跳到主要內容

臺灣博碩士論文加值系統

(44.201.92.114) 您好!臺灣時間:2023/03/31 11:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林聖倫
研究生(外文):Lin, Sheng-Lun
論文名稱:點排通風隧道火災於堵車及撒水作用下之火害分析
論文名稱(外文):The analysis of the fixed fire fighting system in blockage tunnel with point-extraction ventilation
指導教授:吳貫遠吳貫遠引用關係
指導教授(外文):Wu, Guan-Yuan
口試委員:林元祥許文勝
口試委員(外文):Lin, Yuan-ShangHsu, Wen-Sheng
口試日期:2019-05-15
學位類別:碩士
校院名稱:中央警察大學
系所名稱:消防科學研究所
學門:軍警國防安全學門
學類:警政學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:142
中文關鍵詞:隧道火災FDS模擬堵車點排通風系統
外文關鍵詞:tunnel fireFDS simulationblockagePoint-extraction Ventilation Systems
相關次數:
  • 被引用被引用:0
  • 點閱點閱:131
  • 評分評分:
  • 下載下載:15
  • 收藏至我的研究室書目清單書目收藏:0
由於世界各國隧道火災災例帶來的警示,隧道火災的重要性備受關注,而在我國2012年也同樣發生隧道死亡火災在雪山隧道,因此為建立有利的避難及救援環境,特別做此研究。
本研究主要係利用FDS (Fire Dynamic Simulation) 模擬堵車模式下撒水系統對點排式通風之影響,探討「雙孔單向」隧道車輛火災在不同的熱釋率、不同堵車面積及長度、點排式通風系統及撒水條件下,對隧道火災危害因子之影響,分析隧道火災環境之差異性,並以台灣及荷蘭危害因子驗證指標評估隧道用路人避難安全性、消防救援可及性及火勢延燒,最後再將評估結果以色標可視化,凸顯隧道火害情境之變化。
研究結果顯示,隧道火災在撒水及點排未動作下,會導致隧道結構不安全及不利用路人避難;在不同堵車情境下,當撒水及點排正常動作下,可以有效將火災危害侷限於排煙區劃內,使排煙區劃外用路人避難環境及消防救援可及性受到保護,在大客車堵塞情境下易使火源上游水蒸氣宣洩路徑受阻,導致下游排煙區劃內煙層下降影響用路人避難安全及消防救援可及性;在特殊情境中,特別以排煙系統故障之模擬結果最為嚴重,在400秒時已導致全隧道能見度低於用路人避難安全指標。最後比較台灣及荷蘭評估指標可視化後之隧道火災危害顯示,撒水及點排的正確動作均可以將火害侷限,確保排煙區劃外用路人避難安全性、隧道結構安全性、消防救援可及性及防止火勢延燒,荷蘭評估圖亦凸顯距火源較遠處的危害大多是受到可視度的影響。

The importance of tunnel fires has received much attention due to the warnings from tunnel fire disasters in different countries around the world. The Hsuehshan Tunnel fire occurred in 2012 and caused life casualties in Taiwan. Therefore, this study is especially do this research and establish a better evacuation and rescue environment.
The aim of this study is to use FDS to simulate the installation of a fixed fire fighting system in a blockage tunnel with point-extraction ventilation, in order to investigate the effects of tunnel fire hazard factors in “two tube single-way” tunnels with different heat release rates, tunnel blockage area and length, point-extraction ventilation systems, and sprinkler systems. Analyzing of the different conditions and evaluating the occupancy’s evacuate safety, rescue accessibility and fire spread possibility by using Taiwan’s and the Netherlands’ indicators presented in a data-based and color-coded manner, so that we can quickly and conceptually understand the impact on different conditions of the tunnel fire.
