跳到主要內容

臺灣博碩士論文加值系統

(44.200.101.84) 您好!臺灣時間:2023/10/03 09:53
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:符曼玲
研究生(外文):DISLINE MANLI TANTOH
論文名稱:探討AHRR甲基化與SOX2啟動子甲基化的地理變異:針對居住於台灣不同PM2.5濃度地區的非抽菸民眾
論文名稱(外文):AHRR (cg05575921) and SOX2 promoter methylation in non-smoking Taiwanese adults residing in areas with different concentrations of PM2.5
指導教授:廖勇柏廖勇柏引用關係
學位類別:博士
校院名稱:中山醫學大學
系所名稱:公共衛生學系
學門:醫藥衛生學門
學類:公共衛生學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:98
中文關鍵詞:SoX2AHRR甲基化非吸菸者生物標記臺灣人體生物資料庫
外文關鍵詞:SOX2AHRRMethylationNon-smokersBiomarkerTaiwan Biobank
相關次數:
  • 被引用被引用:0
  • 點閱點閱:165
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
目前已知許多人類疾病的生成,如各種癌症、代謝性疾病、神經學疾病、以及自體免疫疾病等,與DNA甲基化有密切的相關。芳香烴受體阻遏物(aryl hydrocarbon receptor repressor, AHRR) 基因的cg05575921位點與吸菸和肺癌的風險有關,而SOX2 (SRY (sex determining region Y)-box 2) 啟動子甲基化也與肺癌風險相關。吸菸以及空氣中的顆粒物質 (particulate matter) 皆是人體暴露到多環芳香烴 (polycyclic aromatic hydrocarbon, PAH) 的重要途徑。除了吸菸之外,顯少有文獻探討AHRR基因cg05575921位點甲基化與其他多環芳香烴暴露來源的相關性。此外,對於生活在空氣污染程度不同地區的居民,尤其是PM2. 5的污染與SOX2啟動子甲基化的研究也是非常少的。本研究目的是在探討臺灣非吸菸成年人,居住在空氣污染程度不同地區的居民,其AHRR基因cg05575921位點的甲基化程度以及SOX2啟動子甲基化程度是否有所差異。本研究資料取自2008-2015年臺灣人體生物資料庫,研究參與者年齡介於30-70歲,且排除不具本國籍或經醫生確診罹患癌症者。研究資料包含甲基化資料、吸菸行為、居住地、年齡、及二手菸暴露等資料。我們排除目前仍在吸菸、曾經吸菸以及資料不完整的樣本,最後共有708名參與者,包括279名男性和429名女性納入cg05575921(AHRR)甲基化程度和PM2.5的相關性分析。由於臺灣PM2.5濃度由北向南逐漸遞增,因此,本研究將研究區域劃分為北部、中北部、中部和南部地區。另外,關於SOX2啟動子甲基化程度與PM2.5之間的關聯,共有461名參與者,包含176名男性和285名女性,我們將參與者的現住地區分為北部和中南部地區進行分析。在cg05575921(AHRR)甲基化程度和PM2.5的研究結果顯示,居住在中北部、中部和南部地區的居民,其cg05575921位點的甲基化程度是低於北部地區。雖然只有在中部(β = − 0.01003, P = 0.009) 和南部地區 (β = − 0.01480, P < 0.001) 有達到統計顯著差異,但是在整體的趨勢上,可以看到cg05575921位點的甲基化程度隨著愈往南部地區下降的幅度愈大,且呈現線性趨勢 (P trend < 0.001) 。除此之外,我們亦將空氣中PM2.5的濃度納入回歸分析時,PM2.5的濃度愈高cg05575921位點的甲基化程度也有愈低的趨勢 (β = -0.00115, P < 0.001) 。另外,在SOX2啟動子甲基化程度和PM2.5的研究結果顯示,中南部地區無論男性 (β = 0.00331,P = 0.026) 或女性 (β = 0.00514,P < .001) ,SOX2啟動子區域的甲基化程度顯著高於北部地區。結論,本研究發現在不同的PM2.5污染地區,居民體內cg05575921(AHRR)位點甲基化程度與PM2.5污染程度呈現負相關,居住在南部地區的居民AHRR甲基化程度最低,其次是中部及中北部地區。我們另外將空氣中PM2.5污染濃度帶入回歸模型中,也發現PM2.5濃度和cg05575921位點甲基化程度呈負相關。同時,我們也發現無論男性或女性,居住在中南部地區的居民,其SOX2啟動子甲基化程度顯著高於北部地區。對非吸菸族群而言,cg05575921(AHRR)位點及SOX2啟動子的甲基化程度可能代表著PM2.5的暴露程度,同時也反映出與PM2.5相關疾病的易感受性。因此,cg05575921(AHRR)位點及SOX2啟動子的甲基化程度對於看似健康的非吸菸者而言,也許可以做為臨床鑑定或癌症的早期診斷指標。
DNA methylation is associated with cancer, metabolic, neurological, and autoimmune disorders. Hypomethylation of the gene, aryl hydrocarbon receptor repressor (AHRR) especially at cg05575921 is associated with smoking and lung cancer. SOX2 promoter methylation is also associated with lung cancer risk. Both smoking and particulate matter (PM) are sources of polycyclic aromatic hydrocarbon (PAH). Studies on the association between AHRR methylation at cg05575921 and sources of polycyclic aromatic hydrocarbon (PAH) other than smoking are limited. In addition, little has been done to assess SOX2 promoter methylation in individuals living in areas with different levels of air pollution, especially particulate matter with diameter < 2.5 μm (PM2.5). The aim of this study was to assess the DNA methylation patterns at cg05575921 (AHRR) and promoter region of SOX2 in non-smoking Taiwanese adults living in areas with different levels of PM2.5. Data on cg05575921 (AHRR) and SOX2 promoter methylation, smoking, residence, age, and exposure to second-hand smoke (SHS) among others were extracted from the Taiwan Biobank Dataset (2008-2015). Current and former smokers, as well as individuals with incomplete information, were excluded from the study. The study participants were between the ages of 30 and 70 years. To determine the association between cg05575921 (AHRR) and PM2.5, a total of 708 participants comprising 279 men and 429 women were included in the analysis. Since PM2.5 levels have been shown to increase as one moves from the north through the center towards the southern parts of Western Taiwan, the study areas were categorized into northern, north-central, central, and southern regions. To determine the association between SOX2 promoter methylation and PM2.5, a total of 461 non-smokers consisting of 176 men and 285 women were included in the analysis. Participants’ residences were grouped under northern and central/southern areas. Compared with the northern area (reference area), living in north-central, central, and southern areas was associated with lower methylation levels at cg05575921. However, these associations were significant only in those living in central and southern areas were significant (β = − 0.01003, P = 0.009 and β = − 0.01480, P < 0.001, respectively. Even though methylation levels in those living in the north-central areas were not statistically significant, the test for linear trend was significant (P < 0.001). When PM2.5 was included in the regression model, a unit increase in PM2.5 was associated with 0.00115 lower cg05575921 methylation levels (β = -0.00115, P < 0.001). Compared with the northern areas, SOX2 promoter region was significantly hypermethylated in both men and women living in the central and southern areas. The regression coefficient (β) was 0.00331 (P = 0.026) in men and 0.00514 (P < .001) in women. In conclusion, living in PM2.5 areas was inversely associated with AHRR methylation levels at cg05575921. The methylation levels were lowest in participants residing in southern areas, followed by central and north-central areas. Moreover, the inclusion of PM2.5 in the regression model yielded an inverse association between methylation levels at cg05575921 and PM2.5. SOX2 was significantly hypermethylated in both men and women residing in central and southern areas. Methylation at cg05575921 (AHRR) and SOX2 promoter region in non-smokers might indicate different exposures to PM2.5. Moreover, it might reflect a predisposition to lung cancer which is a PM2.5-related disease. Hence, both cg05575921 (AHRR) and SOX2 promoter methylation in seemingly healthy non-smokers might be useful in the clinical identification or early diagnosis of cancer.
