(3.235.25.169) 您好!臺灣時間:2021/04/20 03:10
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果

詳目顯示:::

我願授權國圖
: 
twitterline
研究生:林伯勳
研究生(外文):Boh-Shiun Lin
論文名稱:元宵節鹽水蜂炮節慶之大氣微粒分階濃度增量潛勢 及其化學特性研究
論文名稱(外文):Incremental Potential of Ambient Particles Bound Size-fractional Chemical Compounds Caused by the Yanshuei Beehive Fireworks Festival of Bombarding Celebration in Southern Taiwan
指導教授:蔡瀛逸蔡瀛逸引用關係
指導教授(外文):Ying-I Tsai
口試委員:王琳麒楊禮豪
口試委員(外文):Lin-Chi WangLi-Hao Young
口試日期:2019-01-29
學位類別:碩士
校院名稱:嘉南藥理大學
系所名稱:環境工程與科學系
學門:工程學門
學類:環境工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:141
中文關鍵詞:元宵節鹽水國中鹽水武廟蜂炮煙火節慶氣膠無機鹽類羧酸脫水醣類粒徑分布增量潛勢
外文關鍵詞:Lantern festivalYanshuei Junior High SchoolYanshuei Templebeehive fireworkfestival aerosolinorganic saltscarboxylatesdehydrated sucroseparticle size distributionincremental potential
相關次數:
  • 被引用被引用:2
  • 點閱點閱:102
  • 評分評分:系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔系統版面圖檔
  • 下載下載:1
  • 收藏至我的研究室書目清單書目收藏:0
本研究探討民俗節慶大氣增量潛勢及化學組成特性變異,針對元宵節慶之前中後期,在近於鹽水蜂炮施放活動源鹽水武廟會館頂樓及活動潛在下風處臺南鹽水國中頂樓,進行大氣氣膠同步採樣集研究,主要探討氣膠物種的無機鹽類、羧酸、醣醇類、脫水醣類、有機碳之特性,以瞭解臺灣鹽水蜂炮活動期間的大氣環境氣膠化學組成及粒徑分布特性。
研究期間位於鹽水國中PM2.5無機鹽類全日平均濃度高低分別為SO42- > NO3- > NH4+ > K+ > Cl-,與一般都市大氣環境相似,以光化產物為氣膠主要組成,然而元宵節蜂炮活動當晚,鹽水國中及武廟的PM2.5中發現含高濃度的K+,分別為元宵節前期的98.6及24.3倍,及高濃度Cl-為元宵節前期的17.2倍及4.6倍,並在代表活動下風處的鹽水國中呈現PM2.5氣膠K+及Cl-的巨大增量。此外,PM2.5之Ca2+、Mg2+、NO3-及nss-SO42- (non-sea salt sulfate)濃度皆較元宵節活動前期上升,甚至僅在元宵節當晚發現高濃度的Sr2+、Ba2+及CrO42-,顯示元宵節煙火炮竹的燃放不僅使上述一般無機鹽類濃度明顯上升且有特殊金屬鹽類的出現。無論元宵節前後及蜂炮施放期間鹽水區域大氣PM2.5及PM10羧酸均以oxalate, lactate及acetate為主要物種,但在鹽水國中PM2.5及PM10的maleate濃度從元宵節前期平均的6.9±2.6 ng/m3、9.8±9.6 ng/m3增加至元宵節當晚的404.8 ng/m3、934.6 ng/m3,雖然元宵節期間以東北風為盛行風向,代表蜂炮活動上風處的鹽水武廟PM2.5及PM10的maleate濃度亦有88.7%及41.7%的濃度增量,但相較下風處的鹽水國中,其maleate濃度較元宵節前明顯增加了近58倍及95倍,顯示蜂炮活動期間大量煙火炮竹的燃放使環境氣膠特定物種明顯增量,也發現Sr2+、Ba2+、CrO42-及maleate等煙火燃放微粒的重要指標物種。再者,代表生質燃燒物種之levoglucosan在活動當晚的鹽水國中,PM2.5及PM10微粒levoglucosan濃度分別為246.9 ng/m3及588.8 ng/m3,為元宵活動前的16.0倍及12.9倍,而元宵節當晚的鹽水國中PM2.5及PM10微粒levoglucosan濃度分別為上風處的鹽水武廟的2.39及2.56倍,顯示元宵節慶鹽水蜂炮排放燃燒爆竹所含生質包材纖維及材料的燃燒特定指標物種,在元宵節期間有明顯增量貢獻。
元宵節期間鹽水武廟及鹽水國中之氣膠質量濃度增量主要在0.18~1.8 μm的粒徑範圍,尤其在粒徑0.54~1.0 μm的質量濃度為元宵節前的6~7倍,而鹽水國中在粒徑0.54 μm的微粒質量濃度較上風處的鹽水武廟高出78.6%,明顯受蜂炮煙火排放增量所影響,其中氣膠的Na+、Cl-、K+、Mg2+、Ca2+及nss-SO42-的濃度粒徑分布多在submicron droplet mode (0.32~1.0 μm) 及micron droplet mode (1.0~2.5 μm)有明顯增量。比較元宵節前已顯著存在submicron droplet mode粒徑範圍的光化產物nss-SO42-及oxalate,生質燃燒指標之物種levoglucosan在元宵節前的低濃度,但在元宵節期間此三物種在0.32~1.0 μm的submicron droplet mode同步增量,顯示此時的nss-SO42-及oxalate的增量為蜂炮煙火微粒的原生性組成,尤其levoglucosan在0.54~1.0 μm的濃度增量近13倍,元宵節後levoglucosan又逐漸回復至元宵節前的濃度概量,而大氣氣膠組成在元宵節後仍以nss-SO42-及oxalate為主要物種,顯示元宵節期間大氣光化產物與元宵節節慶燃放蜂炮煙火的原生產物同時累存在submicron droplet mode的粒徑範圍。此外,鹽水元宵蜂炮煙火氣膠存在特殊金屬鹽類Sr2+及Ba2+濃度分布主要在micron droplet mode及submicron droplet mode粒徑範圍,對近距離參與及觀看蜂炮煙火施放的遊客與當地居民存在潛在的健康風險。
Abstract