The results show that when the point-extraction ventilation systems and sprinkler systems are not work, it will cause the tunnel and the occupant evacuation unsafety. In the different tunnel blockage Cases, if the point-extraction ventilation systems and sprinkler systems are under normal operation, it can confine the fire and smoke in the exhaust zone, and improve the occupant evacuation environment and availability of fire rescue. In the Case of bus blockage, it will block the water vapor venting path upstream of the fire source and cause the smoke layer falling, reduce the accessibility of fire rescue and the evacuation safety of the occupant. As we can find that in the particular Cases, it is the worst Case if the point-extraction ventilation systems are not working, the visibility in tunnel is lower than the proper safety indicator when the simulation time is 400s.Finally we can compare Taiwan’s with Netherlands’ safety indicators and find that if the point-extraction ventilation systems and sprinkler systems are under normal operation, they can limit the fire damage in the protection zone and protect the evacuation safety of the occupant, integrity of tunnel structure, fire spread possibility and availability of fire rescue. The Netherlands’ safety indicators show that most of the hazards far from the fire source are caused by visibility.

摘要 I
Abstract II
目錄 IV
圖目錄 VI
表目錄 XIV
第一章 緒論 1
第一節 研究動機 1
第二節 研究目的 2
第三節 研究範圍與限制 3
第四節 研究方法與流程 6
第二章 文獻回顧與探討 8
第一節 國內外重大災例探討 8
第二節 隧道火災實驗 17
第三節 隧道火災相關法規探討 34
第三章 隧道火災模擬分析 41
第一節 火災模擬軟體簡介 41
第二節 FDS隧道模型建構 44
第三節 格點設計 45
第四節 火源設計 48
第五節 撒水系統設計 50
第六節 通風系統設計 53
第七節 堵車情況設計 53
第八節 危害因子與探測點 54
第九節 模擬情境小結 56
第四章 模擬結果與分析 58
第一節 臨界風速正確性比較 58
第二節 撒水及點排對隧道結構之影響 62
第三節 不同熱釋率下火災模擬成果分析 65
第四節 不同堵塞率下火災模擬成果分析 77
第五節 特殊情境下火災模擬成果分析 89
第六節 隧道火災環境安全評估小結 102
第五章 結論與建議 118
第一節 結論 118
第二節 建議 122
參考文獻 125
附錄一 專家訪談紀錄 133
[1] 交通部公路總局,「台9線蘇花公路山區路段改善計畫緊急應變計畫專題研究期末報告」,交通部公路總局蘇花公路及台灣世曦工程顧問股份有限公司委託研究,2013年。
[2] A. Haack, “Fire in Tunnels Technical Report – Part 1 Design Fire Scenarios”, Thematic Network FIT, 2005.
[3] H. Zhu, Y. Shen, Z. Yan, Q. Guod, Q. Guo, “A numerical study on the feasibility and efficiency of point smoke extraction strategies in large cross-section shield tunnel fires using CFD modeling”, Journal of Loss Prevention in the Process Industries, Vol.44, pp. 158-170, 2016.
[4] H. Ingason, Y.Z. Li, “Spilled liquid fires in tunnels”, Fire Safety Journal, Vol.91, pp. 399-406, 2017.
[5] W.S. Hsu, Y.H. Huang, T.S. Shen, C.Y. Cheng, T.Y. Chend, “Analysis of the hsuehshan tunnel fire in Taiwan”, Tunnelling and Underground Space Technology, Vol. 69, pp. 108-115, 2017.
[6] H. Ingason, State of the art of tunnelfire research, in: Proceedings of the 9th International Symposium on Fire Safety Science, 2008, pp. 33–48
[7] NFPA 502, Standard for road tunnels, bridges and other limited access highways, National Fire Protection Association , USA, 2008.
[8] NFPA 502, Standard for road tunnels, bridges and other limited access highways, National Fire Protection Association, USA, 2014.
[9] S. Shafee, A. Yozgatligil, “An analysis of tunnel fire characteristics under the effects of vehicular”, Tunnelling and Underground Space Technology Vol.79, pp. 274-285, 2018.