ACKNOWLEDGMENTS i
CHINESE ABSTRACT iii
ABSTRACT v
DEDICATION vii
TABLE OF CONTENTS xiii
LIST OF FIGURES xi
LIST OF TABLES xii
LIST OF ABBREVIATIONS xiii
LIST OF APPENDICES xv
CHAPTER ONE 1
1.0. INTRODUCTION 1
1.1. Background 1
1.2. Justification 4
1.3. Research objectives 6
1.3.1. Main objective 6
1.3.2. Specific objectives 6
CHAPTER TWO 7
2.0. LITERATURE REVIEW 7
2.1. Clinical importance of DNA methylation 7
2.1.1. Early diagnosis of cancer 7
2.1.2. Monitoring cancer prognosis 8
2.1.3. Cancer therapy 9
2.2. Hypomethylation and hypermethylation 9
2.3. Role of hypomethylation and hypermethylation in gene expression and cancer 10
2.3.1. AHRR gene 11
2.3.2. SOX2 gene 13
2.4. Factors associated with DNA methylation 15
2.4.1. Environmental factors 15
2.5. Air pollution in Taiwan 20
CHAPTER THREE 22
3.0. MATERIALS AND METHODS 22
3.1. Data sources 22
3.1.1. Taiwan Biobank 22
3.1.2. Taiwan Air Quality Monitoring Network 23
3.2. Data collection 24
3.2.1. Determination DNA of methylation 25
3.2.2. Study areas and PM2.5 26
3.3. Study participants 26
3.4. Statistical analysis 27
CHAPTER FOUR 29
4.0. RESULTS 29
4.1. AHRR (cg05575921) methylation 29
4.1.1. Basic characteristics 29
4.1.2. PM2.5 concentrations 30
4.1.3. Association between living in PM2.5 areas and AHRR (cg05575921) methylation 30
4.1.4. Association between mean PM2.5 concentrations and AHRR (cg05575921) methylation 31
4.2. SOX2 promoter methylation 32
4.2.1. Basic characteristics 32
4.2.2. PM2.5 concentrations 33
4.2.3. Association between living in PM2.5 areas and SOX2 promoter methylation 34
4.2.4. Association between mean PM2.5 concentrations and SOX2 promoter methylation 35
CHAPTER FIVE 37
5.0. DISCUSSION 37
5.1. Association between AHRR (cg05575921) methylation and PM2.5 37
5.2. Association between SOX2 promoter methylation and PM2.5 39
5.3. Strengths and limitations 41
CHAPTER SIX 43
6.0. CONCLUSIONS AND RECOMMENDATIONS 43
6.1. Conclusions 43
6.1.1. Association between AHRR (cg05575921) methylation and PM2.5 43
6.1. 2. Association between SOX2 methylation and PM2.5 43
6.2. Recommendations 44
REFERENCES 45
APPENDICES 74
ABRAHAM, E., ROUSSEAUX, S., AGIER, L., GIORGIS-ALLEMAND, L., TOST, J., GALINEAU, J., HULIN, A., SIROUX, V., VAIMAN, D. & CHARLES, M.-A. 2018. Pregnancy exposure to atmospheric pollution and meteorological conditions and placental DNA methylation. Environment International.
ALONSO, M. M., DIEZ-VALLE, R., MANTEROLA, L., RUBIO, A., LIU, D., CORTES-SANTIAGO, N., URQUIZA, L., JAUREGI, P., DE MUNAIN, A. L. & SAMPRON, N. 2011. Genetic and epigenetic modifications of Sox2 contribute to the invasive phenotype of malignant gliomas. PloS one, 6, e26740.
AMBATIPUDI, S., CUENIN, C., HERNANDEZ-VARGAS, H., GHANTOUS, A., LE CALVEZ-KELM, F., KAAKS, R., BARRDAHL, M., BOEING, H., ALEKSANDROVA, K. & TRICHOPOULOU, A. 2016. Tobacco smoking-associated genome-wide DNA methylation changes in the EPIC study. Epigenomics, 8, 599-618.
ANDRYSÍK, Z., VONDRÁČEK, J., MARVANOVÁ, S., CIGANEK, M., NEČA, J., PĚNČÍKOVÁ, K., MAHADEVAN, B., TOPINKA, J., BAIRD, W. M. & KOZUBÍK, A. 2011a. Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: the role of polycyclic aromatic hydrocarbons. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 714, 53-62.
ANDRYSÍK, Z., VONDRÁČEK, J., MARVANOVÁ, S., CIGANEK, M., NEČA, J., PĚNČÍKOVÁ, K., MAHADEVAN, B., TOPINKA, J., BAIRD, W. M. & KOZUBÍK, A. 2011b. Activation of the aryl hydrocarbon receptor is the major toxic mode of action of an organic extract of a reference urban dust particulate matter mixture: the role of polycyclic aromatic hydrocarbons. Mutation Research/Fundamental and Molecular Mechanisms of Mutagenesis, 714, 53-62.
ARNOLD, C. N., GOEL, A. & BOLAND, C. R. 2003. Role of hMLH1 promoter hypermethylation in drug resistance to 5‐fluorouracil in colorectal cancer cell lines. International journal of cancer, 106, 66-73.
AVINCSAL, M. O., JIMBO, N., FUJIKURA, K., SHINOMIYA, H., OTSUKI, N., MORIMOTO, K., FURUKAWA, T., MORITA, N., MAEHARA, R. & ITOH, T. 2018. Epigenetic down‐regulation of SOX 2 is an independent poor prognostic factor for hypopharyngeal cancers. Histopathology, 72, 826-837.
BAUER, M. 2018. Cell-type-specific disturbance of DNA methylation pattern: a chance to get more benefit from and to minimize cohorts for epigenome-wide association studies. International journal of epidemiology.
BAUER, M., FINK, B., THÜRMANN, L., ESZLINGER, M., HERBERTH, G. & LEHMANN, I. 2016. Tobacco smoking differently influences cell types of the innate and adaptive immune system—indications from CpG site methylation. Clinical epigenetics, 8, 83.