This study investigated the incremental potential and the characteristic variation of chemical composition in the atmosphere during the pre-lantern festival (pre-LF), lantern festival (LF), and post-LF periods on the rooftop of Yanshuei Martial Temple (the Temple), where beehive fireworks were displayed, and at the rooftop of the Yanshuei Junior High School (the School), which was on the lee side of the display. Aerosol samples at both sites were collected at the same time for research. The aerosol compounds focused on in this study included inorganic species, carboxylates, sugar alcohols, anhydrosugars, and organic carbon. The aim of this study was to identify the aerosol chemical species and assess the particle size distribution during the beehive firework display in Yanshuei, southern Taiwan.
During the research period, the mean concentrations of inorganic salts in PM2.5 for an entire day were SO42− > NO3− > NH4+ > K+ > Cl−, which was similar to that of the general city atmosphere in that the main components of aerosols were photochemical products. In the evening of the LF beehive firework display, high concentrations of K+ in PM2.5 were observed in the School and the Temple, 98.6 and 24.3 times higher than pre-LF, respectively. Likewise, concentrations of Cl− at the two locations were also detected to be 17.2 and 4.6 times as high as its pre-LF values, respectively. These discoveries indicated substantial increases in aerosol K+ and Cl− in PM2.5 at the school, which was located on the lee side of the display. Additionally, Ca2+, Mg2+, NO3−, and nss-SO42− (non-sea salt sulfate) in PM2.5 were all higher than in pre-LF. In the evening of LF, high concentrations of Sr2+, Ba2+, and toxic CrO42− were surprisingly detected, demonstrating that the LF firework display substantially increased the aforementioned general inorganic salt concentrations but also created special metallic salts. In the Yanshuei area, the primary species of carboxylates in PM2.5 and PM10 pre-LF, LF, and post-LF were all oxalate, lactate, and acetate. At the school, however, the maleate concentration in PM2.5 and PM10 increased from the average of 6.9 ± 2.6 ng/m3 and 9.8 ± 9.6 ng/m3 pre-LF to 404.8 ng/m3 and 934.6 ng/m3 during the LF, respectively. Although the wind was predominately blowing from the northeast during the LF, the temple upwind from the beehive firework display still exhibited an 88.7% and 41.7% increase in maleate concentration in PM2.5 and PM10, respectively. By contrast, the school, which was downwind from the display, exhibited an increase of nearly 58 times and 95 times the original maleate concentration, indicating that during the beehive activity, the burning of a large quantity of fireworks increased the amount of specific aerosol species in the environment. Additionally, indicator species of firework burning were detected, including Sr2+, Ba2+, toxic CrO42− and maleate. Levoglucosan, which is indicative of biomass burning, exhibited concentrations in PM2.5 and PM10 of 246.9 ng/m3 and 588.8 ng/m3 in LF, which were 16.0 and 12.9 times higher than their pre-LF values, respectively. During the LF, the levoglucosan concentration in PM2.5 and PM10 at the school was 2.39 and 2.56 times higher than that at the temple upwind, indicating that the composition of the beehive firework burned during the festival included biomaterial wrapping fiber and specific indicator species, the prevalence of which substantially increased during the LF.
