跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/27 10:13
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:趙雪安
研究生(外文):Hsueh-An Chao
論文名稱:青少年體能活動量與體組成及骨質健康狀況之相關性
論文名稱(外文):Correlations between physical activity, body composition and bone health status in adolescents
指導教授:林以勤林以勤引用關係
指導教授(外文):Yi-Chin Lin
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:67
中文關鍵詞:青少年代謝當量(METs)骨密度國民營養調查(NAHSIT)
外文關鍵詞:adolescentsMetabolic Equivalent of Task(METs)bone mineral density(BMD)Nutrition and Health Survey in Taiwan(NAHSIT)
相關次數:
  • 被引用被引用:0
  • 點閱點閱:216
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
骨質疏鬆症好發於老年人群及停經後的婦女,特徵為骨量減少和骨骼結構惡化,容易導致骨折進而造成嚴重的疼痛,並可能影響行動能力和生活品質,甚至造成死亡。青少年期間所達到的巔峰骨量與成年後期的骨量息息相關。國際骨質疏鬆基金會(International Osteoporosis Foundation, IOF) 指出在年輕時期多增加10%的骨密度,就可以使骨質疏鬆症的發生延後13年;美國國家衛生院(National Institutes of Health, NIH)表示,高達90%的骨量是在青春期時累積的,因此青少年時期為累積骨量的最佳時機。許多文獻指出運動和飲食皆為影響骨量的重要因素,故本研究以台灣國高中生為研究對象,探討體能活動量等因素與骨質健康狀況的關聯性。
本研究使用2010-2011年的台灣國民營養健康狀況變遷調查(Nutrition and Health Survey in Taiwan, NAHSIT)中所收集之受試者的基本資料、體位測量、體能活動量、飲食頻率問卷和骨質密度測量數值。
本研究結果顯示,在調整年齡、BMI、身高及飲食頻率後,青少年體能活動量與骨密度及骨礦物含量具有顯著之關聯性,而青少女體能活動量亦與多數的骨質測量結果呈顯著之正向關聯性。另外,本研究以腰椎骨密度Z-score分組後發現,Z-score ≤ -2的組別於除瘦體率之各項體組成、體能活動量、負重運動及全身、股骨頸和腰椎骨密度及骨礦物含量之平均值皆為最低(p < 0.05);而腰椎骨密度Z-score > -1的組別,其於除瘦體率外之各項測量結果皆有較高之平均值(p < 0.05)。在體能活動量與負重運動的部分,可觀察到運動量較高者其骨質健康狀況較同年齡者為佳。
本研究結果顯示,不論男女青少年的體能活動量及負重運動與各部位之骨密度及骨礦物量皆具正向顯著關聯性,且各部位骨密度(全身:男性β=0.03897, p <.0001;女性β=0.01741, p <.0001、股骨頸:男性β=0.04274, p <.0001;女性β=0.01648, p <.0001、腰椎:男性β=0.06052, p <.0001;女性β=0.02459, p <.0001)及骨礦物含量(全身:男性β=181.43448, p <.0001;女性β=70.21593, p <.0001、股骨頸:男性β=0.30087, p <.0001;女性β=0.09712, p <.0001、腰椎:男性β=3.99154, p <.0001;女性β=1.44110, p <.0001)隨年齡而增加並呈線性趨勢,表示運動量的增加可能有助於骨量的積累,並使其與同年齡層者相比有較好的骨量。
Osteoporosis often occurs in the elderly and postmenopausal women. The disease is characterized by decreased bone mass and deterioration of bone structure, which may lead to fragility fractures that would result in disability and compromise quality of life or even increase the risk of death. The development of peak bone mass during adolescence is critical to bone mass in late adulthood. The International Osteoporosis Foundation (IOF) suggests that an increase of 10% in bone density during younger age may delay the onset of osteoporosis for 13 years. The National Institutes of Health (NIH) indicate that up to 90% of bone mass is accumulated during puberty, and adolescence is the critical. Numerous studies have reported that both exercise and diet affect the accumulation of bone mass. The current study was conducted to investigate the influences of physical activity and/or other important factors on bone health status in the junior and senior high school students in Taiwan.
The data of anthropometry, physical activity and dietary intake were obtained from the participants in the Nutrition and Health Survey in Taiwan 2010-2011. Data of those who completed both questionnaire interview and physical examination sessions were included in the current analysis.
The results showed that after adjusting for age, body mass index, height and dietary intake (by food frequency questionnaire), the level of physical activity of adolescents was significantly correlated with bone mineral density (BMD) and bone mineral content (BMC), and similar results were also observed in teenage girls. The subjects were further grouped by lumbar spine BMD Z-score, and the results showed that the body composition parameters except for lean mass percentage, level of physical activity, level of weight-bearing exercise as well as the bone measurements were significantly higher than those with Z-score > -1 (p < 0.05), whereas the above mentioned variables were significantly lower in those with Z-score ≤ -2 (p < 0.05). In addition, we also observed that bone measurements appeared to be better in those adolescents with higher levels of physical activity or weight-bearing exercise.
In conclusion, the results of this study showed that both physical activity and weight-bearing exercise of adolescents were positively correlated with BMD (TB BMD: Maleβ=0.03897, p <.0001; Female β=0.01741, p <.0001、FN BMD: Maleβ=0.04274, p <.0001; Femaleβ=0.01648, p <.0001、LS 2-4 BMD: Maleβ=0.06052, p <.0001; Femaleβ=0.02459, p <.0001) and BMC (TB BMC: Maleβ=181.43448, p <.0001; Femaleβ=70.21593, p <.0001、FN BMC: Maleβ=0.30087, p <.0001; Femaleβ=0.09712, p <.0001、LS 2-4 BMC: Maleβ=3.99154, p <.0001; Femaleβ=1.44110, p <.0001). Higher level of physical activity may contribute to the better accumulation of bone mass for adolescents in Taiwan.