[10] 交通部公路總局,「台9線蘇花公路山區路段改善計畫隧道事故暨整體防救災業務計畫(E版)」, 2016年。
[11] NFPA 502, Standard for road tunnels, bridges and other limited access highways, National Fire Protection Association, USA, 2017.
[12] 交通部,「公路隧道消防安全設備設置規範」,2010年。
[13] L.H. Hu, R. Huo, W.K. Chow,“Studies on buoyancy-driven back-layering flow in tunnel fires”, Experimental Thermal and Fluid Science Vol.32, pp. 1468-1483, 2008.
[14] H. Ingason, A. Lönnermark, “Heat release rates from heavy goods vehicle trailer fires in tunnels”, fire safety journal Vol.40, pp. 646-668, 2005.
[15] 交通部公路總局,「台9線蘇花公路山區路段改善計畫隧道事故暨整體防救災業務計畫(E版)」,2016年。
[16] 交通部台灣區國道高速公路局,「雪山隧道南下26K交通事故火燒車事件檢討報告」,102年5月。
[17] H. Ingason, Large scale fire tests with fixed fire fighting system in Runehamar tunnel, SP Technical Research Institute of Sweden, SP Report 2014.
[18] Z.G. Yan, Q.H. Guo, H.H. Zhu, “Full-scale experiments on fire characteristics of road tunnel at high altitude”, Tunnelling and Underground Space Technology, Vol.66, pp. 134-146, 2017.
[19] H.P. Chang, S.P. Ho, C.S. Chen, S.W. Chien, “Performance of a spray system in a full-scale tunnel fire test”, Tunnelling and Underground Space Technology, Vol.67, pp. 167-174, 2017.
[20] K. Bergmeister, Test report-Virgl/Virgolo tunnel, No. 875-05-004, UPTUN, 2008.
[21] A.D. Lemair, V.J.A. Meeussen, Effects of water mist on real large tunnel fires: Experimental determination of BLEVE-risk and tenability during growth and suppression, Efectis Nederland report, 2008-Efectis-R0425, 2008.
[22] Runehamar Tunnel Fire Tests, UPTUN WP2 Fire development and mitigation measures D213, September 2008.
[23] T. Shaw, T. Gibson, J. Karlovšek, R. Emberley, J.L. Torero, “Experimental evaluation of the heat flux induced by tunnel fires”, Tunnelling and Underground Space Technology, Vol. 60, pp. 49-55, 2016.
[24] Y.Z.Li, H.Ingason, “Influence of fire suppression on combustion products in tunnel fires”, Fire Safety Journal, Vol.97, pp. 96-110, 2018.
[25] W.Tang, L.H.Hu, L.F.Chen,, “Effect of blockage-fire distance on buoyancy driven back-layering length and critical velocity in a tunnel: An experimental investigation and global correlations”, Applied Thermal Engineering, Vol.60, pp. 7-14, 2013.
[26] Y.P. Lee, K.C. Tsai, “Effect of vehicular blockage on critical ventilation velocity and tunnel fire behavior in longitudinally ventilated tunnels”, Fire Safety Journal, Vol.53, pp. 35-42, 2012.
[27] X.Jiang, H.Zhang, A. Jing, “Effect of blockage ratio on critical velocity in tunnel model fire tests”, Tunnelling and Underground Space Technology, Vol. 82, pp. pp. 584-591, 2018.
[28] Y. Oka, G.T. Atkinson, “Control of smoke flow in tunnel fires”, Fire Safety Journal, Vol.25, pp. 305-322, 1995.
[29] K. Kang, “Characteristic length scale of critical ventilation velocity in tunnel smoke control”, Tunnelling Underground Space Technol, Vol.25, pp. 205-211, 2010.
[30] Y. Wu, M.A. Bakar, “Control of smoke flow in tunnel fires using longitudinal ventilation systems–a study of the critical velocity”, Fire Safety Journal, Vol.35, pp. 363-390, 2000.
