histones. PLoS. One. 2012, 7: 323-366.
77. Wartha, F.; Beiter, K.; Normark, S.; Henriques, N.B. Neutrophil extracellular traps: casting the NET over pathogenesis. Curr. Opin. Microbiol. 2007, 10: 52-56.
78. Engelmann, B.; Massberg, S. Thrombosis as an intravascular effector of innate immunity. Nat. Rev. Immunol. 2013, 13: 34-45.
79. Massberg, S.; Grahl, L.; Bruehl, M.L.; Manukyan, D.; Pfeiler, S.; Goosmann, C.; Brinkmann, V.; Lorenz, M.; Bidzhekov, K.; Khandagale, A.B.; Konrad, I.; Kennerknecht, E.; Reges, K.; Holdenrieder, S.; Braun, S.; Reinhardt, C.; Spannagl, M.; Preissner, K.T.; Engelmann, B. Reciprocal coupling of coagulation and innate immunity via neutrophil serine proteases. Nat. Med. 2010, 16: 887-896.
80. Brinkmann, A.Z. Beneficial suicide: why neutrophils die to make NETs. Nat. Rev. Microbiol. 2007, 5: 577-582.
81. Mesa, M.A.; Vasquez, G. NETosis. Autoimmune. Dis. 2013, 2013: 1-7.
82. Kruger, P.S.; Mona, W.; Alexander, N.R.; Julia, H.D. Neutrophils: between host defence, immune modulation and tissue injury. Plos. Pathog. 2015, 11: 1-23.
83. Tremblay, G.M.; Janelle, M.F.; Bourbonnais, Y. Anti-inflammatory activity of neutrophil elastase inhibitors. Curr. Opin. Investig. Drugs. 2003, 4: 556-565.
84. 高冬娜、張茂 中性粒細胞彈性蛋白酶與急性肺損。 Chin. Crit. Care Med. 2006, 1: 210-212.
85. Zani, M.L.; Baranger, K.; Guyot, N.; Dallet, C.S.; Moreau, T. Protease inhibitors derived from elafin and SLPI and engineered to have enhanced specificity towards neutrophil serine proteases. Protein Sci. 2009, 18: 579-594.
86. Nicolas, G.Z.; Marie, C.M.; Sandrine, D.C.; Thierry, M. Elafin and its precursor trappin-2 still inhibit neutrophil serine proteinases when they are covalently bound to extracellular matrix proteins by tissue transglutaminase. Biochemistry. 2005, 44: 15610-15618.
87. Zeiher, B.G.; Artigas, A.; Vincent, J.L.; Dmitrienko, A.; Jackson, K.; Thompson, B.T.; Bernard, G. Neutrophil elastase inhibition in acute lung injury: results of the STRIVE study. Crit. Care Med. 2004, 32: 1695-1702.
88. Kawabata, M.S.; Masafumi, S.; Katsuhiro, I.M. A novel inhibitor of human neutrophil elastase. Biochem. Biophys. Res. Commun. 1991, 177: 814-820.
89. Matsuzaki, K.; Hiramatsu, Y.; Homma, S.; Sato, S.; Shigeta, O.; Sakakibara, Y. Sivelestat reduces inflammatory mediators and preserves neutrophil deformability during simulated extracorporeal circulation. Ann. Thorac. Surg. 2005, 80: 611-617.
90. Tamakuma, S.; Ogawa, M.; Aikawa, N.; Kubota, T.; Hirasawa, H.; Ishizaka, A.; Taenaka, N.; Hamada, C.; Matsuoka, S.; Abiru, T. Relationship between neutrophil elastase and acute lung injury in humans. Pulm. Pharmacol. Ther. 2004, 17: 271-279.
91. Groutas, W.C.; Dou, D.; Alliston, K.R. Neutrophil elastase inhibitors. Expert. Opin. Ther. Pat. 2011, 21: 339-354.
92. Nussbaum, F.; Li, V.M. Neutrophil elastase inhibitors for the treatment of (cardio) pulmonary diseases: Into clinical testing with pre-adaptive pharmacophores. Bioorg. Med. Chem. Lett. 2015, 25: 4370-4381.
