|
[1]Abadi, M., Barham, P., Chen, J., Chen, Z., Davis, A., Dean, J., ... & Kudlur, M. (2016). Tensorflow: A system for large-scale machine learning. In 12th {USENIX} Symposium on Operating Systems Design and Implementation ({OSDI} 16) (pp. 265-283). [2]Apache MXNet, Retrieved May 31, 2019, from https://mxnet.apache.org/ [3]Azevedo, A. I. R. L., & Santos, M. F. (2008). KDD, SEMMA and CRISP-DM: a parallel overview. IADS-DM. [4]Cattell, R. (2011). Scalable SQL and NoSQL data stores. Acm Sigmod Record, 39(4), 12-27. [5]Chen, L. (2015). Continuous delivery: Huge benefits, but challenges too. IEEE Software, 32(2), 50-54. [6]Chen, T., Li, M., Li, Y., Lin, M., Wang, N., Wang, M., ... & Zhang, Z. (2015). Mxnet: A flexible and efficient machine learning library for heterogeneous distributed systems. arXiv preprint arXiv:1512.01274. [7]Docker, Retrieved May 31, 2019, from https://www.docker.com/ [8]Fowler, M., & Foemmel, M. (2006). Continuous integration. Thought-Works) http://www. thoughtworks. com/Continuous Integration. pdf, 122, 14. [9]Ghemawat, S., Gobioff, H., & Leung, S. T. (2003). The Google file system. [10]Girshick, R. (2015). Fast r-cnn. In Proceedings of the IEEE international conference on computer vision (pp. 1440-1448). [11]Girshick, R., Donahue, J., Darrell, T., & Malik, J. (2014). Rich feature hierarchies for accurate object detection and semantic segmentation. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 580-587). [12]Grafana, Retrieved May 31, 2019, from https://grafana.com/ [13]InfluxDB, Retrieved May 31, 2019, from https://www.influxdata.com/ [14]Katal, A., Wazid, M., & Goudar, R. H. (2013). Big data: Issues, challenges, tools and Good practices. 2013 Sixth International Conference on Contemporary Computing (IC3). doi:10.1109/ic3.2013.6612229 [15]Krizhevsky, A., Sutskever, I., & Hinton, G. E. (2012). Imagenet classification with deep convolutional neural networks. In Advances in neural information processing systems (pp. 1097-1105). [16]LeCun, Y., Bengio, Y., & Hinton, G. (2015). Deep learning. Nature, 521(7553), 436–444. doi:10.1038/nature14539 [17]Mikolov, T., Karafiát, M., Burget, L., Černocký, J., & Khudanpur, S. (2010). Recurrent neural network based language model. In Eleventh annual conference of the international speech communication association. [18]Mitchell, T., Buchanan, B., DeJong, G., Dietterich, T., Rosenbloom, P., & Waibel, A. (1990). Machine Learning. Annual Review of Computer Science, 4(1), 417–433. doi:10.1146/annurev.cs.04.060190.002221 [19]Nvidia Docker, Retrieved May 31, 2019, from https://github.com/NVIDIA/nvidia-docker [20]Paszke, A., Gross, S., Chintala, S., Chanan, G., Yang, E., DeVito, Z., ... & Lerer, A. (2017). Automatic differentiation in pytorch. [21]Pytorch, Retrieved May 31, 2019, from https://pytorch.org/ [22]Ren, S., He, K., Girshick, R., & Sun, J. (2015). Faster r-cnn: Towards real-time object detection with region proposal networks. In Advances in neural information processing systems (pp. 91-99). [23]Sharif Razavian, A., Azizpour, H., Sullivan, J., & Carlsson, S. (2014). CNN features off-the-shelf: an astounding baseline for recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition workshops (pp. 806-813). [24]Shvachko, K., Kuang, H., Radia, S., & Chansler, R. (2010, May). The hadoop distributed file system. In MSST (Vol. 10, pp. 1-10). [25]Tensorflow, Retrieved May 31, 2019, from https://www.tensorflow.org/ [26]Turing, A. M. (2009). Computing machinery and intelligence. In Parsing the Turing Test (pp. 23-65). Springer, Dordrecht. [27]Vavilapalli, V. K., Murthy, A. C., Douglas, C., Agarwal, S., Konar, M., Evans, R., ... & Saha, B. (2013, October). Apache hadoop yarn: Yet another resource negotiator. In Proceedings of the 4th annual Symposium on Cloud Computing (p. 5). ACM. [28]Where does AlphaGo go: from church-turing thesis to AlphaGo thesis and beyond. (2016). IEEE/CAA Journal of Automatica Sinica, 3(2), 113–120. doi:10.1109/jas.2016.7471613 [29]Wirth, R., & Hipp, J. (2000, April). CRISP-DM: Towards a standard process model for data mining. In Proceedings of the 4th international conference on the practical applications of knowledge discovery and data mining (pp. 29-39). Citeseer. [30]張淂福(2019年09月25日) 。談安防監控的大數據與智慧影像分析技術。全球安防科技網。取自https://www.asmag.com.tw/showpost/10837.aspx
|