中文摘要--------------------------------------------------------------------------1
英文摘要--------------------------------------------------------------------------3
壹、文獻回顧
第一節 骨質疏鬆之定義與影響-------------------------------------5
第二節 骨質疏鬆症流行病學----------------------------------------7
第三節 影響骨質的因素----------------------------------------------8
第四節 青少年骨質密度檢測---------------------------------------19
貳、研究動機------------------------------------------------------------------21
參、研究目的------------------------------------------------------------------22
肆、材料與方法
第一節 研究設計與研究對象---------------------------------------23
第二節 研究方法------------------------------------------------------24
第三節 統計分析------------------------------------------------------26
伍、結果
第一節 國、高中生基本體位、體能活動量、體組成及骨骼測
量之性別比較-----------------------------------------------27
第二節 國、高中生體能活動量與體組成和骨骼測量之相關性-----------------------------------------------------------------27
第三節 各部位骨密度及骨礦物含量與年齡的趨勢-----------28
第四節 國、高中生飲食頻率之性別比較-----------------------28
第五節 國、高中生各年齡層之飲食攝取頻率比較-----------29
第六節 體能活動量與骨質之間的複迴歸分析-----------------30
第七節 負重運動與骨質之間的迴歸分析-----------------------30
第八節 以腰椎骨密度Z-score分組比較體組成、體能活動量
與各部位骨質健康狀況-----------------------------------31
陸、討論
第一節 年齡與青少年骨質發展-----------------------------------33
第二節 體能活動量與青少年骨質健康狀況--------------------34
第三節 飲食及生活型態與青少年骨質--------------------------35
第四節 體重與青少年骨質-----------------------------------------37
第五節 維生素D與戶外活動-------------------------------------38
第六節 Z-score與青少年骨質狀況-------------------------------40
柒、研究限制-----------------------------------------------------------------41
捌、結論-----------------------------------------------------------------------42
玖、參考文獻-----------------------------------------------------------------43
壹拾、表格與圖表
表一 國、高中生基本體位、體能活動量、體組成及骨骼測
量之性別比較--------------------------------------------------59
表二 國、高中生體能活動量與各因子之相關性--------------60
表三 國、高中生飲食頻率之性別比較--------------------------61
表四 國、高中生各年齡層之飲食攝取頻率比較--------------62
表五 體能活動量與骨質之間的複迴歸分析--------------------63
表六 負重運動與骨質之間的迴歸分析--------------------------64
表七 以腰椎骨密度Z分數分組,比較各組體組成、體能活動
量、骨質與飲食之差異--------------------------------------65
圖一 各部位骨密度及骨礦物含量與年齡的趨勢--------------66
Agrawal, A., Grant, J. D., Waldron, M., Duncan, A. E., Scherrer, J. F., Lynskey, M. T., Madden, P. A.F., Bucholz, K. K., & Heath, A. C. (2006). Risk for initiation of substance use as a function of age of onset of cigarette, alcohol and cannabis use: findings in a Midwestern female twin cohort. Preventive medicine, 43(2), 125-128.
Ainsworth, B. E., Haskell, W. L., Herrmann, S. D., Meckes, N., Bassett Jr, D. R., Tudor-Locke, C., Greer, J. L., Vezina, J., Whitt-Glover, M. C., & Leon, A. S. (2011). 2011 Compendium of Physical Activities: a second update of codes and MET values. Medicine & science in sports & exercise, 43(8), 1575-1581.
Alekel, D. L., Germain, A. S., Peterson, C. T., Hanson, K. B., Stewart, J. W., & Toda, T. (2000). Isoflavone-rich soy protein isolate attenuates bone loss in the lumbar spine of perimenopausal women. The American journal of clinical nutrition, 72(3), 844-852.
Allen, L. H. (1982). Calcium bioavailability and absorption: a review. The American journal of clinical nutrition, 35(4), 783-808.
Andon, M. B., Lloyd, T., & Matkovic, V. (1994). Supplementation trials with calcium citrate malate: evidence in favor of increasing the calcium RDA during childhood and adolescence. The Journal of nutrition, 124(8), 1412S-1417S.
Andreoli, A., Monteleone, M., Van Loan, M., Promenzio, L., Tarantino, U., & De Lorenzo, A. (2001). Effects of different sports on bone density and muscle mass in highly trained athletes. Medicine and science in sports and exercise, 33(4), 507-511.
Arjmandi, B. H., Lucas, E. A., Khalil, D. A., Devareddy, L., Smith, B. J., McDonald, J., Arquitt, A. B., Payton, M. E., & Mason, C. (2005). One year soy protein supplementation has positive effects on bone formation markers but not bone density in postmenopausal women. Nutrition Journal, 4(1), 8.
Avdagić, S., Barić, I., Keser, I., Cecić, I., Šatalić, Z., Bobić, J., & Gomzi, M. (2009). Differences in peak bone density between male and female students. Archives of Industrial Hygiene and Toxicology, 60(1), 79-86.
Bailey, D. A., McKay, H. A., Mirwald, R. L., Crocker, P. R. E., & Faulkner, R. A. (1999). A six‐year longitudinal study of the relationship of physical activity to bone mineral accrual in growing children: the university of Saskatchewan bone mineral accrual study. Journal of bone and mineral research, 14(10), 1672-1679.
Baim, S., Wilson, C. R., Lewiecki, E. M., Luckey, M. M., Downs Jr, R. W., & Lentle, B. C. (2005). Precision assessment and radiation safety for dual-energy X-ray absorptiometry: position paper of the International Society for Clinical Densitometry. Journal of Clinical Densitometry, 8(4), 371-378.
Bakker, I., Twisk, J. W., Van Mechelen, W., & Kemper, H. C. (2003). Fat-free body mass is the most important body composition determinant of 10-yr longitudinal development of lumbar bone in adult men and women. The Journal of Clinical Endocrinology & Metabolism, 88(6), 2607-2613.
Ballane, G., Cauley, J. A., Luckey, M. M., & Fuleihan, G. E. H. (2017). Worldwide prevalence and incidence of osteoporotic vertebral fractures. Osteoporosis International, 28(5), 1531-1542.
Barengolts, E. I., Berman, M., Kukreja, S. C., Kouznetsova, T., Lin, C., & Chomka, E. V. (1998). Osteoporosis and coronary atherosclerosis in asymptomatic postmenopausal women. Calcified tissue international, 62(3), 209-213.
Barzel, U. S., & Massey, L. K. (1998). Excess dietary protein can adversely affect bone. The Journal of nutrition, 128(6), 1051-1053.
Bass, S., Pearce, G., Bradney, M., Hendrich, E., Delmas, P. D., Harding, A., & Seeman, E. (1998). Exercise before puberty may confer residual benefits in bone density in adulthood: studies in active prepubertal and retired female gymnasts. Journal of Bone and Mineral Research, 13(3), 500-507.
Berard, A., Bravo, G., & Gauthier, P. (1997). Meta-analysis of the effectiveness of physical activity for the prevention of bone loss in postmenopausal women. Osteoporosis international, 7(4), 331-337.