Moreover, the increases in aerosol mass concentration during the LF in both sites were primarily reflected in the particles ranging from 0.18 μm to 1.8 μm in size. In particular, the mass concentration of particles with a size of 0.54–1.0 μm increased to 6–7 times to its value pre-LF. The mass concentration of particles with a size of 0.54 μm at the school was 78.6% higher than at the temple upwind, which clearly indicated the influence of the beehive firework display. The particle distribution of Na+, Cl−, K+, Mg2+, Ca2+, and nss-SO42− in the aerosol was primarily increased in the submicron droplet mode (0.32–1.0 μm) and the micron droplet mode (1.0–2.5 μm). Different from the photochemical products nss-SO42− and oxalate, which had comprised substantial parts of pre-LF aerosol in the submicron droplet mode, levoglucosan, an indicator species of biomass burning, originally had a low concentration. However, the quantity of all of these three species increased during the LF in the submicron droplet mode with a size of 0.32–1.0 μm. This indicated that at this time, the increase in nss-SO42− and oxalate production was caused by submicron particles emitted during the beehive firework display. The concentration of levoglucosan in the range of 0.54–1.0 μm increased by nearly 13 fold and then gradually decreased to the pre-LF level after the festival. The major components in the post-LF aerosols were still primarily nss-SO42− and oxalate, indicating that during LF, the photochemical products in the atmosphere and the original products from beehive firework burning are both accumulated in the range of the submicron droplet mode. In addition, aerosols collected from the Yanshuei LF beehive firework display contained special metal salts Sr2+ and Ba2+, which primarily fell in the micron droplet mode and the submicron droplet mode in terms of particle size. Such species pose potential health threats to tourists and local residents who participated or viewed the beehive firework in close proximity.

Keywords: Lantern festival, Yanshuei Junior High School, Yanshuei Temple, beehive firework, festival aerosol, inorganic salts, carboxylates, anhydrosugars, particle size distribution, incremental potential


目錄
摘要 I
Abstract IV
誌謝 VII
目錄 VIII
圖目錄 XII
表目錄 XV
第一章 前言 1
1-1 研究緣起 1
1-2 研究目的 3
第二章 文獻回顧 5
2-1 大氣氣膠微粒形成機制 5
2-2 酸鹼氣體 7
