Bayoumi, A., McCaslin, R. (2017) Internet of Things – A Predictive Maintenance Tool for General Machinery, Petrochemicals and Water Treatment. In: Bahei-El-Din Y., Hassan M. (eds) Advanced Technologies for Sustainable Systems. Lecture Notes in Networks and Systems, vol 4. Springer, Cham.
Beyer, K, et al.1999. When is “nearest neighbor” meaningful? In: International conference on database theory; 217-35.
Bloch, H. P. and F. K. Geitner. (1997) Major Process Equipment Maintenance and Repair. 2nd. Ed., Pratical Machinery Management for Process Plants, Vol. 4, Gulf Publishing Company.
BSI (2016). Petroleum, petrochemical and natural gas industries —Collection and exchange of reliability and maintenance data for equipment (ISO 14224). British Standard.
Burges, Christopher JC. 1998.A tutorial on support vector machines for pattern recognition. Data mining and knowledge discovery ; 2.2: 121-67.
Cao, L., Xia, Y., Wang, J., Zheng, G., Shen, Y., & Shan, T., (2017, July). Aviation bearing fault diagnosis method based on CHSMM. In Prognostics and System Health Management Conference (PHM-Harbin), 2017 (pp. 1-5).
Charles Becht &Larry Lester(2018): Petroleum and Process Industry Best Practices in Maintenance & Reliability. Becht Engineering. http://www.thequakergroup.com
Chebel-Morello, B., J.-M. Nicod and C. Varnier. (2017) From Prognostics and Health Systems Management to Predictive Maintenance, Mechanical Engineering and Solid Mechanics Series- Reliability of Multiphysical Systems Set, Vol. 7, John Wiley.
Chen, Y. (2017). Data Quality Assessment Methodology for Improved Prognostics Modeling. The University of Cincinnati , the degree of Doctor of Philosophy In the School of Dynamic Systems of the College of Engineering and Applied Science, Ohio, United States. Retrieved from:https://etd.ohiolink.edu/pg_10?0::NO:10:P10_ACCESSION_NUM:ucin1330024393
Cheng, H., Zeng, P., Xue, L., Shi, Z., Wang, P., & Yu, H. (2016). Manufacturing Ontology Development Based on Industry 4.0 Demonstration Production Line. 2016 Third International Conference on Trustworthy Systems and Their Applications (TSA), 42–47.
Devezas, T., J. Leitao and A. Sarygulov. (2017) Industry 4.0 Entrepreneurship and Structural Change in the New Digital Landscape. Springer.
Erol, S., Jäger, A., Hold, P., Ott, K., & Sihn, W. (2016). Tangible Industry 4.0: A Scenario-Based Approach to Learning for the Future of Production. Procedia CIRP, 54, 13–18. DOI:10.1016/j.procir.2016.03.162
Frank, A. G., Dalenogare, L. S., & Ayala, N. F. (2019). Industry 4.0 technologies: Implementation patterns in manufacturing companies. International Journal of Production Economics, 210, 15–26. https://doi.org/10.1016/j.ijpe.2019.01.004
Hegde, G.P., M. Seetha, N. Hegde. (2016) Kernel Locality Preserving Symmetrical Weighted Fisher Discriminant Analysis based subspace approach for expression recognition. Engineering Science and Technology, an International Journal, Vol 19, Iss 3, Pp 1321-1333 doi.org/10.1016/j.jestch.2016.03.005
Gilchrist, A. (2016) Industry 4.0, The Industrial Internet of Things..
Gorecky, D., Schmitt, M., Loskyll, M., & Zuhlke, D. (2014). Human-machine-interaction in the industry 4.0 era. 2014 12th IEEE International Conference on Industrial Informatics (INDIN), 289–294. DOI:10.1109/INDIN.2014.6945523
Hermann, M., Pentek, T., & Otto, B. (2015). Design Principles for Industries 4.0 Scenarios: A Literature Review. Working Paper· January 2015. DOI: 10.13140/RG.2.2.29269.22248
Haiyang, Z., Jindong, W., Lee, J., & Ying, L. (2018). A compound interpolation envelope local mean decomposition and its application for fault diagnosis of reciprocating compressors. Mechanical Systems And Signal Processing, 110, 273-295. D.O.I.10.1016/j.ymssp.2018.03.035
Hashemian, H. M. (2008) Predictive Maintenance of Critical Equipment in Industrial Processes, Lamar University Press.