Bonjour, J. P., Theintz, G., Buchs, B., Slosman, D., & Rizzoli, R. (1991). Critical years and stages of puberty for spinal and femoral bone mass accumulation during adolescence. The Journal of Clinical Endocrinology & Metabolism, 73(3), 555-563.
Bradney, M., Pearce, G., Naughton, G., Sullivan, C., Bass, S., Beck, T., Carlson, J., & Seeman, E. (1998). Moderate exercise during growth in prepubertal boys: changes in bone mass, size, volumetric density, and bone strength: a controlled prospective study. Journal of Bone and Mineral Research, 13(12), 1814-1821.
Breslau, N. A., Brinkley, L., Hill, K. D., & Pak, C. Y. (1988). Relationship of animal protein-rich diet to kidney stone formation and calcium metabolism. The Journal of Clinical Endocrinology & Metabolism, 66(1), 140-146.
Bügel, S. (2003). Vitamin K and bone health. Proceedings of the Nutrition Society, 62(4), 839-843.
Burckhardt, P., & Michel, C. H. (1989). The peak bone mass concept. Clinical rheumatology, 8(2), 16-21.
Bushinsky, D. A. (2001). Acid-base imbalance and the skeleton. European journal of nutrition, 40(5), 238-244.
Calbet, J. A., Dorado, C., Diaz-Herrera, P., & Rodriguez-Rodriguez, L. P. (2001). High femoral bone mineral content and density in male football (soccer) players. Medicine and science in sports and exercise, 33(10), 1682-1687.
Callewaert, F., Sinnesael, M., Gielen, E., Boonen, S., & Vanderschueren, D. (2010). Skeletal Sexual Dimorphism: Relative Contribution of Sex Steroids, Growth Hormone–Insulin-Like Growth Factor-I (GH-IGF-I), and Mechanical Loading. Journal of Endocrinology, 207(2), 127-134.
Calvo, M. S. (1993). Dietary phosphorus, calcium metabolism and bone. The Journal of nutrition, 123(9), 1627-1633.
Cao, J. J. (2011). Effects of obesity on bone metabolism. Journal of orthopaedic surgery and research, 6(1), 30.
Cashman, K. D. (2005). Vitamin K status may be an important determinant of childhood bone health. Nutrition reviews, 63(8), 284-289.
Chan, G. M., Hoffman, K., & McMurry, M. (1995). Effects of dairy products on bone and body composition in pubertal girls. The Journal of pediatrics, 126(4), 551-556.
Chang, S. F. (2004). Explore the effectors of bone mineral density in community women. The journal of nursing research, 12(4), 327-336.
Cheng, S., Tylavsky, F., Kröger, H., Kärkkäinen, M., Lyytikäinen, A., Koistinen, A., Mahonen, A., Alen, M., Halleen, J., Väänänen, K., & Lamberg-Allardt, C. (2003). Association of low 25-hydroxyvitamin D concentrations with elevated parathyroid hormone concentrations and low cortical bone density in early pubertal and prepubertal Finnish girls. The American journal of clinical nutrition, 78(3), 485-492.
Chevalley, T., Rizzoli, R., Nydegger, V., Slosman, D., Rapin, C. H., Michel, J. P., Vasey, H., & Bonjour, J. P. (1994). Effects of calcium supplements on femoral bone mineral density and vertebral fracture rate in vitamin-D-replete elderly patients. Osteoporosis International, 4(5), 245-252.
Chin, K. Y., & Ima-Nirwana, S. (2012). Sex steroids and bone health status in men. International journal of endocrinology.
Retrieved June 3, 2019, from: http://dx.doi.org/10.1155/2012/208719
Cirillo, M., Galletti, F., Strazzullo, P., Torielli, L., & Melloni, M. C. (1989). On the pathogenetic mechanism of hypercalciuria in genetically hypertensive rats of the Milan strain. American journal of hypertension, 2(10), 741-746.
Cohen, L., & Kitzers, R. (1981). Infrared spectroscopy and Mg content of bone mineral in osteoporotic women. Israel Journal of Medical Sciences, 17(12), 1123-1125.
Cohen, L., Laor, A., & Kitzes, R. (1983). Magnesium malabsorption in postmenopausal osteoporosis. Magnesium, 2(3), 139-143.
Cooper, C., Westlake, S., Harvey, N., Javaid, K., Dennison, E., & Hanson, M. (2006). Review: Developmental origins of osteoporotic fracture. Osteoporosis International, 17(3), 337-347.
Corwin, R. L., Hartman, T. J., Maczuga, S. A., & Graubard, B. I. (2006). Dietary saturated fat intake is inversely associated with bone density in humans: analysis of NHANES III. The Journal of nutrition, 136(1), 159-165.
Crabtree, N. J., Arabi, A., Bachrach, L. K., Fewtrell, M., Fuleihan, G. E. H., Kecskemethy, H. H., Jaworski, M., & Gordon, C. M. (2014). Dual-energy X-ray absorptiometry interpretation and reporting in children and adolescents: the revised 2013 ISCD Pediatric Official Positions. Journal of Clinical Densitometry, 17(2), 225-242.
Cromer, B., & Harel, Z. (2000). Adolescents: at increased risk for osteoporosis?. Clinical pediatrics, 39(10), 565-574.
Cummings, S. R. & Melton, L. J., (2002). Epidemiology and outcomes of osteoporotic fractures. Lancet, 359(9319), 1761-1767.
Davis, J. W., Novotny, R., Ross, P. D., & Wasnich, R. D. (1994). The peak bone mass of Hawaiian, Filipino, Japanese, and white women living in Hawaii. Calcified tissue international, 55(4), 249-252.
De Schepper, J., Broeck, M. V., & Jonckheer, M. H. (1995). Study of lumbar spine bone mineral density in obese children. Acta paediatrica, 84(3), 313-315.
Felson, D. T., Kiel, D. P., Anderson, J. J., & Kannel, W. B. (1988). Alcohol consumption and hip fractures: the Framingham Study. American Journal of Epidemiology, 128(5), 1102-1110.
Fiorito, L. M., Mitchell, D. C., Smiciklas-Wright, H., & Birch, L. L. (2006). Dairy and dairy-related nutrient intake during middle childhood. Journal of the American Dietetic Association, 106(4), 534-542.