[31] S. R. Lee, H.S. Ryou, “An experimental study of the effect of the aspect ratio on the critical velocity in Longitudinal Ventilation Tunnel Fires”, Journal of Fire Sciences, Vol.23, pp. 119-138, 2005.
[32] Y.Z. Li, B. Lei, H. Ingason, “Study of critical velocity and backlayering length in longitudinally ventilated tunnel fires”, Fire Safety Journal, Vol.45, pp. 361-370, 2010.
[33] K.C. Tsai, Y.P. Lee, S.K. Lee, “Critical ventilation velocity for tunnel fires occurring near tunnel exits”, Fire Safety Journal, Vol. 46, pp. 556-557, 2011.
[34] L. Yi, Q. Xu, Z. Xu, D. Wu, “An experimental study on critical velocity in sloping tunnel with longitudinal ventilation under fire”, Tunnelling and Underground Space Technology, Vol.43, pp. 198-203, 2014.
[35] W.K. Chow, Y. Gao, J.H. Zhao, J.F. Dang, C.L. Chow, L. Miao, “Smoke movement in tilted tunnel fires with longitudinal ventilation”, Fire Safety Journal, Vol.75, pp. 14-22, 2015.
[36] J.S.M. Li, W.K. Chow, “Numerical Studies on Performance Evaluation of Tunnel Ventilation Safety”, Tunnelling and Underground Space Technology, Vol.18, pp. 435-452, 2003.
[37] L.H. Hu, R. Huo, W.K. Chow, “Studies on Buoyancy-driven Back-layering Flow in Tunnel Fires”, Experimental Thermal and Fluid Science, Vol.32, pp. 1468-1483, 2008.
[38] Y.M. Ferng, C.H. Liu, “Numerically Investigating Fire Suppression Mechanisms for the Water Mist with Various Droplet Sizes through FDS Code”, Nuclear Engineering and Design, Vol.241, pp. 3142-3148, 2011.
[39] K.J. Harris, “Water Application Rates for Fixed Fire Fighting Systems in Road Tunnels, Fourth International Symposium on Tunnel Safety and Security, Frankfurt am Main, Germany, March 17-19”, 2010.
[40] C. J. Lin, Y. K. Chuah, "A study on long tunnel smoke extraction strategies by numerical simulation”, Tunnelling and Underground Space Technology, Vol.23, pp. 522–530, 2008.
[41] S. Gannouni, R.B. Maad, “Numerical analysis of smoke dispersion against the wind in a tunnel fire”, Journal of Wind Engineering and Industrial Aerodynamics, Vol.158, pp. 61-68, 2016.
[42] Q.Liang, Y. Li, J. Li, H. Xu, K. Li, “Numerical studies on the smoke control by water mist screens with transverse ventilation in tunnel fires”, Tunnelling and Underground Space Technology, Vol.64, pp. 177-183, 2017.
[43] X. Wang, C. Fleischmann, M. Spearpoint, “Assessing the influence of fuel geometrical shape on fire dynamics simulator (FDS) predictions for a large-scale heavy goods vehicle tunnel fire experiment”, Case Studies in Fire Safety, Vol.5, pp. 34-41, 2016.
[44] M.C.Weng, X.L.Lu, F.Liu, C.X.Du, “Study on the critical velocity in a sloping tunnel fire under longitudinal ventilation”, Applied Thermal Engineering, Vol.94, pp. 422-434, 2016.
[45] Y.H. Xi, J. Mao, G. Bai, J.W. Hu, “Safe velocity of on-fire train running in the tunnel”, Tunnelling and Underground Space Technology, Vol.60, pp. 210-223, 2016.
[46] Y.F. Wang, T. Qin, X.F. Sun, S. Liu, J.C. Jiang, “Full-scale fire experiments and simulation of tunnel with vertical shafts”, Applied Thermal Engineering, Vol.105, pp. 243-255, 2016.