BAYLIN, S. B. & OHM, J. E. 2006. Epigenetic gene silencing in cancer–a mechanism for early oncogenic pathway addiction? Nature Reviews Cancer, 6, 107.
BEKKI, K., VOGEL, H., LI, W., ITO, T., SWEENEY, C., HAARMANN-STEMMANN, T., MATSUMURA, F. & VOGEL, C. F. 2015. The aryl hydrocarbon receptor (AhR) mediates resistance to apoptosis induced in breast cancer cells. Pesticide biochemistry and physiology, 120, 5-13.
BELINSKY, S. A. 2004. Gene-promoter hypermethylation as a biomarker in lung cancer. Nature Reviews Cancer, 4, 707.
BELINSKY, S. A., NIKULA, K. J., PALMISANO, W. A., MICHELS, R., SACCOMANNO, G., GABRIELSON, E., BAYLIN, S. B. & HERMAN, J. G. 1998. Aberrant methylation of p16INK4a is an early event in lung cancer and a potential biomarker for early diagnosis. Proceedings of the National Academy of Sciences, 95, 11891-11896.
BELL, M. L., DOMINICI, F., EBISU, K., ZEGER, S. L. & SAMET, J. M. 2007. Spatial and temporal variation in PM2. 5 chemical composition in the United States for health effects studies. Environmental health perspectives, 115, 989-995.
BIOBANK, T. 2015. Purpose Of Taiwan Biobank [Online]. Available: https://www.twbiobank.org.tw/new_web_en/index.php [Accessed March 21 2018].
BOJESEN, S. E., TIMPSON, N., RELTON, C., SMITH, G. D. & NORDESTGAARD, B. G. 2017. AHRR (cg05575921) hypomethylation marks smoking behaviour, morbidity and mortality. Thorax, 72, 646-653.
BOJOVIC, B. & BLANCHER, C. 2017. Epigenetic analysis on Illumina EPIC arrays. Epigenetics, 28, 03.
BRAY, F., FERLAY, J., SOERJOMATARAM, I., SIEGEL, R. L., TORRE, L. A. & JEMAL, A. 2018. Global cancer statistics 2018: GLOBOCAN estimates of incidence and mortality worldwide for 36 cancers in 185 countries. CA: a cancer journal for clinicians, 68, 394-424.
BROCK, M. V., HOOKER, C. M., OTA-MACHIDA, E., HAN, Y., GUO, M., AMES, S., GLÖCKNER, S., PIANTADOSI, S., GABRIELSON, E. & PRIDHAM, G. 2008. DNA methylation markers and early recurrence in stage I lung cancer. New England Journal of Medicine, 358, 1118-1128.
CAVANAGH, J.-A. E., TROUGHT, K., BROWN, L. & DUGGAN, S. 2009. Exploratory investigation of the chemical characteristics and relative toxicity of ambient air particulates from two New Zealand cities. Science of the total environment, 407, 5007-5018.
CHEN, G., WAN, X., YANG, G. & ZOU, X. 2015. Traffic‐related air pollution and lung cancer: A meta‐analysis. Thoracic cancer, 6, 307-318.
CHEN, M.-L., MAO, I.-F. & LIN, I.-K. 1999. The PM2. 5 and PM10 particles in urban areas of Taiwan. Science of the total environment, 226, 227-235.
CHEN, S.-J., LIAO, S.-H., JIAN, W.-J. & LIN, C.-C. 1997. Particle size distribution of aerosol carbons in ambient air. Environment International, 23, 475-488.
CHEN, T.-F., TSAI, C.-Y. & CHANG, K.-H. 2013. Performance evaluation of atmospheric particulate matter modeling for East Asia. Atmospheric environment, 77, 365-375.
CHIANG, P., CHEN, C. W., HSIEH, D. P., CHAN, T.-C., CHIANG, H.-C. & WEN, C.-P. 2014. Lung cancer risk in females due to exposures to PM2. 5 in Taiwan. The Open Epidemiology Journal, 7.
CHIO, C.-P., LIAO, C.-M., TSAI, Y.-I., CHENG, M.-T. & CHOU, W.-C. 2014. Health risk assessment for residents exposed to atmospheric diesel exhaust particles in southern region of Taiwan. Atmospheric environment, 85, 64-72.
CHIU, H.-F., CHENG, M.-H., TSAI, S.-S., WU, T.-N., KUO, H.-W. & YANG, C.-Y. 2006. Outdoor air pollution and female lung cancer in Taiwan. Inhalation toxicology, 18, 1025-1031.
CHO, C.-C., HSIEH, W.-Y., TSAI, C.-H., CHEN, C.-Y., CHANG, H.-F. & LIN, C.-S. 2018. In vitro and in vivo experimental studies of PM2. 5 on disease progression. International journal of environmental research and public health, 15, 1380.
COUSSENS, L. M., ZITVOGEL, L. & PALUCKA, A. K. 2013. Neutralizing tumor-promoting chronic inflammation: a magic bullet? Science, 339, 286-291.
D’URSO, A. & BRICKNER, J. H. 2014. Mechanisms of epigenetic memory. Trends in genetics, 30, 230-236.
DAS, P. M. & SINGAL, R. 2004. Biology of neoplasia. Journal of Clinical Oncology, 22, 4632-4642.
DE SMET, C. & LORIOT, A. 2010. DNA hypomethylation in cancer: epigenetic scars of a neoplastic journey. Epigenetics, 5, 206-213.
DELPU, Y., CORDELIER, P., CHO, W. & TORRISANI, J. 2013. DNA methylation and cancer diagnosis. International journal of molecular sciences, 14, 15029-15058.
DI, Q., DAI, L., WANG, Y., ZANOBETTI, A., CHOIRAT, C., SCHWARTZ, J. D. & DOMINICI, F. 2017. Association of short-term exposure to air pollution with mortality in older adults. Jama, 318, 2446-2456.
DIAZ-LAGARES, A., MENDEZ-GONZALEZ, J., HERVAS, D., SAIGI, M., PAJARES, M. J., GARCIA, D., CRUJERIAS, A. B., PIO, R., MONTUENGA, L. M. & ZULUETA, J. 2016. A novel epigenetic signature for early diagnosis in lung cancer. Clinical Cancer Research, 22, 3361-3371.
DIETRICH, D., KNEIP, C., RAJI, O., LILOGLOU, T., SEEGEBARTH, A., SCHLEGEL, T., FLEMMING, N., RAUSCH, S., DISTLER, J. & FLEISCHHACKER, M. 2012. Performance evaluation of the DNA methylation biomarker SHOX2 for the aid in diagnosis of lung cancer based on the analysis of bronchial aspirates. International journal of oncology, 40, 825-832.
DOGAN, M. V., SHIELDS, B., CUTRONA, C., GAO, L., GIBBONS, F. X., SIMONS, R., MONICK, M., BRODY, G. H., TAN, K. & BEACH, S. R. 2014. The effect of smoking on DNA methylation of peripheral blood mononuclear cells from African American women. BMC genomics, 15, 151.