Fischer, S., Milinarsky, A., Giadrosich, V., Dib, G., Arriagada, M., Arinoviche, R. (2000). X-ray absorptiometry of bone in obese and eutrophic children from Valparaiso, Chile. The Journal of Rheumatology, 27(5), 1294-1296.
Fleming, K. H., & Heimbach, J. T. (1994). Consumption of calcium in the US: food sources and intake levels. The Journal of nutrition, 124(suppl_8), 1426S-1430S.
Franceschi, R. T., Iyer, B. S., & Cui, Y. (1994). Effects of ascorbic acid on collagen matrix formation and osteoblast differentiation in murine MC3T3‐E1 cells. Journal of Bone and Mineral Research, 9(6), 843-854.
French, C. E. (1942). The interrelation of calcium and fat utilization in the growing albino rat. The Journal of Nutrition, 23(4), 375-384.
Frost, H. M. (1997). On our age‐related bone loss: insights from a new paradigm. Journal of Bone and Mineral Research, 12(10), 1539-1546.
Genaro, Pde S., & Martini, L. A. (2010). Effect of protein intake on bone and muscle mass in the elderly. Nutrition reviews, 68(10), 616-623.
Geusens, P., Cantatore, F., Nijs, J., Proesmans, W., Emma, F., & Dequeker, J. (1991). Heterogeneity of growth of bone in children at the spine, radius and total skeleton. Growth, development, and aging: GDA, 55(4), 249-256.
Gilsanz, V., Chalfant, J., Kalkwarf, H., Zemel, B., Lappe, J., Oberfield, S., Shepherd, J., Wren, K., & Winer, K. (2011). Age at onset of puberty predicts bone mass in young adulthood. The Journal of pediatrics, 158(1), 100-105.
Golden, N. H., & Abrams, S. A. (2014). Optimizing bone health in children and adolescents. Pediatrics, 134(4), e1229-e1243.
Guh, J. Y., Chuang, L. Y., & Chen, H. C. (2006). Betel-quid use is associated with the risk of the metabolic syndrome in adults. The American journal of clinical nutrition, 83(6), 1313-1320.
Haapasalo, H. (1998). Physical activity and growing bone: Development of peak bone mass with special reference to the effects of unilateral physical activity. Annales chirurgiae et gynaecologiae, 87(3), 250-2.
Hannan, M. T., Felson, D. T., Dawson‐Hughes, B., Tucker, K. L., Cupples, L. A., Wilson, P. W., & Kiel, D. P. (2000). Risk factors for longitudinal bone loss in elderly men and women: the Framingham Osteoporosis Study. Journal of Bone and Mineral Research, 15(4), 710-720.
Hasanoglu, A., Bideci, A., Cinas, P., Tumer, L., & Unal, S. (2000). Bone mineral density in childhood obesity. Journal of Pediatric Endocrinology and Metabolism, 13(3), 307-311.
Heaney, R. P., & Recker, R. R. (1982). Effects of nitrogen, phosphorus, and caffeine on calcium balance in women. The Journal of laboratory and clinical medicine, 99(1), 46-55.
Heaney R. P., Weaver C. M. & Fitzsimmons M. L. (1991). Soybean phytate content: Effect on calcium absorption. The American Journal of Clinical Nutrition, 53(3), 745-747.
Hernandez, C. J., Beaupre, G. S., & Carter, D. R. (2003). A theoretical analysis of the relative influences of peak BMD, age-related bone loss and menopause on the development of osteoporosis. Osteoporosis international, 14(10), 843-847.
Hernlund, E., Svedbom, A., Ivergård, M., Compston, J., Cooper, C., Stenmark, J., McCloskey, E., Jönsson, B., & Kanis, J. A. (2013). Osteoporosis in the European Union: medical management, epidemiology and economic burden. A report prepared in collaboration with the International Osteoporosis Foundation (IOF) and the European Federation of Pharmaceutical Industry Associations (EFPIA).Archives of osteoporosis, 8(1-2), 136.
Holick, M. F., Binkley, N. C., Bischoff-Ferrari, H. A., Gordon, C. M., Hanley, D. A., Heaney, R. P., Murad, M. H., & Weaver, C. M. (2011). Evaluation, treatment, and prevention of vitamin D deficiency: an Endocrine Society clinical practice guideline. The Journal of Clinical Endocrinology & Metabolism, 96(7), 1911-1930.
Holick, M. F., & Dawson-Hughes, B. (Eds.). (2004). Nutrition and bone healthq. Totowa NJ: Humana Press. ISBN:978-1-59259-740-6
Ilich, J. Z., Brownbill, R. A., Tamborini, L., & Crncevic-Orlic, Z. (2002). To drink or not to drink: how are alcohol, caffeine and past smoking related to bone mineral density in elderly women? Journal of the American College of Nutrition, 21(6), 536-544.
Johnell, O., & Kanis, J. (2005). Epidemiology of osteoporotic fractures. Osteoporosis international, 16(2), S3-S7.
Jones, G., Riley, M. D., & Whiting, S. (2001). Association between urinary potassium, urinary sodium, current diet, and bone density in prepubertal children. The American journal of clinical nutrition, 73(4), 839-844.
Julián-Almárcegui, C., Gómez-Cabello, A., Huybrechts, I., González-Agüero, A., Kaufman, J. M., Casajus, J. A., & Vicente-Rodríguez, G. (2015). Combined effects of interaction between physical activity and nutrition on bone health in children and adolescents: a systematic review. Nutrition reviews, 73(3), 127-139.
Kai, M. C., Anderson, M., & Lau, E. (2003). Exercise interventions: defusing the world''s osteoporosis time bomb. Bulletin of the World Health Organization, 81(11), 827-830.
Kalkwarf, H. J., Khoury, J. C., Bean, J., & Elliot, J. G. (2004). Vitamin K, bone turnover, and bone mass in girls. The American journal of clinical nutrition, 80(4), 1075-1080.
Kalkwarf, H. J., Khoury, J. C., & Lanphear, B. P. (2003). Milk intake during childhood and adolescence, adult bone density, and osteoporotic fractures in US women. The American journal of clinical nutrition, 77(1), 257-265.
Kaneko, M., Miyake, T., Yokoyama, E., Harano, S., Toki, T., Komine, Y., Nozaki, N., Nozaki, S., Takeda, N., Miyake, M., & Fukunaga, M. (2000). Standard radial bone mineral density and physical factors in ordinary Japanese women. Journal of bone and mineral metabolism, 18(1), 31-35.