93. Stevens, T.; Ekholm, K.; Granse, M.; Lindahl, M.; Kozma, V.; Jungar, C.; Ottosson, T.; Hakansson, H.; Churg, A.; Wright, J. L.; Lal, H.; Sanfridson, A. AZD9668: pharmacological characterization of a novel oral inhibitor of neutrophil elastase. J. Pharmacol. Exp. Ther. 2011, 339: 313-320.
94. Clinicaltrials.gov. NCT study code NCT03636347. 2019.
95. Inoue, Y.; Omodani, T.; Shiratake, R.; Okazaki, H.; Kuromiya, A.; Kubo, T.; Sato, F. Development of a highly water-soluble peptide-based human neutrophil elastase inhibitor; AE-3763 for treatment of acute organ injury. Bioorg. Med. Chem. 2009, 17: 7477-7486.
96. Simon, J.F.; Michael, D.; Lee, A.; Martin, R.; Johnson, G.G.; Geoffrey, D.E; Clarke, A. The discovery of a potent, intracellular, orally bioavailable, long duration inhibitor of human neutrophil elastase-GW311616A a development candidate. Bioorganic. Med. Chem. Lett. 2001, 11: 895-898.
97. Ohbayashi, H. Neutrophil elastase inhibitors as treatment for COPD. Expert. Opin, Investig. Drugs. 2002, 11: 965-980.
98. Kyle, N.C.; Rabinovitch, S.I. Complete reversal of fatal pulmonary hypertension in rats by a serine elastase inhibitor. Nat. Med. 2000, 6: 698-702.
99. Siedle, B.; Hrenn, A.; Merfort, I. Natural compounds as inhibitors of human neutrophil elastase. Planta. Med. 2007, 73: 401-420.
100. Huang, Y.C.; Hwang, T.L.; Chang, C.S.; Yang, Y.L.; Shen, C.N.; Liao, W.Y.; Chen, S.C.; Liaw, C.C. Anti-inflammatory flavonoids from the rhizomes of Helminthostachys zeylanica. J. Nat. Prod. 2009, 72: 1273-1278.
101. Hwang, T.L.; Yeh, S.H.; Leu, Y.L.; Chern, C.Y.; Hsu, H.C. Inhibition of superoxide anion and elastase release in human neutrophils by 3'-isopropoxychalcone via a cAMP-dependent pathway. Br. J. Pharmacol. 2006, 148: 78-87.
102. Krenn, L.; Wollenweber, E.; Steyrleuthner, K.; Gorick, C.; Melzig, M.F. Contribution of methylated exudate flavonoids to the anti-inflammatory activity of Grindelia robusta. Fitoterapia. 2009, 80: 267-269.
103. Löser, B.; Kruse, S.O.; Melzig, M.F.; Nahrstedt, A. Inhibition of neutrophil elastase activity by cinnamic acid derivatives from Cimicifuga racemosa. Planta. Med. 2000, 66: 551-753.
104. Xu, G.H.; Ryoo, I.J.; Kim, Y.H.; Choo, S.J.; Yoo, I.D. Free radical scavenging and antielastase activities of flavonoids from the fruits of Thuja. orientalis. Arch. Pharm. Res. 2009, 32: 275-282.
105. Melzig, M.F.; Ciesielski, S. Inhibition of neutrophil elastase activity by phenolic compounds from plants. Pharmazie. 2001, 56: 967-970.
106. Lee, S.M.; Song, Y.H.; Uddin, Z.; Ban, Y.J.; Park, K.H. Prenylated flavonoids from Epimedium koreanum Nakai and their human neutrophil elastase inhibitory effects. Rec. Nat. Prod. 2017, 11: 514-520.