Jia, X., Jin, C., Buzza, M., Di, Y., Siegel, D., & Lee, J. (2018). A deviation based assessment methodology for multiple machine health patterns classification and fault detection. Mechanical Systems And Signal Processing, 99, 244-261. doi.org/10.1016/j.ymssp.2017.06.015
Kiel, D., Müller, J. M., Arnold, C., & Voigt, K.-I. (2017). SUSTAINABLE INDUSTRIAL VALUE CREATION: BENEFITS AND CHALLENGES OF INDUSTRY 4.0. International Journal of Innovation Management, 21(08), 1740015.DOI: 10.1142/S1363919617400151
Lee J, Hossein Davari, Jaskaran Singh, Vibhor Pandhare.2018.Industrial Artificial Intelligence for industry 4.0-based manufacturing systems, Manufacturing Letters, 18, 20-23. DOI: 10.1016/j.mfglet.2018.09.002
Lee, J., Ardakani, H., Yang, S., & Bagheri, B. (2015). Industrial Big Data Analytics and Cyber-physical Systems for Future Maintenance & Service Innovation. Procedia CIRP, 38, 3-7. doi.org/10.1016/j.procir.2015.08.026
Lee, J., Kao, H., & Yang, S. (2014). Service Innovation and Smart Analytics for Industry 4.0 and Big Data Environment. Procedia CIRP, 16, 3-8. DOI: 10.1016/j.procir.2014.02.001
Lee, J., Bagheru, B. & KAO, H.-A. (2015). A Cyber Physical Systems Architecture for Industry 4.0-based Manufacturing Systems. Manufacturing Letters Volume 3, January 2015, Pages 18-23, doi.org/10.1016/j.mfglet.2014.12.001
Lee, J., Wu, F., Zhao, W., Ggaffari, M., Liao, L. & Siegel, D. (2014). Prognostics and health management design for rotary machinery systems—Reviews, methodology and applications. Mechanical Systems and Signal Processing, 42, 314-334. doi.org/10.1016/j.ymssp.2013.06.004
Lian, J., & Zhao, R. (2017). Fault diagnosis model based on NRS and EEMD for rolling-element bearing. In Prognostics and System Health Management Conference (PHM-Harbin), 2017(pp. 1-5).
Luo, S., Chu, V. W., Zhou, J., Chen, F., Wong, R. K., & Huang, W. (2017). A Multivariate Clustering Approach for Infrastructure Failure Predictions. In Big Data (BigData Congress), 2017 IEEE International Congress on (pp. 274-281).
Mika S, et al. (1999). Fisher discriminant analysis with kernels. In: Neural Networks for Signal Processing IX; 41-8. DOI: 10.1109/NNSP.1999.788121
Mounce, S. R. Ellis, K. Edwards, J. M. Speight, V. L. Jakomis, N. Boxall, J. B. (2017). Ensemble Decision Tree Models Using RUSBoost for Estimating Risk of Iron Failure in Drinking Water Distribution Systems. Water Resources Management, v. 31 Issue 5, p1575, 15 p. doi: 10.1007/s11269-017-1595-8
Natalia P, Colthurst T, Gilbert H, Salem H, Soroush R. 2017.Compact multi-class boosted trees. (2017) IEEE International Conference on Big Data (Big Data), 2017 IEEE International Conference on. :47-56, arXiv:1710.11547
Negandhi, V., L. Sreenivasan, R. Giffen, M. Sewak and A. Rajasekharan. (2015) IBM Predictive Maintenance and Quality 2.0 Technical Overview, Redbooks Publisher.
Nolan, F. and H. Heap. (1979) Reliability Centered Maintenance, National Technical Information Service Report, # A066-579.
Northerton, D. (2000) “RCM Standard” Maintenance & Asset Management, 15, 12-20.
Opitz, D., & Maclin, R. (1999). Popular Ensemble Methods: An Empirical Study. Journal of Artificial Intelligence Research, 11, 169–198. doi.org/10.1613/jair.614
Rato, T.J., & Reis, M.S. (2017). Multiresolution Soft Sensors: A New Class of Model Structures for Handling Multiresolution Data, Ind. Eng. Chem. Res., 56(13), pp. 3640-3654. DOI:10.1021/acs.iecr.6b04349
Reis, M.S., & Gins, G. (2017). Industrial Process Monitoring in the Big Data/Industry 4.0 Era: From Detection, to Diagnosis, to Prognosis. Processes, 5(35), pp. 1-16. DOI: 10.3390/pr5030035
Roderic DM. (2001). TreeView. Glasgow University, Glasgow, UK.
Sankavaram, C., Kodali, A., Pattipati, K. R., & Singh, S. (2015). Incremental classifiers for data-driven fault diagnosis applied to automotive systems. IEEE Access, 3, 407-419.