Kanis, J. A., Johnell, O., Oden, A., De Laet, C., & Mellstrom, D. (2001). Diagnosis of osteoporosis and fracture threshold in men. Calcified tissue international, 69(4), 218-221.
Kanis, J. A., Johnell, O., Oden, A., Sernbo, I., Redlund-Johnell, I., Dawson, A., De Laet, C., & Jonsson, B. (2000). Long-term risk of osteoporotic fracture in Malmö. Osteoporosis international, 11(8), 669-674.
Kanis, J. A., Melton III, L. J., Christiansen, C., Johnston, C. C., & Khaltaev, N. (1994). The diagnosis of osteoporosis. Journal of bone and mineral research, 9(8), 1137-1141.
Kaptoge, S., Welch, A., McTaggart, A., Mulligan, A., Dalzell, N., Day, N. E., Bingham, S., Khaw, K. T., & Reeve, J. (2003). Effects of dietary nutrients and food groups on bone loss from the proximal femur in men and women in the 7th and 8th decades of age. Osteoporosis International, 14(5), 418-428.
Khosla, S. (2001). Minireview: The opg/rankl/rank system. Endocrinology, 142(12), 5050-5055.
Klein, N. A., & Soules, M. R. (1998). Endocrine changes of the perimenopause. Clinical obstetrics and gynecology, 41(4), 912-920.
Krall, E. A., & Dawson‐Hughes, B. (1993). Heritable and life‐style determinants of bone mineral density. Journal of Bone and Mineral Research, 8(1), 1-9.
Kristinsson, J. Ö., Valdimarsson, Ö., Steingrimsdottir, L., & Sigurdsson, G. (1994). Relation between calcium intake, grip strength and bone mineral density in the forearms of girls aged 13 and 15. Journal of internal medicine, 236(4), 385-390.
Kruger, M. C., & Wolber, F. M. (2016). Osteoporosis: modern paradigms for last century’s bones. Nutrients, 8(6), 376.
Lau, E. M., Kwok, T., Woo, J., & Ho, S. C. (1998). Bone mineral density in Chinese elderly female vegetarians, vegans, lacto-vegetarians and omnivores. European Journal of Clinical Nutrition, 52(1), 60-64.
Law, M. R., & Hackshaw, A. K. (1997). A meta-analysis of cigarette smoking, bone mineral density and risk of hip fracture: recognition of a major effect. British Medical Journal, 315(7112), 841-846.
Lee, W. T., Cheng, J. C., Jiang, J., Hu, P., Hu, X., & Roberts, D. C. (2002). Calcium absorption measured by stable calcium isotopes (42Ca & 44Ca) among Northern Chinese adolescents with low vitamin D status. Journal of Orthopaedic Surgery, 10(1), 61-66.
Lemann Jr, J. (1999). Relationship between urinary calcium and net acid excretion as determined by dietary protein and potassium: a review. Nephron, 81(Suppl. 1), 18-25.
Lemann Jr, J., Pleuss, J. A., & Gray, R. W. (1993). Potassium causes calcium retention in healthy adults. The Journal of nutrition, 123(9), 1623-1626.
Leveille, S. G., LaCroix, A. Z., Koepsell, T. D., Beresford, S. A., Van Belle, G., & Buchner, D. M. (1997). Dietary vitamin C and bone mineral density in postmenopausal women in Washington State, USA. Journal of Epidemiology & Community Health, 51(5), 479-485.
Lin, C. F., Wang, J. D., Chen, P. H., Chang, S. J., Yang, Y. H., & Ko, Y. C. (2006). Predictors of betel quid chewing behavior and cessation patterns in Taiwan aborigines. BMC public health, 6(1), 271.
Liu, J. M., Zhao, H. Y., Ning, G., Zhao, Y. J., Zhang, L. Z., Sun, L. H., Xu, M. Y., & Chen, J. L. (2004). Relationship between body composition and bone mineral density in healthy young and premenopausal Chinese women. Osteoporosis international, 15(3), 238-242.
Lloyd, T., Andon, M. B., Rollings, N., Martel, J. K., Landis, J. R., Demers, L. M., Eggli, D. F., Kieselhorst, K., & Kulin, H. E. (1993). Calcium supplementation and bone mineral density in adolescent girls. Jama, 270(7), 841-844.
Lloyd, T., Rollings, N., Andon, M. B., Demers, L. M., Eggli, D. F., Kieselhorst, K., Kulin, H., Landis, J. R., Martel, J. K., & Orr, G. (1992). Determinants of bone density in young women. I. Relationships among pubertal development, total body bone mass, and total body bone density in premenarchal females. The Journal of Clinical Endocrinology & Metabolism, 75(2), 383-387.
Lorentzon, M., Mellström, D., & Ohlsson, C. (2005). Association of amount of physical activity with cortical bone size and trabecular volumetric BMD in young adult men: the GOOD study. Journal of Bone and Mineral Research, 20(11), 1936-1943.
Macdonald, H. M., New, S. A., Fraser, W. D., Campbell, M. K., & Reid, D. M. (2005). Low dietary potassium intakes and high dietary estimates of net endogenous acid production are associated with low bone mineral density in premenopausal women and increased markers of bone resorption in postmenopausal women. The American journal of clinical nutrition, 81(4), 923-933.
Manzoni, P., Brambilla, P., Pietrobelli, A., Beccaria, L., Bianchessi, A., Mora, S., & Chiumello, G. (1996). Influence of body composition on bone mineral content in children and adolescents. The American journal of clinical nutrition, 64(4), 603-607.
Maor, G., Rochwerger, M., Segev, Y., & Phillip, M. (2002). Leptin acts as a growth factor on the chondrocytes of skeletal growth centers. Journal of bone and mineral research, 17(6), 1034-1043.
Martin, A. D., Bailey, D. A., McKay, H. A., & Whiting, S. (1997). Bone mineral and calcium accretion during puberty. The American journal of clinical nutrition, 66(3), 611-615.
Matkovic, V., Ilich, J. Z., Andon, M. B., Hsieh, L. C., Tzagournis, M. A., Lagger, B. J., & Goel, P. K. (1995). Urinary calcium, sodium, and bone mass of young females. The American journal of clinical nutrition, 62(2), 417-425.
Maynard, L. M., Guo, S. S., Chumlea, W. C., Roche, A. F., Wisemandle, W. A., Zeller, C. M., Towne, B., & Siervogel, R. M. (1998). Total-body and regional bone mineral content and areal bone mineral density in children aged 8-18 y: the Fels Longitudinal Study. The American journal of clinical nutrition, 68(5), 1111-1117.