107. Kim, J.Y.; Lee, J.H.; Song, Y.H.; Jeong, W.M.; Tan, X.; Uddin, Z.P. Human neutrophil elastase inhibitory alkaloids from Chelidonium majus. L. J. Appl. Biol. Chem. 2015, 58: 281-285.
108. Uddin, Z.L., Z.; Song, Y.H.; Kim, J.Y.; Park, K.H. A rare flavonol having long chain fatty acid from Dodonaea viscosa which inhibits human neutrophil elastase (HNE). Tetrahedron. Lett. 2017, 58: 2507-2511.
109. Saleem, M.; Nazir, M.; Hussain, H.; Tousif, M.I.; Elsebai, M.F.; Riaz, N.; Akhtar, N. Natural phenolics as inhibitors of the human neutrophil elastase (HNE) release: an overview of natural anti-inflammatory discoveries during recent years. Antiinflamm. Antiallergy Agents Med. Chem. 2018, 17: 70-94.
110. Yen, C.T.; Hsieh, P.W.; Hwang, T.L.; Lan, Y.H.; Chang, F.R.; Wang, Y.C. Flavonol glycosides from Muehlenbeckia platyclada and their anti-inflammatory activity. Chem. Pharm. Bull. 2009, 57: 280-282.
111. Chen, Y.L.; Hwang, T.L.; Yu, H.P.; Fang, J.Y.; Chong, K.Y.; Chang, Y.W.; Chen, C.Y.; Yang, H.W.; Chang, W.Y.; Hsieh, P.W. Ilex kaushue and its bioactive component 3,5-dicaffeoylquinic acid protected mice from lipopolysaccharide-induced acute lung injury. Sci. Rep. 2016, 6: 1-12.
112. Chen, Y.L.; Hwang, T.L.; Fang, J.Y.; Lan, Y.H.; Chong, K.Y.; Hsieh, P.W. Polysaccharides from Kochia scoparia fruits protect mice from lipopolysaccharide-mediated acute lung injury by inhibiting neutrophil elastase. J. Funct. Foods. 2017, 38: 582-590.
113. Joffry, S.M.; Yob, N.J.; Rofiee, M.S.; Affandi, M.M.; Suhaili, Z.; Othman, F.; Akim, A.M.; Desa, M.N.; Zakaria, Z.A. Melastoma malabathricum (L.) Smith ethnomedicinal uses, chemical constituents, and pharmacological properties: a review. Evid. Based Complement Alternat. Med. 2012, 1-48.
114. 張晉維. 野牡丹科植物活性探討與大野牡丹莖部化學及生物 活性成分之研究. 林業研究專訊.2016, 23: 31-32.
115. Das, K.K. A new aliphatic constituent of Melastoma malabathricum Linn. J. Indian Chem. Soc. 1988, 65: 385-386.
116. Dinda, B.A. Flavonol-diglycoside from Melastoma melabathricum. J. Indian Chem. Soc. 1988, 65: 209-211.
117. Takashi, Y. Dimeric hydrolysable tannins from Melastoma malabathricum. Phytochemistry. 1992, 31: 2829-2833.
118. Takashi, Y. Tannins and related polyphenols of melastomataceous plants, three new complex tannins from Melastoma malabathricum L. Chem. Pharm. Bull. 1992, 40: 1727-1732.
119. Cheng, J.T.; Hsu, F.L.; Chen, H.F. Antihypertensive principles from the leaves of Melastoma candidum. Planta. Med. 1993, 59: 405-407.
120. Ishii, R,; Saito, K.; Horie, M.; Shibano, T.; Kitanaka, S.; Amano, F. Inhibitory effects of hydrolyzable tannins from Melastoma dodecandrum Lour. on nitric oxide production by a murine macrophage-like cell line, RAW264.7, activated with lipopolysaccharide and interferon-gamma. Biol. Pharm. Bull. 1999, 22: 647-653.