DOLL, R., PETO, R., BOREHAM, J. & SUTHERLAND, I. 2004. Mortality in relation to smoking: 50 years'' observations on male British doctors. Bmj, 328, 1519.
DU, P., DU, R., REN, W., LU, Z. & FU, P. 2018. Seasonal variation characteristic of inhalable microbial communities in PM2. 5 in Beijing city, China. Science of the Total Environment, 610, 308-315.
ENVIRONMENTAL PROTECTION ADMINISTRATION, T. 2019. Taiwan Air Quality Monitoring Network [Online]. Taiwan. Available: https://taqm.epa.gov.tw/taqm/en/b0101.aspx [Accessed June, 6 2019].
FAN, C.-T., LIN, J.-C. & LEE, C.-H. 2008. Taiwan Biobank: a project aiming to aid Taiwan’s transition into a biomedical island. Pharmacogenomics. , 9, 235-46.
FANG, G.-C., CHANG, K.-F., LU, C. & BAI, H. 2004. Estimation of PAHs dry deposition and BaP toxic equivalency factors (TEFs) study at Urban, Industry Park and rural sampling sites in central Taiwan, Taichung. Chemosphere, 55, 787-796.
FASANELLI, F., BAGLIETTO, L., PONZI, E., GUIDA, F., CAMPANELLA, G., JOHANSSON, M., GRANKVIST, K., JOHANSSON, M., ASSUMMA, M. B. & NACCARATI, A. 2015. Hypomethylation of smoking-related genes is associated with future lung cancer in four prospective cohorts. Nature communications, 6, 10192.
FEINBERG, A. P. 2018. The key role of epigenetics in human disease prevention and mitigation. New England Journal of Medicine, 378, 1323-1334.
GAO, X., JIA, M., ZHANG, Y., BREITLING, L. P. & BRENNER, H. 2015. DNA methylation changes of whole blood cells in response to active smoking exposure in adults: a systematic review of DNA methylation studies. Clinical epigenetics, 7, 113.
GAO, X., ZHANG, Y., SAUM, K.-U., SCHÖTTKER, B., BREITLING, L. P. & BRENNER, H. 2017. Tobacco smoking and smoking-related DNA methylation are associated with the development of frailty among older adults. Epigenetics, 12, 149-156.
GOVINDAN, R., DING, L., GRIFFITH, M., SUBRAMANIAN, J., DEES, N. D., KANCHI, K. L., MAHER, C. A., FULTON, R., FULTON, L. & WALLIS, J. 2012. Genomic landscape of non-small cell lung cancer in smokers and never-smokers. Cell, 150, 1121-1134.
GRANDA-DÍAZ, R., MENÉNDEZ, S. T., PEDREGAL MALLO, D., HERMIDA-PRADO, F., RODRÍGUEZ, R., SUÁREZ-FERNÁNDEZ, L., VALLINA, A., SÁNCHEZ-CANTELI, M., RODRÍGUEZ, A. & FERNÁNDEZ-GARCÍA, M. S. 2019. The Novel Role of SOX2 as an Early Predictor of Cancer Risk in Patients with Laryngeal Precancerous Lesions. Cancers, 11, 286.
GUJAR, H., LIANG, J. W., WONG, N. C. & MOZHUI, K. 2018. Profiling DNA methylation differences between inbred mouse strains on the Illumina Human Infinium MethylationEPIC microarray. PloS one, 13, e0193496.
HANOUN, N., DELPU, Y., SURIAWINATA, A. A., BOURNET, B., BUREAU, C., SELVES, J., TSONGALIS, G. J., DUFRESNE, M., BUSCAIL, L. & CORDELIER, P. 2010. The silencing of microRNA 148a production by DNA hypermethylation is an early event in pancreatic carcinogenesis. Clinical chemistry, 56, 1107-1118.
HAO, X., LUO, H., KRAWCZYK, M., WEI, W., WANG, W., WANG, J., FLAGG, K., HOU, J., ZHANG, H. & YI, S. 2017. DNA methylation markers for diagnosis and prognosis of common cancers. Proceedings of the National Academy of Sciences, 114, 7414-7419.
HARLID, S., XU, Z., PANDURI, V., SANDLER, D. P. & TAYLOR, J. A. 2014. CpG sites associated with cigarette smoking: analysis of epigenome-wide data from the sister study. Environmental health perspectives, 122, 673-678.
HAYASHI, M., TOKUCHI, Y., HASHIMOTO, T., HAYASHI, S., NISHIDA, K., ISHIKAWA, Y., NAKAGAWA, K., TSUCHIYA, S., OKUMURA, S. & TSUCHIYA, E. 2001. Reduced HIC-1 gene expression in non-small cell lung cancer and its clinical significance. Anticancer research, 21, 535-540.
HEALTH PROMOTION ADMINISTRATION, M. O. H. A. W. 2017a. 2017 Annual Report of Health Promotion Administration [Online]. Available: http://www.hpa.gov.tw/ [Accessed May 9 2018].
HEALTH PROMOTION ADMINISTRATION, M. O. H. A. W., ROC (TAIWAN). 2017b. 2016 Taiwan Tobacco Control Annual Report [Online]. Taiwan. Available: http://tobacco.hpa.gov.tw [Accessed May 9 2018].
HERMAN, J. G. & BAYLIN, S. B. 2003. Gene silencing in cancer in association with promoter hypermethylation. New England Journal of Medicine, 349, 2042-2054.
HEYN, H. & ESTELLER, M. 2012. DNA methylation profiling in the clinic: applications and challenges. Nature Reviews Genetics, 13, 679.
HUNG, L.-J., CHAN, T.-F., WU, C.-H., CHIU, H.-F. & YANG, C.-Y. 2012. Traffic air pollution and risk of death from ovarian cancer in Taiwan: fine particulate matter (PM2. 5) as a proxy marker. Journal of Toxicology and Environmental Health, Part A, 75, 174-182.
IARC. 2013. Outdoor air pollution a leading environmental cause of cancer deaths. [Online]. Available: http://www.iarc.fr/en/media-centre/pr/2013/pdfs/pr221_E.pdf [Accessed].
ILLUMINA. 2010. Module, GenomeStudio Methylation v1. 8 User Guide [Online]. Available: https://support.illumina.com/content/dam/illumina-support/documents/documentation/software_documentation/genomestudio/genomestudio-2011-1/genomestudio-methylation-v1-8-user-guide-11319130-b.pdf [Accessed].
ILLUMINA. 2018. Infinium Assay Lab Setup and Procedures Guide [Online]. Available: https://support.illumina.com/downloads/infinium-assay-lab-setup-and-procedures-11322460.html [Accessed April 23 2018].
JIN, Z. & LIU, Y. 2018. DNA Methylation in Human Diseases. Genes & Diseases.
JONES, P. A. 2012. Functions of DNA methylation: islands, start sites, gene bodies and beyond. Nature Reviews Genetics, 13, 484.