McGartland, C. P., Robson, P. J., Murray, L. J., Cran, G. W., Savage, M. J., Watkins, D. C., Rooney, M. M., & Boreham, C. A. (2004). Fruit and vegetable consumption and bone mineral density: the Northern Ireland Young Hearts Project. The American journal of clinical nutrition, 80(4), 1019-1023.
McLernon, D. J., Powell, J. J., Jugdaohsingh, R., & Macdonald, H. M. (2012). Do lifestyle choices explain the effect of alcohol on bone mineral density in women around menopause? The American journal of clinical nutrition, 95(5), 1261-1269.
Melton III, L. J., Atkinson, E. J., O''Connor, M. K., O''Fallon, W. M., & Riggs, B. L. (1998). Bone density and fracture risk in men. Journal of Bone and Mineral Research, 13(12), 1915-1923.
Melton III, L. J., Chrischilles, E. A., Cooper, C., Lane, A. W., & Riggs, B. L. (1992). Perspective: How many women have osteoporosis. Journal of Bone and Mineral Research, 7(9), 1005-1010.
Mithal, A., Bansal, B., Kyer, C. S., & Ebeling, P. (2014). The Asia-pacific regional audit-epidemiology, costs, and burden of osteoporosis in India 2013: a report of international osteoporosis foundation. Indian journal of endocrinology and metabolism, 18(4), 449.
Morton, D. J., Barrett-Connor, E., Kritz-Silverstein, D., Wingard, D. L., & Schneider, D. L. (2003). Bone mineral density in postmenopausal Caucasian, Filipina, and Hispanic women. International journal of epidemiology, 32(1), 150-156.
Munger, R. G., Cerhan, J. R., & Chiu, B. C. (1999). Prospective study of dietary protein intake and risk of hip fracture in postmenopausal women. The American journal of clinical nutrition, 69(1), 147-152.
Nelson D. L. & Cox M. M. (2000). Lehninger Principles of Biochemistry. Palgrave Macmillan, pp. 818–868. DOI: 10.1007/978-3-662-08289-8
Nicolas, V., Prewett, A., Bettica, P., Mohan, S., Finkelman, R. D., Baylink, D. J., & Farley, J. R. (1994). Age-related decreases in insulin-like growth factor-I and transforming growth factor-beta in femoral cortical bone from both men and women: implications for bone loss with aging. The Journal of Clinical Endocrinology & Metabolism, 78(5), 1011-1016.
Nieves, J. W. (2003). Calcium, vitamin D, and nutrition in elderly adults. Clinics in geriatric medicine, 19(2), 321-335.
NIH, (2001). NIH Consensus Development Panel on Osteoporosis Prevention, Diagnosis, and Therapy, March 7-29, 2000: highlights of the conference. Southern Medical Journal, 94(6), 569-573.
NIH (2015). Retrieved July 7, 2019, from https://www.bones.nih.gov/health-info/bone/chinese/bone-exercise-chinese
NIH (2018). Retrieved July 7, 2019
from https://www.bones.nih.gov/health-info/bone/osteoporosis/bone-mass
Nordin, B. C., Need, A. G., Morris, H. A., & Horowitz, M. (1993). The nature and significance of the relationship between urinary sodium and urinary calcium in women. The Journal of nutrition, 123(9), 1615-1622.
Nordin, B. E. C. (1997). Calcium in health and disease. Food nutrition and agriculture, 13(7-8), 664-686.
Nordström, P., Pettersson, U., & Lorentzon, R. (1998). Type of physical activity, muscle strength, and pubertal stage as determinants of bone mineral density and bone area in adolescent boys. Journal of bone and mineral research, 13(7), 1141-1148.
O’Brien, K. O., Abrams, S. A., Liang, L. K., Ellis, K. J., & Gagel, R. F. (1996). Increased efficiency of calcium absorption during short periods of inadequate calcium intake in girls. The American journal of clinical nutrition, 63(4), 579-583.
Orwoll, E. S., Bilezikian, J. P., & Vanderschueren, D. (2010). Osteoporosis in Men: The Effects of Gender on Skeletal Health. Retrieved July 7, 2019
from https://books.google.com.tw/books?id=nfWNYFdOsCsC&lpg=PP1&
Pettersson, U., Nordström, P., Alfredson, H., Henriksson-Larsen, K., & Lorentzon, R. (2000). Effect of high impact activity on bone mass and size in adolescent females: a comparative study between two different types of sports. Calcified Tissue International, 67(3), 207-214.
Pfeilschifter, J., Köditz, R., Pfohl, M., & Schatz, H. (2002). Changes in proinflammatory cytokine activity after menopause. Endocrine reviews, 23(1), 90-119.
Reginster, J. Y., & Burlet, N. (2006). Osteoporosis: a still increasing prevalence. Bone, 38(2), 4-9.
Riggs, B. L. (2000). The mechanisms of estrogen regulation of bone resorption. The Journal of clinical investigation, 106(10), 1203-1204.
Rizzoli, R., & Bonjour, J. P. (2004). Dietary protein and bone health. Journal of bone and mineral research, 19(4), 527-531.
Rocher, E., Chappard, C., Jaffre, C., Benhamou, C. L., & Courteix, D. (2008). Bone mineral density in prepubertal obese and control children: relation to body weight, lean mass, and fat mass. Journal of bone and mineral metabolism, 26(1), 73-78.
Samelson, E. J., Hannan, M. T., Zhang, Y., Genant, H. K., Felson, D. T., & Kiel, D. P. (2006). Incidence and risk factors for vertebral fracture in women and men: 25‐year follow‐up results from the population‐based Framingham study. Journal of Bone and Mineral Research, 21(8), 1207-1214.
Sandler, R. B., Slemenda, C. W., LaPorte, R. E., Cauley, J. A., Schramm, M. M., Barresi, M. L., & Kriska, A. M. (1985). Postmenopausal bone density and milk consumption in childhood and adolescence. The American Journal of Clinical Nutrition, 42(2), 270-274.
Sasaki, S., & Yanagibori, R. (2001). Association between current nutrient intakes and bone mineral density at calcaneus in pre-and postmenopausal Japanese women. Journal of nutritional science and vitaminology, 47(4), 289-294.
Schoenau, E., Neu, C. M., Rauch, F., & Manz, F. (2001). The development of bone strength at the proximal radius during childhood and adolescence. The Journal of Clinical Endocrinology & Metabolism, 86(2), 613-618.