121. Lee, M.H.; Lin, R.D.; Shen, L.Y.; Yang, L.L.; Yen, K.Y.; Hou, W.C. Monoamine oxidase B and free radical scavenging activities of natural flavonoids in Melastoma candidum D. Don. J. Agric. Food. Chem. 2001, 49: 5551-5555.
122. Zhang, C.; Fang, Y.X. Studies on the chemical constituents of Chinese herb Melastoma dodecandrum. Zhongguo Zhong Yao Za Zhi. 2003, 28: 429-431.
123. Sulaiman, M.R.; Somchit, M.N.; Israf, D.A.; Ahmad, Z.; Moin, S. Antinociceptive effect of Melastoma malabathricum ethanolic extract in mice. Fitoterapia. 2004, 75: 667-672.
124. Susanti, D.; Sirat, H.M. Antioxidant and cytotoxic flavonoids from the flowers of Melastoma malabathricum L. Food Chem. 2007, 103: 710-716.
125. Mazura, M.P.; Susanti, D.; Rasadah, M.A. Anti-inflammatory action of components from Melastoma malabathricum. Pharm. Biol. 2007, 45: 372-375.
126. Wang, Y.C.; Hsu, H.W.; Liao, W.L. Antibacterial activity of Melastoma candidum D. Don. ‎J. Food Sci. Technol. 2008, 41: 1793-1798.
127. Mohamed, Z.; Ibrahim, N. Selective inhibition of genes in Methicillin Resistant Staphylococcus aureus (MRSA) treated with Melastoma malabathricum methanol extract. Sains. Malays. 2008, 37: 107-113.
128. Lin, S.; Li, Y.C.; Guo, Y.Y.; Guo, S.M.; Que, H.Q.; Qi, Y.P. Chemical constituents of Melastoma dodecandrum (II). Zhongguo Zhong Yao Za Zhi. 2009, 40: 1192-1195.
129. Sunilson, J.A.; Anandarajagopal, K.; Kumari, A.V.; Mohan, S. Antidiarrhoeal activity of leaves in Melastoma malabathricumi linn. Indian J. Pharm. Sci. 2009, 71: 691-695.
130. Sirat, H.M.; Susanti, D.; Ahmad, F.; Takayama, H.; Kitajima, M. Amides, triterpene and flavonoids from the leaves of Melastoma malabathricum L. J. Nat. Med. 2010, 64: 492-495.
131. Wong, K.C.; Hagali, D.M.; Boey, P.L. Chemical constituents and antibacterial activity of Melastoma malabathricum L. Nat. Prod. Res. 2012, 26: 609-618.
132. Lee, I.S. 2″,4″-O-Diacetylquercitrin, a novel advanced glycation end-product formation and aldose reductase inhibitor from Melastoma sanguineum. Chem. Pharm. Bull. 2013, 61: 662-665.
133. Mourouge, S.A. Bio-guided study on Melastoma malabathricum Linn leaves and elucidation of its biological activities. Am. J. Appl. Sci. 2013, 10: 767-778.
134. Yang, G.X.; Zhang, R.Z.; Lou, B.; Cheng, K.J.; Xiong, J.; Hu, J.F. Chemical constituents from Melastoma dodecandrum and their inhibitory activity on interleukin-8 production in HT-29 cells. Nat. Prod. Res. 2014, 28: 1383-1387.
135. Cheng, M.F. Chemical constituents of flavonoids and their glycosides in Melastoma dodecandrum. Zhongguo Zhong Yao Za Zhi. 2014, 39: 3301-3305.
136. Suleiman, D.; Amirah, W.A. Phytochemical screening, total phenolic and total flavonoid content, and antioxidant activity of different parts of Melastoma malabathricum. J. Teknologi. 2015, 77: 63-68.
137. Ibrahim, N., Said, Z., Yaacob, W.A., Aqma, W.S.; Hanafiah, R.M. Antibacterial and biofilm inhibition activities of Melastoma malabathricum stem bark extract against Streptococcus mutants. Malays. J. Microbiol. 2015, 11: 199-206.