JONES, P. A. & BAYLIN, S. B. 2007. The epigenomics of cancer. Cell, 128, 683-692.
KAKUSHADZE, Z., RAGHUBANSHI, R. & YU, W. 2017. Estimating Cost Savings from Early Cancer Diagnosis. Data, 2, 30.
KIM, K.-H., KABIR, E. & KABIR, S. 2015. A review on the human health impact of airborne particulate matter. Environment international, 74, 136-143.
KIM, Y., SEO, J., KIM, J. Y., LEE, J. Y., KIM, H. & KIM, B. M. 2018. Characterization of PM 2.5 and identification of transported secondary and biomass burning contribution in Seoul, Korea. Environmental Science and Pollution Research, 25, 4330-4343.
KOBAYASHI, N., MIYAUCHI, N., TATSUTA, N., KITAMURA, A., OKAE, H., HIURA, H., SATO, A., UTSUNOMIYA, T., YAEGASHI, N. & NAKAI, K. 2017. Factors associated with aberrant imprint methylation and oligozoospermia. Scientific reports, 7, 42336.
KULIS, M. & ESTELLER, M. 2010. DNA methylation and cancer. Advances in genetics. Elsevier.
LEE, D.-H., HWANG, S.-H., LIM, M. K., OH, J.-K., YUN, E. H. & PARK, E. Y. 2017. Performance of urine cotinine and hypomethylation of AHRR and F2RL3 as biomarkers for smoking exposure in a population-based cohort. PloS one, 12, e0176783.
LEE, K. W. & PAUSOVA, Z. 2013. Cigarette smoking and DNA methylation. Frontiers in genetics, 4, 132.
LI, A. S., SIU, M. K., ZHANG, H., WONG, E. S., CHAN, K. Y., NGAN, H. Y. & CHEUNG, A. N. 2008. Hypermethylation of SOX2 gene in hydatidiform mole and choriocarcinoma. Reproductive Sciences, 15, 735-744.
LI, R., ZHOU, R. & ZHANG, J. 2018a. Function of PM2. 5 in the pathogenesis of lung cancer and chronic airway inflammatory diseases. Oncology letters, 15, 7506-7514.
LI, S., WONG, E. M., BUI, M., NGUYEN, T. L., JOO, J.-H. E., STONE, J., DITE, G. S., GILES, G. G., SAFFERY, R. & SOUTHEY, M. C. 2018b. Causal effect of smoking on DNA methylation in peripheral blood: a twin and family study. Clinical epigenetics, 10, 18.
LI, X.-L., EISHI, Y., BAI, Y.-Q., SAKAI, H., AKIYAMA, Y., TANI, M., TAKIZAWA, T., KOIKE, M. & YUASA, Y. 2004. Expression of the SRY-related HMG box protein SOX2 in human gastric carcinoma. International journal of oncology, 24, 257-263.
LI, Y.-F., WANG, D.-D., ZHAO, B.-W., WANG, W., YUAN, S.-Q., HUANG, C.-Y., CHEN, Y.-M., ZHENG, Y., KESHARI, R. P. & XIA, J.-C. 2012. Poor prognosis of gastric adenocarcinoma with decreased expression of AHRR. PLoS One, 7, e43555.
LIN, C.-H., WU, Y.-L., LAI, C.-H., WATSON, J. G. & CHOW, J. C. 2008. Air quality measurements from the southern particulate matter supersite in Taiwan. Aerosol Air Qual. Res, 8, 233-264.
LING, C. & GROOP, L. 2009. Epigenetics: a molecular link between environmental factors and type 2 diabetes. Diabetes, 58, 2718-2725.
LIPPMANN, M. & CHEN, L.-C. 2009. Health effects of concentrated ambient air particulate matter (CAPs) and its components. Critical reviews in toxicology, 39, 865-913.
LO, W.-C., SHIE, R.-H., CHAN, C.-C. & LIN, H.-H. 2017. Burden of disease attributable to ambient fine particulate matter exposure in Taiwan. Journal of the Formosan Medical Association, 116, 32-40.
LU, H.-Y., WU, Y.-L., MUTUKU, J. K. & CHANG, K.-H. 2019. Various Sources of PM2. 5 and their Impact on the Air Quality in Tainan City, Taiwan. Aerosol and Air Quality Research, 19, 601-619.
MA, Y. & LI, M. D. 2017. Establishment of a strong link between smoking and cancer pathogenesis through DNA methylation analysis. Scientific Reports, 7, 1811.
MADRIGANO, J., BACCARELLI, A., MITTLEMAN, M. A., WRIGHT, R. O., SPARROW, D., VOKONAS, P. S., TARANTINI, L. & SCHWARTZ, J. 2011. Prolonged exposure to particulate pollution, genes associated with glutathione pathways, and DNA methylation in a cohort of older men. Environmental health perspectives, 119, 977-982.
MAEHARA, R., FUJIKURA, K., TAKEUCHI, K., AKITA, M., ABE-SUZUKI, S., KARBANOVÁ, J., CORBEIL, D., ITOH, T., KAKEJI, Y. & ZEN, Y. 2018. SOX2-silenced squamous cell carcinoma: a highly malignant form of esophageal cancer with SOX2 promoter hypermethylation. Modern Pathology, 31, 83.
MAJNARIC, L. & VCEV, A. 2012. Prevention and Early Detection of Cancer-A Public Health View. Cancer Management. InTech.
MAMUN, M. A., MANNOOR, K., CAO, J., QADRI, F. & SONG, X. 2018. SOX2 in cancer stemness: tumor malignancy and therapeutic potentials. Journal of molecular cell biology.
MARTIN, E. M. & FRY, R. C. 2016. A cross-study analysis of prenatal exposures to environmental contaminants and the epigenome: support for stress-responsive transcription factor occupancy as a mediator of gene-specific CpG methylation patterning. Environmental epigenetics, 2.
MARTIN, E. M. & FRY, R. C. 2018. Environmental influences on the epigenome: exposure-associated DNA methylation in human populations. Annual review of public health, 39, 309-333.
MCCARTNEY, D. L., HILLARY, R. F., STEVENSON, A. J., RITCHIE, S. J., WALKER, R. M., ZHANG, Q., MORRIS, S. W., BERMINGHAM, M. L., CAMPBELL, A. & MURRAY, A. D. 2018. Epigenetic prediction of complex traits and death. Genome biology, 19, 136.
MCCLUSKEY, L. L., CHEN, C., DELGADILLO, E., FELIX, J. C., MUDERSPACH, L. I. & DUBEAU, L. 1999. Differences inp16Gene methylation and expression in benign and malignant ovarian tumors. Gynecologic oncology, 72, 87-92.
MIKESKA, T., BOCK, C., DO, H. & DOBROVIC, A. 2012. DNA methylation biomarkers in cancer: progress towards clinical implementation. Expert review of molecular diagnostics, 12, 473-487.
MOMPARLER, R., COTE, S. & ELIOPOULOS, N. 1997. Pharmacological approach for optimization of the dose schedule of 5-Aza-2’-deoxycytidine (Decitabine) for the therapy of leukemia. Leukemia, 11, 175.