Sebastian, A., Harris, S. T., Ottaway, J. H., Todd, K. M., & Morris Jr, R. C. (1994). Improved mineral balance and skeletal metabolism in postmenopausal women treated with potassium bicarbonate. New England Journal of Medicine, 330(25), 1776-1781.
Sentipal, J. M., Wardlaw, G. M., Mahan, J., & Matkovic, V. (1991). Influence of calcium intake and growth indexes on vertebral bone mineral density in young females. The American journal of clinical nutrition, 54(2), 425-428.
Setchell, K. D., & Lydeking-Olsen, E. (2003). Dietary phytoestrogens and their effect on bone: evidence from in vitro and in vivo, human observational, and dietary intervention studies. The American journal of clinical nutrition, 78(3), 593S-609S.
Simon, J. A., & Hudes, E. S. (2001). Relation of ascorbic acid to bone mineral density and self-reported fractures among US adults. American journal of epidemiology, 154(5), 427-433.
Slemenda, C. W., Miller, J. Z., Hui, S. L., Reister, T. K., & Johnston Jr, C. C. (1991). Role of physical activity in the development of skeletal mass in children. Journal of bone and mineral research, 6(11), 1227-1233.
Slemenda, C. W., Reister, T. K., Hui, S. L., Miller, J. Z., Christian, J. C., & Johnston Jr, C. C. (1994). Influences on skeletal mineralization in children and adolescents: evidence for varying effects of sexual maturation and physical activity. The Journal of pediatrics, 125(2), 201-207.
Sowers, M. R., Clark, M. K., Hollis, B., Wallace, R. B., & Jannausch, M. (1992). Radial bone mineral density in pre‐and perimenopausal women: A prospective study of rates and risk factors for loss. Journal of Bone and Mineral Research, 7(6), 647-657.
Specker, B., Thiex, N. W., & Sudhagoni, R. G. (2015). Does exercise influence pediatric bone? A systematic review. Clinical Orthopaedics and Related Research®, 473(11), 3658-3672.
Steelman, J., & Zeitler, P. (2001). Osteoporosis in pediatrics. Pediatrics in Review, 22(2), 56-66.
Suominen, H. (1993). Bone mineral density and long term exercise. An overview of cross-sectional athlete studies. Sports Medicine, 16(5), 316-330.
Szpak, P. (2011). Fish bone chemistry and ultrastructure: implications for taphonomy and stable isotope analysis. Journal of Archaeological Science 38(12), 3358–3372.
Tankó, L. B., Christiansen, C., Cox, D. A., Geiger, M. J., McNabb, M. A., & Cummings, S. R. (2005). Relationship between osteoporosis and cardiovascular disease in postmenopausal women. Journal of Bone and Mineral Research, 20(11), 1912-1920.
Teegarden, D., Proulx, W. R., Martin, B. R., Zhao, J., Mccabe, G. P., Lyle, R. M., Peacock, M., Slemenda, C., Johnston, C. C., & Weaver, C. M. (1995). Peak bone mass in young women. Journal of Bone and Mineral Research, 10(5), 711-715.
Tsuda, K., Nishio, I., & Masuyama, Y. (2001). Bone mineral density in women with essential hypertension. American journal of hypertension, 14(7), 704-707.
Tucker, K. L., Hannan, M. T., Chen, H., Cupples, L. A., Wilson, P. W., & Kiel, D. P. (1999). Potassium, magnesium, and fruit and vegetable intakes are associated with greater bone mineral density in elderly men and women. The American journal of clinical nutrition, 69(4), 727-736.
Tucker, K. L., Hannan, M. T., & Kiel, D. P. (2001). The acid-base hypothesis: diet and bone in the Framingham Osteoporosis Study. European journal of nutrition, 40(5), 231-237.
Tylavsky, F. A., Anderson, J. J. B., Talmage, R. V., & Taft, T. N. (1992). Are calcium intakes and physical activity patterns during adolescence related to radial bone mass of white college-age females? Osteoporosis International, 2(5), 232-240.
Tylavsky, F. A., Holliday, K., Danish, R., Womack, C., Norwood, J., & Carbone, L. (2004). Fruit and vegetable intakes are an independent predictor of bone size in early pubertal children. The American journal of clinical nutrition, 79(2), 311-317.
Uenishi, K., Ishida, H., Toba, Y., Aoe, S., Itabashi, A., & Takada, Y. (2007). Milk basic protein increases bone mineral density and improves bone metabolism in healthy young women. Osteoporosis international, 18(3), 385-390.
Ulrich, C. M., Georgiou, C. C., Gillis, D. E., & Snow, C. M. (1999). Lifetime physical activity is associated with bone mineral density in premenopausal women. Journal of women''s health, 8(3), 365-375.
U.S. Department of Health and Human Services(2010). Bone Health and Osteoporosis: A Report of the Surgeon General. Rockville, MD: U.S. Department of Health and Human Services, Office of the Surgeon General, 2004. PMID: 20945569
Vanderschueren, D., Gevers, G., Raymaekers, G., Devos, P., & Dequeker, J. (1990). Sex-and age-related changes in bone and serum osteocalcin. Calcified tissue international, 46(3), 179-182.
Vatanparast, H., Baxter-Jones, A., Faulkner, R. A., Bailey, D. A., & Whiting, S. J. (2005). Positive effects of vegetable and fruit consumption and calcium intake on bone mineral accrual in boys during growth from childhood to adolescence: the University of Saskatchewan Pediatric Bone Mineral Accrual Study. The American journal of clinical nutrition, 82(3), 700-706.
Vermeer, C., Jie, K. S., & Knapen, M. H. J. (1995). Role of vitamin K in bone metabolism. Annual review of nutrition, 15(1), 1-21.
Wang, M. C., Bachrach, L. K., Van Loan, M., Hudes, M., Flegal, K. M., & Crawford, P. B. (2005). The relative contributions of lean tissue mass and fat mass to bone density in young women. Bone, 37(4), 474-481.
Wang, M. C., Crawford, P. B., Hudes, M., Van Loan, M., Siemering, K., & Bachrach, L. K. (2003). Diet in midpuberty and sedentary activity in prepuberty predict peak bone mass. The American journal of clinical nutrition, 77(2), 495-503.