138. Wan, W.N.; Zabidi, Z.; Kamisan, F.H.; Yahya, F.; Ismail, N.A.; Nor, N.S.; Mamat, S.S.; Hassan, H.; Mohtarrudin, N.; Zakaria, Z.A. Anti-ulcer activity of the aqueous extract of Melastoma malabathricum L. leaf in rats. Pak. J. Pharm. Sci. 2016, 29: 35-38.
139. Sembiring, E.N.; Elya, B.; Sauriasari, R. Inhibitory effect on arginase and total phenolic content determination of extracts from different parts of Melastoma malabathricum L. J. Young Pharm. 2018, 10: 114-117.
140. Hamid, H.A.; Ramli, A.N.M.; Zamri, N.; Yusoff, M.M. UPLC-QTOF/MS-based phenolic profiling of Melastomaceae, their antioxidant activity and cytotoxic effects against human breast cancer cell MDA-MB-231. Food Chem. 2018, 265: 253-259.
141. Zhao, C.N.; Zhang, J.J.; Li, Y.; Meng, X.; Li, H.B. Microwave-assisted extraction of phenolic compounds from Melastoma sanguineum fruit: optimization and identification. Molecules. 2018, 23: 1-11.
142. Amalia, T.; Saputri, F.C.; Surini, S. Total phenolic contents, quercetin determination and anti elastase activity of Melastoma malabathricum L. leaves extract from different method of extractions. Pharmacogn. Res. 2019, 11: 124-128.
143. Hwang, T.L.; Wang, W.H.; Wang, T.Y.; Yu, H.P.; Hsieh, P.W. Synthesis and pharmacological characterization of 2-aminobenzaldehyde oxime analogs as dual inhibitors of neutrophil elastase and proteinase 3. Bioorg. Med. Chem. 2015, 23: 1123-1134.
144. Yang, S.C.; Chang, S.H.; Hsieh, P.W.; Huang, Y.T.; Ho, C.M.; Tsai, Y.F.; Hwang, T.L. Dipeptide HCH6-1 inhibits neutrophil activation and protects against acute lung injury by blocking FPR1. Free Radic. Biol. Med. 2017, 106: 254-269.
145. 陳威廷.中藥五被子所含二肽基肽酶-1與嗜中性白血球彈性蛋白酶抑制劑之探索. 長庚大學中醫系天然藥物研究所 2018, 68.
146. Reiko, S.; Gen, I.N. Phenol glucoside gallates from Mallotus japonicus. Phytochemistry. 1989, 28: 2443-2446.
147. Naisheng, B., Kan, H. Active compounds from Lagerstroemia speciosa, insulin-like glucose uptake-stimulatory inhibitory and adipocyte differentiation-inhibitory activities in 3T3-L1 cells. J. Agric. Food Chem. 2008, 56: 11668-11674.
148. He, Z.; Lian, W.; Liu, J.W. Isolation, structural characterization and neuraminidase inhibitory activities of polyphenolic constituents from Flos caryophylli. Phytochemistry Lett. 2017, 19: 160-167.
149. Hongmei, C.Y.; Quanhua Y. Chemical constituents of Senecio obtusatus. Chem. Nat. Compd. 2013, 49: 753-754.
150. Jiang, T.L.; Ben, L.Y. Mono-aromatic constituents of Dendrobium longicornu. Chem. Nat. Compd. 2009, 45: 234-236.
151. Dong, M.; Liu, D.; Li, H.M.; Yan, S.L.; Li, R.T.; Chen, X.Q. Chemical compounds from Swertia bimaculata. Chem. Nat. Compd. 2018, 54: 964-969.
152. Wang, H.Q.; Peng, C.Z.; Chen, Y.G. Phenolics from Elaeocarpus braceanus. Chem. Nat. Compd. 2015, 51: 1167-1168.
153. Bai, X.; Pan, R.; Li, M.; Li, X.; Zhang, H. HPLC profile of longan (cv. shixia) pericarp-sourced phenolics and their antioxidant and cytotoxic effects. Molecules. 2019, 24: 619-628.