MOORE, L. D., LE, T. & FAN, G. 2013. DNA methylation and its basic function. Neuropsychopharmacology, 38, 23.
MORAN, S., ARRIBAS, C. & ESTELLER, M. 2016. Validation of a DNA methylation microarray for 850,000 CpG sites of the human genome enriched in enhancer sequences. Epigenomics, 8, 389-399.
MÜLLER, H. M., OBERWALDER, M., FIEGL, H., MORANDELL, M., GOEBEL, G., ZITT, M., MÜHLTHALER, M., ÖFNER, D., MARGREITER, R. & WIDSCHWENDTER, M. 2004. Methylation changes in faecal DNA: a marker for colorectal cancer screening? The Lancet, 363, 1283-1285.
MURILLO-TOVAR, M. A., BARRADAS-GIMATE, A., ARIAS-MONTOYA, M. I. & SALDARRIAGA-NOREÑA, H. A. 2018. Polycyclic Aromatic Hydrocarbons (PAHs) Associated with PM2. 5 in Guadalajara, Mexico: Environmental Levels, Health Risks and Possible Sources. Environments, 5, 62.
MURRAY, I. A., PATTERSON, A. D. & PERDEW, G. H. 2014. Aryl hydrocarbon receptor ligands in cancer: friend and foe. Nature Reviews Cancer, 14, 801.
NEIDHART, M. 2015. DNA Methylation and Complex Human Disease, Academic Press.
OPITZ, C. A., LITZENBURGER, U. M., SAHM, F., OTT, M., TRITSCHLER, I., TRUMP, S., SCHUMACHER, T., JESTAEDT, L., SCHRENK, D. & WELLER, M. 2011. An endogenous tumour-promoting ligand of the human aryl hydrocarbon receptor. Nature, 478, 197.
OTSUBO, T., AKIYAMA, Y., YANAGIHARA, K. & YUASA, Y. 2008. SOX2 is frequently downregulated in gastric cancers and inhibits cell growth through cell-cycle arrest and apoptosis. British journal of cancer, 98, 824.
PALLIS, A. G. & SYRIGOS, K. N. 2013. Lung cancer in never smokers: disease characteristics and risk factors. Critical reviews in oncology/hematology, 88, 494-503.
PAN, Y., LIU, G., ZHOU, F., SU, B. & LI, Y. 2018. DNA methylation profiles in cancer diagnosis and therapeutics. Clinical and experimental medicine, 18, 1-14.
PANNI, T., MEHTA, A. J., SCHWARTZ, J. D., BACCARELLI, A. A., JUST, A. C., WOLF, K., WAHL, S., CYRYS, J., KUNZE, S. & STRAUCH, K. 2016. Genome-wide analysis of DNA methylation and fine particulate matter air pollution in three study populations: KORA F3, KORA F4, and the Normative Aging Study. Environmental health perspectives, 124, 983.
PEINADO, M. A. 2011. Hypomethylation of DNA. In: SCHWAB, M. (ed.) Encyclopedia of Cancer. Berlin, Heidelberg: Springer Berlin Heidelberg.
PETERS, S., HLADY, R., OPAVSKA, J., KLINKEBIEL, D., PIRRUCCELLO, S. J., TALMON, G. A., SHARP, J. G., WU, L., JAENISCH, R. & SIMPSON, M. 2014. Tumor suppressor functions of Dnmt3a and Dnmt3b in the prevention of malignant mouse lymphopoiesis. Leukemia, 28, 1138.
PHILIBERT, R., HOLLENBECK, N., ANDERSEN, E., MCELROY, S., WILSON, S., VERCANDE, K., BEACH, S. R., OSBORN, T., GERRARD, M. & GIBBONS, F. X. 2016. Reversion of AHRR demethylation is a quantitative biomarker of smoking cessation. Frontiers in psychiatry, 7, 55.
PHILIBERT, R., HOLLENBECK, N., ANDERSEN, E., OSBORN, T., GERRARD, M., GIBBONS, F. X. & WANG, K. 2015. A quantitative epigenetic approach for the assessment of cigarette consumption. Frontiers in psychology, 6, 656.
PHILIBERT, R. A., BEACH, S. R. & BRODY, G. H. 2012. Demethylation of the aryl hydrocarbon receptor repressor as a biomarker for nascent smokers. Epigenetics, 7, 1331-1338.
PHILIBERT, R. A., BEACH, S. R., LEI, M.-K. & BRODY, G. H. 2013. Changes in DNA methylation at the aryl hydrocarbon receptor repressor may be a new biomarker for smoking. Clinical epigenetics, 5, 19.
PIDSLEY, R., ZOTENKO, E., PETERS, T. J., LAWRENCE, M. G., RISBRIDGER, G. P., MOLLOY, P., VAN DJIK, S., MUHLHAUSLER, B., STIRZAKER, C. & CLARK, S. J. 2016. Critical evaluation of the Illumina MethylationEPIC BeadChip microarray for whole-genome DNA methylation profiling. Genome biology, 17, 208.
PIKOR, L. A., RAMNARINE, V. R., LAM, S. & LAM, W. L. 2013. Genetic alterations defining NSCLC subtypes and their therapeutic implications. Lung cancer, 82, 179-189.
PLUMB, J. A., STRATHDEE, G., SLUDDEN, J., KAYE, S. B. & BROWN, R. 2000. Reversal of drug resistance in human tumor xenografts by 2′-deoxy-5-azacytidine-induced demethylation of the hMLH1 gene promoter. Cancer research, 60, 6039-6044.
PLUSQUIN, M., GUIDA, F., POLIDORO, S., VERMEULEN, R., RAASCHOU-NIELSEN, O., CAMPANELLA, G., HOEK, G., KYRTOPOULOS, S. A., GEORGIADIS, P. & NACCARATI, A. 2017. DNA methylation and exposure to ambient air pollution in two prospective cohorts. Environment international, 108, 127-136.
PORTELA, A. & ESTELLER, M. 2010. Epigenetic modifications and human disease. Nature biotechnology, 28, 1057.
RAASCHOU-NIELSEN, O., ANDERSEN, Z. J., BEELEN, R., SAMOLI, E., STAFOGGIA, M., WEINMAYR, G., HOFFMANN, B., FISCHER, P., NIEUWENHUIJSEN, M. J. & BRUNEKREEF, B. 2013. Air pollution and lung cancer incidence in 17 European cohorts: prospective analyses from the European Study of Cohorts for Air Pollution Effects (ESCAPE). The lancet oncology, 14, 813-822.
RAHMANI, E., ZAITLEN, N., BARAN, Y., ENG, C., HU, D., GALANTER, J., OH, S., BURCHARD, E. G., ESKIN, E. & ZOU, J. 2016. Sparse PCA corrects for cell type heterogeneity in epigenome-wide association studies. Nature methods, 13, 443.