2-3 水溶性氣膠化學組成來源、特性及粒徑分布 8
2-3-1 大氣氣膠及煙火炮竹無機鹽組成及質量濃度分布 8
2-3-2 大氣氣膠無機鹽之粒徑分布 11
2-3-3 大氣氣膠與煙火炮竹羧酸之生成及來源 13
2-3-4 大氣氣膠醣類、醣醇類及脫水醣類之生成機制和特性 17
2-4 大氣氣膠碳成分 20
2-5 重金屬 21
2-5-1 重金屬與煙火 21
第三章 研究設備與方法 24
3-1 採樣地點及採樣時間 24
3-2 台南鹽水地區風向及環境狀況 26
3-3 採樣方法及設備 29
3-4 濾紙採樣前後處理 36
3-5 蜂巢管氣膠之前後處裡 39
3-6 樣品分析及分析儀器設備 40
3-6-1 陽離子分析 40
3-6-2 有機酸與陰離子分析 42
3-6-3 醣類、脫水醣類及醣醇類分析 47
3-6-4 含碳量分析 50
3-7 樣品分析之品保品管 50
第四章 元宵節時期空氣品質之大氣氣膠氣狀物之探討 52
4-1 元宵節時期鹽水國中大氣氣膠氣狀污染物之全日濃度之探討 52
第五章 台南鹽水區元宵節時期之大氣氣膠組成特性 54
5-1 元宵節時期之PM2.5 & PM10無機鹽類之特性 54
5-1-1 鹽水武廟PM2.5及PM10無機鹽類之變異 54
5-1-2 鹽水國中PM2.5及PM10無機鹽類之變異 56
5-1-3 元宵節當晚之特殊污染物 57
5-2 元宵節時期之PM2.5 & PM10羧酸之變異 63
5-2-1 鹽水武廟PM2.5 & PM10羧酸之變異 63
5-2-2 鹽水國中PM2.5 & PM10羧酸之變異 64
5-3 元宵節時期之PM2.5 & PM10醣醇類及脫水醣類之變異 71
5-3-1 鹽水武廟PM2.5 & PM10醣醇類及脫水醣類之變異 71
5-3-2 鹽水國中PM2.5 & PM10醣醇類及脫水醣類之變異 74
5-4 元宵節期間全日成分比例比較 81
5-4-1 活動前期之全日成分比例 81
5-4-2 元宵節活動當晚成分比例 90
5-5 元宵節各時期PM2.5及PM10之NR及NR plus Ca2+值 98
第六章 元宵節時即鹽水蜂炮大氣氣膠組成粒徑分布特性 100
6-1 鹽水武廟與鹽水國中大氣氣膠質量濃度粒徑分布 100
6-2 鹽水武廟及鹽水國中大氣氣膠各物種之粒徑分布與佔比狀況 102
6-2-1 鹽水武廟及鹽水國中大氣氣膠無機鹽類之粒徑分布與佔比 102
6-2-2 鹽水武廟及鹽水國中大氣氣膠羧酸之粒徑分布與佔比 117
6-2-3 鹽水武廟及鹽水國中大氣氣膠醣類之粒徑分布與佔比 122
6-2-4 鹽水武廟及鹽水國中大氣氣膠特殊物種之粒徑分布與佔比 124
6-3 鹽水武廟及鹽水國中大氣氣膠NR及NR plus Ca2+之粒徑分布 126
第七章 結論與建議 128
7-1 結論 128
7-2 建議 132
參考文獻 133


參考文獻
Ambade, B.J., 2018. The air pollution during Diwali festival by the burning of fireworks in Jamshedpur city, India. Urban Climate 26, 149-160.
Attri, A.K., Kumar, U., Jain, V.K., 2001. Microclimate formation of ozone by fireworks. Nature 411, 1015.
Barbaro, E., Kirchgeorg, T., Zangrando, R., Vechiato, M., Piazza, R., Barbante, C., Gambaro, A., 2015. Sugars in Antarctic aerosol. Atmospheric Environment 118, 135-144.
Bardouki, H., Liakakou, J., Economou, C., Sciare, J., Smolík, J., Ždímal, V., Eleftheriadis, K., Lazaridis, M., Dye, C., Mihalopoulos, N., 2003. Chemical composition of size-resolved atmospheric aerosols in the eastern Mediterranean during summer and winter. Atmospheric Environment 37, 195-208.
Bari, A., Ferraro, V., Wilson, L.R., Luttinger, D., Husain, L., 2003. Measurements of gaseous HONO, HNO3, SO2, HCl, NH3, particulate sulfate and PM2.5 in New York, NY. Atmospheric Environment 37, 2825-2835.
Berico, M., Luciani, A., Formignani, M., 1997. Atmospheric aerosol in an urban area—measurements of TSP and PM10 standards and pulmonary deposition assessments. Atmospheric Environment 31, 3659-3665.