[47] Y.J. Ko, G.V. Hadjisophocleous, “Study of smoke backlayering during suppression in tunnels”, Fire Safety Journal, Vol.58, pp. 240-247, 2013.
[48] 范立武,「撒水系統對點排式隧道火災之分析-以仁水隧道為例」,中央警察大學 消防科學研究所碩士論文,2018年。
[49] H.K. Kim, A. Lönnermark, H. Ingason, “Comparison of Road Tunnel Design Guidelines”,Third International Symposium on Tunnel Safety and Security, Stockholm, Sweden, March 2008.
[50] 謝旻峻,「撒水系統對縱向通風隧道火災避難環境之影響分析」,中央警察大學消防科學研究所碩士論文,2017年。
[51] M. Yokota, Fixed Fire Fighting Systems of the Japanese Expressway Tunnel, 2014年11月22日訪談資料。
[52] NIST Special Publication 1018-5, Fire Dynamics Simulator (Version 5) – Technical Reference Guide, National Institute of Standers and Tchonology, Oct. 2010.
[53] NIST Special Publication 1019, Smokeview (Version 6.6.0) – A Tool for Visualizing Fire Dynamics Simulation Data Volume I: User’s Guide, National Institute of Standards and Technology, Nov 2017.
[54] F. Liu, L.X. Yu, M.C. Weng, X.L. Lu, “Study on longitudinal temperature distribution of fire-induced ceiling flow in tunnels with different sectional coefficients”, Tunnelling and Underground Space Technology, Vol.54, pp. 49-60, 2016.
[55] Y.F. Wang, X.F. Sun, B. Li, T. Qin, S. Liu, Y. Liu, “Small-scale experimental and theoretical analysis on maximum temperature beneath ceiling in tunnel fire with vertical shafts”, Applied Thermal Engineering, Vol.114, pp. 537-544, 2017.
[56] NIST Special Publication 1019, FDS (Version 6.6.0) – Fire Dynamics Simulation User’s Guide, National Institute of Standards and Technology, Nov 2017.
[57] H.R. Baum, K.B. Mcgrattan, R.G. Rehm, “Three Dimensional Simulations Of Fire Plume Dynamics”, Fire Safety Science, Vol.5, pp. 511-522, 1997.
[58] T.G. Ma, J.G. Quintiere, “Numerical Simulation of Axi-symmetric Fire Plumes: Accuracy and Limitations”, Fire Safety Journal, Vol.38, pp. 467-492, 2003.
[59] K. McGrattan, S. Hostikka, J. Floyd, H. Baum, R. Rehm, W. Mell, R. McDermott, “Fire dynamics simulator (Version 5)-technical reference guide”, NIST Special Publication 1018-5, National Institute of Standards and Technology, Gaithersburg, MD, 2010.
[60] H. Ingason, A. Lönnermark, "Large-scale fire tests in the Runehamar tunnel - Heat Release Rate (HRR)”, Proceedings of the International Symposium on Catastrophic Tunnel Fires, SP Technical Research Institute of Sweden, pp.81-92, 2003.
[61] Sprinklers in Japanese Road Tunnels Final Report, Ministry of Transport, Netherlands, 2001.
[62] General Description of Water Spray, Nohmi Taiwan Limited, 2015.
[63] 台灣能美防災股份有限公司, “http://www.tnohmi.com.tw/zh-tw”, 瀏覽時間:2019.11. [線上].
[64] 交通部,「車輛安全檢測基準」,2014年。( https://www.mvdis.gov.tw/webMvdisLaw/LawContent.aspx?LawID=B0049028)
[65] Y.Z. Li, H. Ingason, “Effect of cross section on critical velocity in longitudinally ventilated tunnel fires”, Fire Safety Journal, Vol.91. pp. 303-311, 2017.
[66] A.G. Bendelius, “Tunnel fire and life safety within the world road association (PIARC)”, Tunnelling and Underground Space Technology, Vol.17, pp. 159-161, 2002.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