154. Lee, S.J.; Jang, H.J.; Kim, Y.; Oh, H.M.; Lee, S.y.; Jung, K.S.; Kim, Y.H.; Lee, W.S.; Lee, S.W.; Rho, M.C. Inhibitory effects of IL-6-induced STAT3 activation of bioactive compounds derived from Salvia plebeia R.Br. Process Biochem. 2016, 51: 2222-2229.
155. Andrea, H.; Thomas, S.; Andreas, L.; Schwager, J.; Christoph, M.S.; Irmgard, M. Plant phenolics inhibit neutrophil elastase. Planta Med. 2006, 72: 1127-1131.
156. Yoshida, T.; Amakura, Y.; Yoshimura, M. Structural features and biological properties of ellagitannins in some plant families of the order Myrtales. Int. J. Mol. Sci. 2010, 11: 79-106.
157. Schofield, P.; Mbugua, D.; Pell, A., Analysis of condensed tannins: A review. Anim. Feed. Sci. Tech. 2001, 91: 21-40.
158. Formagio, A.S.; Volobuff, C.R.; Santiago, M.; Cardoso, C.L.; Vieira, M.C.; Valdevina, P.Z. Evaluation of antioxidant activity, total flavonoids, tannins and phenolic compounds in Psychotria leaf extracts. Antioxidants (Basel). 2014, 3: 745-757.
159. Abid, M.; Yaich, H.; Cheikhrouhou, S.; Khemakhem, I.; Bouaziz, M.; Attia, H.; Ayadi, M.A. Antioxidant properties and phenolic profile characterization by LC-MS/MS of selected Tunisian pomegranate peels. J. Food. Sci. Technol. 2017, 54: 2890-2901.
160. Okuda, T.; Yoshida, T.; Ashida, M. Casuarictin and casuarinin, two new ellagitannins from Casuarina stricta. HETEROCYCLES, 1981, 16: 1681-1685.
161. Song, J.H.; Kang, K.S.; Choi, Y.K. Protective effect of casuarinin against glutamate-induced apoptosis in HT22 cells through inhibition of oxidative stress-mediated MAPK phosphorylation. Bioorg. Med. Chem. Lett. 2017, 27: 5109-5113.
162. Kuo, P.L.; Hsu, Y.L.; Lin, T.C.; Lin, L.T.; Chang, J.K.; Lin, C.C. Casuarinin from the bark of Terminalia arjuna induces apoptosis and cell cycle arrest in human breast adenocarcinoma MCF-7 cells. Planta Med. 2005, 71: 237-243
163. Kuo, P.L.; Hsu, Y.L.; Lin, T.C.; Lin, L.T.; Chang, J.K.; Lin, C.C. Induction of cell cycle arrest and apoptosis in human non-small cell lung cancer A549 cells by casuarinin from the bark of Terminalia arjuna Linn. Anti Cancer Drugs. 2005, 16: 409-415.
164. Kwon, D.J.; Bae, Y.S.; Ju, S.M.; Goh, A.R.; Choi, S.Y.; Park, J. Casuarinin suppresses TNF-alpha-induced ICAM-1 expression via blockade of NF-kappaB activation in HaCaT cells. Biochem. Biophys. Res. Commun. 2011, 409: 780-785.
165. Ajala, O.S.; Jukov, A.; Ma, C.M. Hepatitis C virus inhibitory hydrolysable tannins from the fruits of Terminalia chebula. Fitoterapia. 2014, 99: 117-123
連結至畢業學校之論文網頁點我開啟連結
註: 此連結為研究生畢業學校所提供,不一定有電子全文可供下載,若連結有誤,請點選上方之〝勘誤回報〞功能,我們會盡快修正,謝謝!
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top