Brook, R.D., Franklin, B., Cascio, W., Hong, Y., Howard, G., Lipsett, M., Luepker, R., Mittleman, M., Samet, J., Smith, S.C.J., Tager, I., 2004. Air pollution and cardiovascular disease: a statement for healthcare professionals from the expert panel on population and prevention science of the American Heart Association. American Heart Association 109, 2655-2671.
Caseiro, A., Marr, I.L., Claeys, M., Kasper-Giebl, A., Puxbaum, H., Pio, C.A., 2007. Determination of saccharides in atmospheric aerosol using anion-exchange high-performance liquid chromatography and pulsed-amperometric detection. Journal of Chromatography A 1171, 37-45.
Chebbi, A., Carlier, P., 1996. Carboxylic acids in the troposphere, occurrence, sources, and sinks: A review. Atmospheric Environment 30, 4233-4249.
Chen, J., Kawamura, K., Liu, C.Q., Fu, P., 2013. Long-term observations of saccharides in remote marine aerosols from the western North Pacific: A comparison between 1990–1993 and 2006–2009 periods. Atmospheric Environment 67, 448-458.
Cheng, M.T., Tsai, Y.I., 2000. Characterization of visibility and atmospheric aerosols in urban, suburban, and remote areas. Science of the Total Environment 263, 101-114.
Chow, J.C., Watson, J.G., Fujita, E.M., Lu, Z., Lawson, D.R., 1994. Temporal and spatial variation of PM2.5 and PM10 aerosols in the Southern California air quality study. Atmospheric Environment 28, 2061-2080.
Day, D.E., Malm, W.C., Kreidenweis, S.M., 1997. Seasonal variations in aerosol composition and acidity at Shenandoah and Great Smoky Mountains national parks. Journal of the Air & Waste Management Association 47, 411-418.
Drewnick, F., Hings, S.S., Cutius, J., Eerdekens, G., Williams, J., 2006. Measurement of fine particulate matter and gas-phase species during the new year’s fireworks 2005 in Mainz, Germany. Atmospheric Environment 40, 4316-4327.
Dutcher, D.D., Perry, K.D., Cahill, T.A., Copeland, S.A., 1999. Effects of indoor pyrotechnic displays on the air quality in the Houston Astrodome. Journal of Air & Waste Management Association 49, 156-160.
Grosjean, D., 1989. Organic acids in southern California air: ambient concentrations, mobile source emissions, in-situ formation and removal processes. Environmental Science and Technology 23, 1504-1506.

Hartmann, W.R., Santana, M., Hermoso, M., Andreae, M.O., Sanhueza, E., 1991. Diurnal cycles of formic and acetic acids in the northern part of Guyana shield, Venezuela. Journal of Atmospheric Chemistry 13, 63-72
Hatakeyama, S., Ohno, M., Weng, J., Takagi, H., Akimoto, H., 1987. Identification of C2-C10 ω-oxocarboxylic acids, pyruvic acid and C2-C3 α-dicarbonyls. Environmental Science and Technology 21, 52-63.
Hsieh, L.Y., Chen, C.L., Wan, M.-W., Tsai, Y.I., 2008. Speciation and temporal characterization of dicarboxylic acids in PM2.5 during a PM episode and a period of non-episodic pollution. Atmospheric Environment 42, 6836-6850.
Hsieh, L.Y., Kuo, S.C., Chen, C.L., Tsai, Y.I., 2007. Origin of low-molecular-weight dicarboxylic acids and their concentration and size distribution variation in suburban aerosol. Atmospheric Environment 41, 6648-6661.
Hsieh, L.Y., Kuo, S.C., Chen, C.L., Tsai, Y.I., 2009. Size distributions of nano/micron dicarboxylic acids and inorganic ions in suburban PM episode and non-episodic aerosol. Atmospheric Environment 43, 4396-4406.
Hsieh, N.H., Liao, C.M., 2013. Assessing exposure risk for dust storm events-associated lung function decrement in asthmatics and implications for control. Atmospheric Environment 68, 256-264.
John, W., Wall, S.M., Ondo, J.L., Winklmayr, W., 1990. Modes in the size distributions of atmospheric inorganic aerosol. Atmospheric Environment 24, 2349-2359.