Watts, N. B., Bilezikian, J. P., Camacho, P. M., Greenspan, S. L., Harris, S. T., Hodgson, S. F., Kleerekoper, M., Luckey, M. M., McClung, M. R., Pollack, R. P., & Petak, S. M. (2010). American Association of Clinical Endocrinologists Medical Guidelines for Clinical Practice for the diagnosis and treatment of postmenopausal osteoporosis. Endocrine Practice, 16(Supplement 3), 1-37.
Weaver, C. M. (2015). Parallels between nutrition and physical activity: research questions in development of peak bone mass. Research quarterly for exercise and sport, 86(2), 103-106.
Weber, S. U., Thiele, J. J., Packer, L., & Cross, C. E. (1999). Vitamin C, uric acid, and glutathione gradients in murine stratum corneum and their susceptibility to ozone exposure. Journal of Investigative Dermatology, 113(6), 1128-1132.
Welten, D. C., Kemper, H. C. G., Post, G. B., Van Mechelen, W., Twisk, J., Lips, P., & Teule, G. J. (1994). Weight‐bearing activity during youth is a more important factor for peak bone mass than calcium intake. Journal of Bone and Mineral Research, 9(7), 1089-1096.
Wengreen, H. J., Munger, R. G., West, N. A., Cutler, D. R., Corcoran, C. D., Zhang, J., & Sassano, N. E. (2004). Dietary protein intake and risk of osteoporotic hip fracture in elderly residents of Utah. Journal of bone and mineral research, 19(4), 537-545.
Whiting, S. J., Boyle, J. L., Thompson, A., Mirwald, R. L., & Faulkner, R. A. (2002). Dietary protein, phosphorus and potassium are beneficial to bone mineral density in adult men consuming adequate dietary calcium. Journal of the American College of Nutrition, 21(5), 402-409.
WHO, (1993). Consensus development conference: diagnosis, prophylaxis, and treatment of osteoporosis. The American Journal of Medicine, 94(6), 646-650.
WHO, (2004). WHO scientific group on the assessment of osteoporosis at primary health care level. Retrieved July 7, 2019
from https://www.who.int/chp/topics/Osteoporosis.pdf
Wigertz, K., Palacios, C., Jackman, L. A., Martin, B. R., McCabe, L. D., McCabe, G. P., ... & Weaver, C. M. (2005). Racial differences in calcium retention in response to dietary salt in adolescent girls. The American journal of clinical nutrition, 81(4), 845-850.
Wright, N. C., Looker, A. C., Saag, K. G., Curtis, J. R., Delzell, E. S., Randall, S., & Dawson‐Hughes, B. (2014). The recent prevalence of osteoporosis and low bone mass in the United States based on bone mineral density at the femoral neck or lumbar spine. Journal of Bone and Mineral Research, 29(11), 2520-2526.
Yang, S., Center, J. R., Eisman, J. A., & Nguyen, T. V. (2015). Association between fat mass, lean mass, and bone loss: the Dubbo Osteoporosis Epidemiology Study. Osteoporosis International, 26(4), 1381-1386.
Zhu, Y., Guo, T., Park, J. E., Li, X., Meng, W., Datta, A., Bern, M., Lim, S. K., & Sze, S. K. (2009). Elucidating in vivo structural dynamics in integral membrane protein by hydroxyl radical footprinting. Molecular & Cellular Proteomics, 8(8), 1999-2010.

中華民國骨質疏鬆症學會(2015)。 2015台灣成人骨質疏鬆症防治之共識及指引。 瀏覽日期:2019年7月7日,取自:
https://www.puzih.mohw.gov.tw/public/hygiene/ebf03aeee1551307ea349553c0726840.pdf
內政部(2018)。瀏覽日期:2019年6月5日
取自:https://www.moi.gov.tw/stat/news_detail.aspx?sn=13742
台中榮總(2018)。瀏覽日期:2019年7月7日,取自:
https://www.vghtc.gov.tw/Module/EDMDetail/abcae504-67b7-40b4-912b-17212c5b31a0
林正常,王順正,吳忠芳(2005)。日常生活身體活動的能量消耗研究。運動生理暨體能學報, 第2輯55-66頁. DOI:10.6127/JEPF.2005.02.05
亞東醫院(2008)。瀏覽日期:2019年3月25日
取自:http://depart.femh.org.tw/family/teen/t_1.html
張粹文,林宇旋,蔡秀鳳,張新儀,吳浚明(2006)。台灣地區幼兒及兒童靜態活動與日常生活行為問題初探--2005年國民健康訪問暨藥物濫用調查結果。國家衛生研究院電子報, 159卷
陳昭瑩,簡盟月,鄭金寶(2016)。骨質健康與營養。物理治療, 41(1), 20-27.
黃兆山,方耀凡,吳至行,宋永魁,李晏榮,孫子傑,郝德慧,張尹凡,張若愚,陳芳萍,陳榮福,傅再生,楊榮森,詹鼎正,劉華昌,蔡克嵩,鄭添財,羅淑芬(2017)。2017 年台灣成人骨質疏鬆症防治之共識及指引。 瀏覽日期:2019年3月25日
取自:http://www.toa1997.org.tw/download/2017_TOA_guideline-0615.pdf
劉美媛,周碧瑟 (2001)。台灣在校青少年飲酒盛行率與相關因素的探討。台灣公共衛生雜誌, 20(2), 143-152.
鄭丁元,溫啟邦,蔡孟娟,蔡善璞 (2003)。國人吸菸行為現況:2001年國民健康調查之分析。台灣公共衛生雜誌, 22(6), 453-464.
衛生福利部 中央健康保險署 (2015)。瀏覽日期:2019年7月7日
取自:https://www.mohw.gov.tw/fp-2650-19906-1.html
衛生福利部 國民健康署年報 (2017)。瀏覽日期:2019年7月7日
取自:https://www.hpa.gov.tw/Pages/List.aspx?nodeid=1415
衛生福利部 國民健康署 (2018a)。2010台灣國民營養健康狀況變遷調查。
瀏覽日期:2019年3月25日
取自:https://www.hpa.gov.tw/Pages/List.aspx?nodeid=1770
衛生福利部 國民健康署 (2018b)。2011台灣國民營養健康狀況變遷調查。
瀏覽日期:2019年3月25日
取自:https://www.hpa.gov.tw/Pages/List.aspx?nodeid=1773
衛生福利部 國民健康署 (2018c)。運動消耗卡洛里。
瀏覽日期:2019年3月25日
取自:https://www.hpa.gov.tw/Pages/Detail.aspx?nodeid=571&pid=9738
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top