Scheffer, C. and P. Girdhar. (2004) Practical Machinery Vibration Analysis & Predictive Maintenance, Elsevier.
Sherwin, D. (2000) “A Review of Overall Models for Maintenance Management” Journal of Quality in Maintenance Engineering, 6, 138-64.
Sanders, A., Elangeswaran, C., & Wulfsberg, J. (2016). Industry 4.0 implies lean manufacturing: Research activities in industry 4.0 function as enablers for lean manufacturing. Journal of Industrial Engineering and Management, 9(3), 811.DOI: 10.3926/jiem.1940
Sun, J., Yan, C., & Wen, J. (2017). Intelligent Bearing Fault Diagnosis Method Combining Compressed Data Acquisition and Deep Learning, IEEE Transactions on Instrumentation and Measurement, DOI: 10.1109/TIM.2017.2759418.
Thomas H.-J. Uhlemann(2017).The Digital Twin: Realizing the Cyber-Physical Production System for Industry 4.0. Procedia CIRP.Vol 61, 2017, Pages 335-340. doi.org/10.1016/j.procir.2016.11.152
TOMAK, Özgür、KAYIKÇIOǦLU, T. (2018). Bagged tree classification of arrhythmia using wavelets for denoising, compression, and feature extraction. Turkish Journal of Electrical Engineering & Computer Sciences. 2018, Vol. 26 Issue 3, p1555-1571. 17p. doi:10.3906/elk-1706-247
Valdez, A. C., Brauner, P., Schaar, A. K., Holzinger, A., & Ziefle, M. (2015). Reducing Complexity with Simplicity - Usability Methods for Industry 4.0. IEA 2015, At Melbourne, Australia, Volume: 19. DOI: 10.13140/RG.2.1.4253.6809.
Venkatasubramanian, V., Rengaswamy, R., Yin, K., & Ka, S. N. (2003). A review of process fault detection and diagnosis Part I: Quantitative model-based methods. Computers and Chemical Engineering, 19.
Wang, J., Sun, C., Zhao, Z., & Chen, X. (2017). Feature ensemble learning using stacked denoising autoencoders for induction motor fault diagnosis. In Prognostics and System Health Management Conference (PHM-Harbin), 2017 (pp. 1-6).
Wagner, T., Herrmann, C., & Thiede, S. (2017). Industry 4.0 Impacts on Lean Production Systems. Procedia CIRP, 63, 125–131.DOI: 10.1016/j.procir.2017.02.041
Xu, X., Yan, X., Sheng, C., Yuan, C., Xu, D., & Yang, J. (2017). A Belief Rule-Based Expert System for Fault Diagnosis of Marine Diesel Engines. IEEE Transactions on Systems, Man, and Cybernetics: Systems.
Zhang, Boyu, Qin, A. K,Sellis, Timos. (2018) Evolutionary feature subspaces generation for ensemble classification. Genetic & Evolutionary Computation Conference; p577-584, 8p. doi:10.1145/3205455.3205638
李傑,(2016) 工業大數據:工業 4.0 時代的智慧轉型與價值創新,天下雜誌出版社。
李傑,(2017)From BigData to Intelligent Manufacturing and Service Innovation,前程文化。
李傑,(2019) 工業人工智慧,前程文化出版社。
行政院,(2015) 中華民國104年施政年鑑:104年行政院重要施政方針及施政成果,中華民國行政院出版。
美國通用電氣公司 (GE),(2016),工業互聯網:打破智慧與機器的邊界,機械工業出版社。
陳兆裕,(2016) “台灣石化產業對經濟的貢獻”,科學發展,9月,525期,48 ~ 54頁。
郭至恩,張純明,高振山,許世希,陳振和,蔡瑜潔,梁勝富,(2018) 先期開發與評估應用於石化業關鍵設備之智慧預知維護方法,勞動及職業安全衛生研究季刊 26: 1, 2018.03,頁1-8。
郭至恩,沈育霖,曹常成,張純明,高振山,許世希,邱俊憲,陳振和,蔡瑜潔,梁勝富,(2018) 應用於石化業關鍵設備之集成式智慧預知維護系統,勞動及職業安全衛生研究季刊,26:3 2018.09,頁141-150。
范振誠、林國權、陳育誠、陳明君、張怡雯、楊思亮、蕭亞漩(2017),2017石化產業年鑑。
簡禎富(2019) ,工業3.5:台灣企業邁向智慧製造與數位決策的戰略,天下雜誌出版社。
勤業眾信,(2018),智慧製造大解讀專題。
鐘偉珏(2017),工業4.0與豐田生產系統對三重底線永續發展之影響與分析,國立臺灣大學商學研究所碩士論文,台灣台北。