Jung, J., Kawamura, K., 2011. Enhanced concentrations of citric acid in spring aerosols collected at the Gosan background site in East Asia. Atmospheric Environment 45, 5266-5272.
Kaneyasu, N., Ohta, S., Murao, N., 1995. Seasonal variation in the chemical composition of atmospheric aerosols and gaseous species in Sapporo, Japan. Atmospheric Environment 29, 1559-1568.
Kawamura, K., Ikushima, K., 1993. Seasonal changes in the distribution of dicarboxylic acids in the urban atmosphere. Environmental Science and Technology 27, 2227-2235.
Kawamura, K., Kaplan, I.R., 1987. Motor exhaust emission as a primary source for dicarboxylic acids in Los Angeles ambient air. Environmental Science and Technology 21, 105-110.
Kawamura, K., Kasukabe, H., Barrie, L.A., 1996a. Source and reaction pathways of dicarboxylic acids, ketoacids and dicarbonyls in Arctic aerosols: One year of observations. Atmospheric Environment 30, 1709-1722.
Kawamura, K., Sakaguchi, F., 1999. Molecular distribution of water soluble dicarboxylic acids in marine aerosols over the Pacific Ocean including tropics. Journal of Geophysical Research 104, 3501-3509.
Kerminen, V.M., Teinila, K., Hillamo, R., Pakkanen, T., 1998. Substitution of chloride in sea-salt particles by inorganic and organic anions. Journal of Aerosol Science 29, 929-942.
Kulshrestha, U.C., Nageswara Rao, T., Azhaguvel, S., Kulshrestha, M.J., 2004. Emissions and accumulation of metals in the atmosphere due to crackers and sparkles during Diwali festival in India. Atmospheric Environment 38, 4421-4425.
Lin, C.C., Tsai, J.H., Huang, K.L., Yeh, K.J., Chen, H.L., Chen, S.J., Lee, J.T Hsieh, Y.C., 2016. Characteristics of respirable particulate metals emitted by a beehive firework display in Yanshuei area of Southern Taiwan. Aerosol and Air Quality Research 16, 2227-2236.
Lee, J.H., Kim, Y.P., Moon, K.C., Kim, H,K., Lee, C.B., 2001. Fine particle measurements at two background sites in Korea between 1996 and 1997. Atmospheric Environment 35, 635-643.
Lee, J.J., Engling. G., Lung, S.C.C., Lee, K.Y., 2008. Particle size characteristics of levoglucosan in ambient aerosols from rice straw burning. Atmospheric Environment 42, 8300-8308.
Leithead, A., Li, S.M., Hoff, R., Cheng, Y., Brook, J., 2006. Levoglucosan and dehydroabietic acid: evidence of biomass burning impact on aerosols in the lower fraser Valley. Atmospheric Environment 40, 2721-2734.
Leiva, G.M.A., Santibañez, D.A., Ibarra, E.S., Matus, C.P., Segul, R., 2013. A five-year study of particulate matter (PM2.5) and cerebrovascular diseases. Environ Pollution 181, 1-6.
Li, W., Shi, Z., Yan, C., Yang, L., Dong, C., & Wang, W.J., 2013. Individual metal-bearing particles in a regional haze caused by firecracker and firework emissions. Science of The Total Environment 443, 464-469.
Lin, J.J., 2002. Characterization of water-soluble ion species in urban particles. Environment International 28, 55-61.
Liu, D.Y., Rutherford, D., Kinsey, M., Prather, K.A., 1997. Realtime monitoring of pyrotechnically derived aerosol particles in the troposphere. Analytical Chemistry 69, 1808-1814.
Lonati, G., Giugliano, M., Butelli, P., Romele, L., Tardivo, R., 2005. Major chemical components of PM2.5 in Milan (Italy). Atmospheric Environment 39, 1925-1934.
Lundgren, D.A. Burton, R.M.M., 1995. Effect of particle size distribution on the cut point between fine and coarse ambient mass fractions. Inhalation Toxicology 7, 131-148.
Mayer, H., 1999. Air pollution in cities. Atmospheric Environment 33, 4029-4037.