RECHACHE, N. S., WANG, Y., STEVENSON, H. S., KILLIAN, J. K., EDELMAN, D. C., MERINO, M., ZHANG, L., NILUBOL, N., STRATAKIS, C. A. & MELTZER, P. S. 2012. DNA methylation profiling identifies global methylation differences and markers of adrenocortical tumors. The Journal of Clinical Endocrinology & Metabolism, 97, E1004-E1013.
REN, Z. H., ZHANG, C. P. & JI, T. 2016. Expression of SOX2 in oral squamous cell carcinoma and the association with lymph node metastasis. Oncology letters, 11, 1973-1979.
REYNOLDS, L. M., MAGID, H. S., CHI, G. C., LOHMAN, K., BARR, R. G., KAUFMAN, J. D., HOESCHELE, I., BLAHA, M. J., NAVAS-ACIEN, A. & LIU, Y. 2016. Secondhand tobacco smoke exposure associations with DNA methylation of the aryl hydrocarbon receptor repressor. Nicotine & Tobacco Research, 19, 442-451.
REYNOLDS, L. M., WAN, M., DING, J., TAYLOR, J. R., LOHMAN, K., SU, D., BENNETT, B. D., PORTER, D. K., GIMPLE, R. & PITTMAN, G. S. 2015a. DNA methylation of the aryl hydrocarbon receptor repressor associations with cigarette smoking and subclinical atherosclerosis. Circulation: Cardiovascular Genetics, 8, 707-716.
REYNOLDS, L. M., WAN, M., DING, J., TAYLOR, J. R., LOHMAN, K., SU, D., BENNETT, B. D., PORTER, D. K., GIMPLE, R. & PITTMAN, G. S. 2015b. DNA Methylation of the Aryl Hydrocarbon Receptor Repressor Associations With Cigarette Smoking and Subclinical AtherosclerosisCLINICAL PERSPECTIVE. Circulation: Cardiovascular Genetics, 8, 707-716.
RIGGS, A. D. & JONES, P. A. 1983. 5-methylcytosine, gene regulation, and cancer. Advances in cancer research. Elsevier.
RUIZ-HERNANDEZ, A., KUO, C.-C., RENTERO-GARRIDO, P., TANG, W.-Y., REDON, J., ORDOVAS, J. M., NAVAS-ACIEN, A. & TELLEZ-PLAZA, M. 2015. Environmental chemicals and DNA methylation in adults: a systematic review of the epidemiologic evidence. Clinical epigenetics, 7, 55.
SAFE, S., LEE, S.-O. & JIN, U.-H. 2013. Role of the aryl hydrocarbon receptor in carcinogenesis and potential as a drug target. Toxicological Sciences, 135, 1-16.
SANTINI, R., PIETROBONO, S., PANDOLFI, S., MONTAGNANI, V., D''AMICO, M., PENACHIONI, J., VINCI, M., BORGOGNONI, L. & STECCA, B. 2014. SOX2 regulates self-renewal and tumorigenicity of human melanoma-initiating cells. Oncogene, 33, 4697.
SCHMIDT, B., LIEBENBERG, V., DIETRICH, D., SCHLEGEL, T., KNEIP, C., SEEGEBARTH, A., FLEMMING, N., SEEMANN, S., DISTLER, J. & LEWIN, J. 2010. SHOX2 DNA methylation is a biomarker for the diagnosis of lung cancer based on bronchial aspirates. BMC cancer, 10, 600.
SHAHADIN, M. S., AB MUTALIB, N. S., LATIF, M. T., CATHERINE, G. M. & TIDI, H. 2018. Challenges and future direction of molecular research in air pollution-related lung cancers. Lung Cancer.
SHEN, X., HE, Z., LI, H., YAO, C., ZHANG, Y., HE, L., LI, S., HUANG, J. & GUO, Z. 2012. Distinct functional patterns of gene promoter hypomethylation and hypermethylation in cancer genomes. PLoS One, 7, e44822.
SHENKER, N. S., POLIDORO, S., VAN VELDHOVEN, K., SACERDOTE, C., RICCERI, F., BIRRELL, M. A., BELVISI, M. G., BROWN, R., VINEIS, P. & FLANAGAN, J. M. 2012. Epigenome-wide association study in the European Prospective Investigation into Cancer and Nutrition (EPIC-Turin) identifies novel genetic loci associated with smoking. Human molecular genetics, 22, 843-851.
SHOLL, L. M., BARLETTA, J. A., YEAP, B. Y., CHIRIEAC, L. R. & HORNICK, J. L. 2010. Sox2 protein expression is an independent poor prognostic indicator in stage I lung adenocarcinoma. The American journal of surgical pathology, 34, 1193.
SMIRAGLIA, D. J., RUSH, L. J., FRÜHWALD, M. C., DAI, Z., HELD, W. A., COSTELLO, J. F., LANG, J. C., ENG, C., LI, B. & WRIGHT, F. A. 2001. Excessive CpG island hypermethylation in cancer cell lines versus primary human malignancies. Human molecular genetics, 10, 1413-1419.
SOBERANES, S., GONZALEZ, A., URICH, D., CHIARELLA, S. E., RADIGAN, K. A., OSORNIO-VARGAS, A., JOSEPH, J., KALYANARAMAN, B., RIDGE, K. M. & CHANDEL, N. S. 2012. Particulate matter air pollution induces hypermethylation of the p16 promoter via a mitochondrial ROS-JNK-DNMT1 pathway. Scientific reports, 2, 275.
SUBACH, O. M., MALTSEVA, D. V., SHASTRY, A., KOLBANOVSKIY, A., KLIMAŠAUSKAS, S., GEACINTOV, N. E. & GROMOVA, E. S. 2007. The stereochemistry of benzo [a] pyrene‐2′‐deoxyguanosine adducts affects DNA methylation by SssI and HhaI DNA methyltransferases. The FEBS journal, 274, 2121-2134.
SUBRAMANIAN, J. & GOVINDAN, R. 2007. Lung cancer in never smokers: a review. Journal of clinical oncology, 25, 561-570.
TAM, W. L. & NG, H. H. 2014. Sox2: masterminding the root of cancer. Cancer cell, 26, 3-5.
TESCHENDORFF, A. E., YANG, Z., WONG, A., PIPINIKAS, C. P., JIAO, Y., JONES, A., ANJUM, S., HARDY, R., SALVESEN, H. B. & THIRLWELL, C. 2015. Correlation of smoking-associated DNA methylation changes in buccal cells with DNA methylation changes in epithelial cancer. JAMA oncology, 1, 476-485.
THIRLWELL, C., EYMARD, M., FEBER, A., TESCHENDORFF, A., PEARCE, K., LECHNER, M., WIDSCHWENDTER, M. & BECK, S. 2010. Genome-wide DNA methylation analysis of archival formalin-fixed paraffin-embedded tissue using the Illumina Infinium HumanMethylation27 BeadChip. Methods, 52, 248-254.
TING, A. H., MCGARVEY, K. M. & BAYLIN, S. B. 2006. The cancer epigenome—components and functional correlates. Genes & development, 20, 3215-3231.