Moya, M., Castro, T., Zepeda, M., Baez, A., 2003. Characterization of size differentiated inorganic composition of aerosols in Mexico City. Atmospheric Environment 37, 3581-3591.
Oberdörster, G., Oberdörster, E., Oberdörster, J., 2005. Nanotoxicology: an emerging discipline evolving from studies of ultrafine particles. Environmental health perspectives 113, 823-839.
Perry, K.D., 1999. Effects of outdoor pyrotechnic displays on the regional air quality of Western Washington State. Journal of Air and Waste Management Association 49, 146-155.
Possanzini, M., De Santis, F., & Di Palo, V., 1999. Measurements of nitric acid and ammonium salts in lower Bavaria. Atmospheric Environment 33, 3597-3602.
Robarge, W.P., Walker, J.T., McCulloch, R.B., Murray, G., 2002. Atmospheric concentrations of ammnonia and ammonium at an agricultural site in the southeast United States. Atmospheric Environment 36, 1661-1674.
Rogge, W.F., Mazurek, M.A., Hildemann, L.M., Cass, G.R., Simoneit, B.R.T., 1993. Quantification of urban organic aerosols at a molecular level: Identification, abundance and seasonal variation. Atmospheric Environment 27, 1309-1330.
Saxena, P., Hildemann, L.M., McMurry. P.H., Seinfeld, J.H., 1995. Organics alter hygroscopic behavior of atmospheric particles. Journal of Geophysical Research 100, 18755-18770.
Seinfeld, J.H., Pandis, S.N., 1998. Atmospheric Chemistry and Physics. Form Air Pollution to Climate Change. Wiley, New York, 1326.
Simoneit, B.R.T., Schauer, J.J., Nolte, C.G., Oros, D.R., Elias, V.O., Fraser, M.P., Rogge, W.F., Cass, G.R., 1999. Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmospheric Environment 33, 173-182.
Spengler, J. D., Brauer, M., Koutrakis, P., 1990. Acid air and health. Environmental Science and Technology 24, 946-956.
Sun, J., Ariya, P.A., 2006. Atmospheric organic and bio-aerosols as cloud condensation nuclei (CCN): A review. Atmospheric Environment 40, 795-820.
Talbot, R.W., Beecher, K.M., Harris, R.C., Cofer, R.W., 1988. Atmospheric geochemistry of formic and acetic acids at a midlatitude temperate site. Journal of Geophysical Research 93,1638-1652.
Tsai, Y,I., Kuo, S.C., 2005. PM2.5 aerosol water content and chemical composition in a metropolitan and a coastal area in southern Taiwan. Atmospheric Environment 39, 4827-4839.
Tsai, Y.I., Chen, C.L., 2006. Characterization of Asian dust storm and non-Asian dust storm PM2.5 aerosol in southern Taiwan. Atmospheric Environment 40, 4734-4750.
Tsai, Y.I., Hsieh, L.Y., Weng, T.H., Ma, Y.C., Kuo, S.C., 2008. A novel method for determination of low molecular weight dicarboxylic acids in background atmospheric aerosol using ion chromatography. Analytica Chimica Acta 626, 78-88.
Tsai, Y.I., Sopajaree, K., Kuo, S.C., Yu, S.P., 2015b. Potential PM2.5 impacts of festival-related burning and other inputs on air quality in an urban area of southern Taiwan. Science of the Total Environment 527-528, 65-79.
Turpin, B.J., Huntzicker, J.J., 1995. Identification of secondary organic aerosol episodes and quantification of primary and secondry organic aerosol concentrations during SCAQS. Atmospheric Environment 29, 3527-3544.
Urbansky, E.T., 1998. Perchlorate chemistry: implications for analysis and remediation. Biorem. J. 2, 81-95.
Vecchi, R., Bernardoni, V., Cricchioa, D., D’Alessandroa, A., Fermob, P., Lucarellic, F., Navad, S., Piazzalungab, A., Vallia, G., 2008. The impact of fireworks on airborne particles. Atmospheric Environment 42, 1121-1132.
Vella, A. J., Chircop, C., Micallef, T., & Pace, C.J., 2015. Perchlorate in dust fall and indoor dust in Malta: An effect of fireworks. Science of The Total Environment 521, 46-51.
Wang, Y., Zhuang, G., Chen, S., An, Z., Zheng, A., 2007. Characteristics and sources of formic, acetic and oxalic acids in PM2.5 and PM10 aerosols in Beijing, China. Atmospheric Research 84, 169-181.
Wang, Y., Zhuang, G., Xu, C., An, Z., 2007. The air pollution caused by the burning of fireworks during the lantern festival in Beijing. Atmospheric Environment 41, 417-431.
Watson, J.G., Chow, J.C., Lu, Z., Fujita, E.M., Lowenthal, D.H., Lawson, D.R., Ashbaugh, L.L., 1994. Chemical Mass Balance Source Apportionment of PM10 during the Southern California Air Quality Study. Aerosol Science and Technology 21, 1-36.
Yan, C., Zheng, M., Sullivan, A. P., Shen, G., Chen, Y., Wang, S., 2018. Residential Coal Combustion as a Source of Levoglucosan in China. American Chemical Society 52, 1665-1674.
Yao, X., Chan, C.K., Fang, M., Ho, K.F., Lee, S.C., 2004. Characterization of dicarboxylic acids in PM2.5 in Hong Kong. Atmospheric Environment 38, 963-970.
Yu, S., 2000. Role of organic acids formic, acetic, pyruvic and oxalic in the formation of cloud condensation nuclei CCN: a review. Atmospheric Research 53, 185-217.
Zhao, Y., Wang, S., Lang, l., Huang, C., Ma, W.,Lin, H., 2017. Ambient fine and coarse particulate matter pollution and respiratory morbidity in Dongguan, China. Environmental Pollution 222, 126-131.
Zhuang, H., Chan, C.K., Fang, M., Wexler, A.S., 1999. Size distribution of particulate sulfate, nitrate and ammonium at a coastal site in Hong Kong. Atmospheric Environment 33, 843-853.
王鈺銘,「施放高空煙火對環境空氣品質之影響-以台灣澎湖花火節為例」,大仁科技大學環境管理研究所碩士論文,屏東,2012。
尤嵩博,「市區秋季之大氣氣膠化學組成及粒徑分佈之特性研究」,嘉南藥理大學環境工程與科學系研究所碩士論文,台南,2012。
辛亭誼,「恆春半島空曠大氣氣膠化學組成及粒徑分布特性研究 」,嘉南藥理大學環境工程與科學系研究所碩士論文,台南,2014。
李俊佑,「郊區秋季之大氣氣膠無機鹽類及羧酸之特性及其粒徑變異研究」,嘉南藥理大學環境工程與科學系研究所碩士論文,台南,2010。
邱玉萍,「鹽水蜂炮對大氣細懸浮微粒影響之研究」,國立屏東科技大學環境工程與科學系所碩士論文,屏東,2014。
翁子翔,「背景與郊區大氣氣膠無機鹽類及二元有機酸之化學特性及其粒徑變異研究」,嘉南藥理大學環境工程與科學系研究所碩士論文,台南,2006。
馬玉芊,「低海拔偏遠地區及平地郊區之大氣氣膠二元有機酸之化學特性及其粒徑變異研究」,嘉南藥理大學環境工程與科學系研究所碩士論文,台南,2008。
陳鈺萍,「偏遠沿海之大氣氣膠化學組成及數目粒徑特性研究」,嘉南藥理大學環境工程與科學系研究所碩士論文,台南,2017。
郭素卿,「南台灣大氣氣膠酸鹼特性及含水率之時空變異研究」,嘉南藥理大學環境工程與科學系研究所碩士論文,台南,2003。
錢立行,「高雄元宵節高空煙火施放對環境空氣品質之影響」,國立中山大學環境工程研究所碩士論文,高雄,2009。
鍾佑聰,「民俗節慶活動之環境氣膠化學組成及粒徑分佈之特性研究」,嘉南藥理大學環境工程與科學系研究所碩士論文,台南,2011。
蘇彥綸,「馬祖地區細懸浮微粒濃度晝夜差異解析及污染源指紋特徵之探討
」,國立中山大學環境工程研究所碩士論文,高雄,2015。


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
系統版面圖檔 系統版面圖檔