TOMCZAK, A., MILLER, A. B., WEICHENTHAL, S. A., TO, T., WALL, C., VAN DONKELAAR, A., MARTIN, R. V., CROUSE, D. L. & VILLENEUVE, P. J. 2016. Long‐term exposure to fine particulate matter air pollution and the risk of lung cancer among participants of the Canadian National Breast Screening Study. International journal of cancer, 139, 1958-1966.
TORRES-DURÁN, M., RUANO-RAVINA, A., KELSEY, K. T., PARENTE-LAMELAS, I., PROVENCIO, M., LEIRO-FERNÁNDEZ, V., ABAL-ARCA, J., MONTERO-MARTÍNEZ, C., VIDAL-GARCIA, I. & PENA, C. 2015. Small cell lung cancer in never-smokers. European Respiratory Journal, ERJ-01524-2015.
VALAVANIDIS, A., FIOTAKIS, K. & VLACHOGIANNI, T. 2008. Airborne particulate matter and human health: toxicological assessment and importance of size and composition of particles for oxidative damage and carcinogenic mechanisms. Journal of Environmental Science and Health, Part C, 26, 339-362.
VAN DER ZEE, S. C., FISCHER, P. H. & HOEK, G. 2016. Air pollution in perspective: Health risks of air pollution expressed in equivalent numbers of passively smoked cigarettes. Environmental research, 148, 475-483.
VAN MEERBEECK, J. P., FENNELL, D. A. & DE RUYSSCHER, D. K. 2011. Small-cell lung cancer. The Lancet, 378, 1741-1755.
VAN VOORHIS, M., KNOPP, S., JULLIARD, W., FECHNER, J. H., ZHANG, X., SCHAUER, J. J. & MEZRICH, J. D. 2013. Exposure to atmospheric particulate matter enhances Th17 polarization through the aryl hydrocarbon receptor. PloS one, 8, e82545.
VELCHETI, V., SCHALPER, K., YAO, X., CHENG, H., KOCOGLU, M., DHODAPKAR, K., DENG, Y., GETTINGER, S. & RIMM, D. L. 2013. High SOX2 levels predict better outcome in non-small cell lung carcinomas. PLoS One, 8, e61427.
VOGEL, C. F. & HAARMANN-STEMMANN, T. 2017. The aryl hydrocarbon receptor repressor–More than a simple feedback inhibitor of AhR signaling: clues for its role in inflammation and cancer. Current opinion in toxicology, 2, 109-119.
WAJED, S. A., LAIRD, P. W. & DEMEESTER, T. R. 2001. DNA methylation: an alternative pathway to cancer. Annals of surgery, 234, 10.
WEINA, K. & UTIKAL, J. 2014. SOX2 and cancer: current research and its implications in the clinic. Clinical and translational medicine, 3, 19.
WILLERS, S. M., ERIKSSON, C., GIDHAGEN, L., NILSSON, M. E., PERSHAGEN, G. & BELLANDER, T. 2013. Fine and coarse particulate air pollution in relation to respiratory health in Sweden. European Respiratory Journal, 42, 924-934.
WILSON, W. E. & SUH, H. H. 1997. Fine particles and coarse particles: concentration relationships relevant to epidemiologic studies. Journal of the Air & Waste Management Association, 47, 1238-1249.
WONG, O. G.-W., HUO, Z., SIU, M. K.-Y., ZHANG, H., JIANG, L., WONG, E. S.-Y. & CHEUNG, A. N.-Y. 2010. Hypermethylation of SOX2 promoter in endometrial carcinogenesis. Obstetrics and gynecology international, 2010.
WRIGHT, R. O., SCHWARTZ, J., WRIGHT, R. J., BOLLATI, V., TARANTINI, L., PARK, S. K., HU, H., SPARROW, D., VOKONAS, P. & BACCARELLI, A. 2010. Biomarkers of lead exposure and DNA methylation within retrotransposons. Environmental health perspectives, 118, 790-795.
YANG, L., RODRIGUEZ, B., MAYLE, A., PARK, H. J., LIN, X., LUO, M., JEONG, M., CURRY, C. V., KIM, S.-B. & RUAU, D. 2016. DNMT3A loss drives enhancer hypomethylation in FLT3-ITD-associated leukemias. Cancer cell, 29, 922-934.
YEH, H.-L., HSU, S.-W., CHANG, Y.-C., CHAN, T.-C., TSOU, H.-C., CHANG, Y.-C. & CHIANG, P.-H. 2017. Spatial analysis of ambient PM2. 5 exposure and bladder cancer mortality in Taiwan. International journal of environmental research and public health, 14, 508.
YING, J., SHI, C., LI, C. S., HU, L. P. & ZHANG, W. D. 2016. Expression and significance of SOX2 in non-small cell lung carcinoma. Oncology letters, 12, 3195-3198.
YOON, H. I., PARK, K. H., LEE, E.-J., KEUM, K. C., LEE, C. G., KIM, C. H. & KIM, Y. B. 2016. Overexpression of SOX2 is associated with better overall survival in squamous cell lung cancer patients treated with adjuvant radiotherapy. Cancer research and treatment: official journal of Korean Cancer Association, 48, 473.
YUAN, T.-H., SHIE, R.-H., CHIN, Y.-Y. & CHAN, C.-C. 2015. Assessment of the levels of urinary 1-hydroxypyrene and air polycyclic aromatic hydrocarbon in PM2. 5 for adult exposure to the petrochemical complex emissions. Environmental research, 136, 219-226.
ZHANG, Y., ELGIZOULI, M., SCHÖTTKER, B., HOLLECZEK, B., NIETERS, A. & BRENNER, H. 2016. Smoking-associated DNA methylation markers predict lung cancer incidence. Clinical epigenetics, 8, 127.
ZHOU, W., TIAN, D., HE, J., WANG, Y., ZHANG, L. & CUI, L. 2016. Repeated PM2. 5 exposure inhibits BEAS-2B cell P53 expression through ROS-Akt-DNMT3B pathway-mediated promoter hypermethylation. Oncotarget, 7, 20691.
ZHU, X., LI, J., DENG, S., YU, K., LIU, X., DENG, Q., SUN, H., ZHANG, X., HE, M. & GUO, H. 2016a. Genome-wide analysis of DNA methylation and cigarette smoking in a Chinese population. Environmental health perspectives, 124, 966-973.
ZHU, X., LI, J., DENG, S., YU, K., LIU, X., DENG, Q., SUN, H., ZHANG, X., HE, M. & GUO, H. 2016b. Genome-wide analysis of DNA methylation and cigarette smoking in a Chinese population. Environmental health perspectives, 124, 966.
ZUDAIRE, E., CUESTA, N., MURTY, V., WOODSON, K., ADAMS, L., GONZALEZ, N., MARTÍNEZ, A., NARAYAN, G., KIRSCH, I. & FRANKLIN, W. 2008. The aryl hydrocarbon receptor repressor is a putative tumor suppressor gene in multiple human cancers. The Journal of clinical investigation, 118, 640-650.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