跳到主要內容

臺灣博碩士論文加值系統

(44.201.72.250) 您好!臺灣時間:2023/09/27 11:07
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:林均憶
研究生(外文):Jyun-Yi Lin
論文名稱:丙酮酸鹽膳食補充品中不純物parapyruvate對線蟲壽命的影響與KGDHC的角色
論文名稱(外文):Effects of parapyrvuate, an impurity in pyruvate dietary supplements, on the lifespan of Caenorhabditis elegans and the roles of KGDHC
指導教授:劉黃惠珠劉黃惠珠引用關係
學位類別:碩士
校院名稱:中山醫學大學
系所名稱:營養學系
學門:醫藥衛生學門
學類:營養學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:71
中文關鍵詞:parapyruvateKGDHCCaenorhabditis elegans生命期試驗線蟲突變株
外文關鍵詞:parapyruvateKGDHCCaenorhabditislifespanmutants
相關次數:
  • 被引用被引用:1
  • 點閱點閱:162
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在市售丙酮酸膳食補充品中的不純物 parapyruvate,具有抑制α-ketoglutarate dehydrogenase complex (KGDHC)活性的作用。研究發現 KGDHC活性的降低是發生神經退化性疾病重要的機制之一,我們先前研究發現,添加 parapyruvate可抑制KGDHC明顯地縮短人類Hs68細胞的壽命,顯示KGDHC在細胞衰老扮演重要角色,然而,parapryvuate是否誘發線蟲(C. elegans)老化以及KGDHC是否在線蟲的老化扮演重要角色目前並不清楚。本研究以不同劑量的parapyruvate (0、3.5、35、106μg/plate)處理線蟲,結果發現高劑量的parapyruvate (106μg/plate)可以顯著的抑制線蟲體內的KGDHC活性,並且顯著的縮短線蟲壽命,而KGDHC的活化劑鈣離子則可以拮抗高劑量parapryvuate所誘發的縮短壽命的作用。此外,一種KGDHC線蟲的突變株Tm6589/nt1,其KGDHC活性較正常線蟲約減少40%,亦顯示顯著地縮短線蟲壽命的作用,綜合上述的結果顯示高劑量的parapyruvate可以藉由抑制KGDHC而引發線蟲衰老並且KGDHC在線蟲的老化扮演重要角色,然而,低劑量(3.5μg/plate)的parapyruvate可以輕微的抑制KGDHC,卻顯示延長線蟲的壽命。進一步,我們使用aak-2、sir-2.1、jnk-1、skn-1、daf-15及akt-1等突變株,探討低劑量延長壽命及高劑量parapyruvate縮短壽命所誘發的訊息傳遞機制,結果發現低劑量parapryuvate延長壽命現象,在aak-2、sir-2.1、jnk-1、daf-15突變株會消失,顯示低劑量parapryuvate延長壽命可能和模擬熱量限制有關;而高劑量parapyruvate縮短壽命的作用,在jnk-1和skn-1突變株會消失,甚至在jnk-1突變株高劑量的parapyruvate相反地會使壽命延長,顯示高劑量parapryuvate縮短線蟲的作用,可能與氧化壓力升高有關。
Parapyrurvate, an impurity in commercially available pyruvate dietary supplements, has an effect of inhibiting the activity of α-ketoglutarate dehydrogenase complex (KGDHC). Studies have found that the reduction of KGDHC activity is one of the important mechanisms of neurodegenerative diseases. Our previous studies found that the addition of parapyruvate inhibited KGDHC and significantly shortened the lifespan of human Hs68 cells, indicating that KGDHC played an important role in cellular senescence. However, it is unclear whether parapryvuate has ability to induce the aging of C. elegans and whether KGDHC plays an important role in the aging of C. elegans. In this study, C. elegans were treated with different doses of parapyruvate (0、3.5、 35、 106μg/plate), and it was found that the high dose of parapyruvate (106μg/plate) significantly inhibited KGDHC activity in C. elegans and significantly shortened the lifespan of C. elegans. In addition, the calcium ion, a KGDHC activator, could antagonize the lifespan-shortening effects induced by the high dose of parapryvuate. Moreover, Tm6589/nt1, a KGDHC mutant of C. elegans, had a KGDHC activity reduced by about 40% compared with N2, and it also showed a significant shortening in lifespan. The above results showed that the high dose of parapyruvate could induce the aging of C. elegans by inhibiting KGDHC activity and KGDHC played an important role in the aging of C. elegans. However, studies have found that the low dose (3.5 μg/plate) of parapyruvate could slightly inhibit KGDHC but significantly extended the lifespan of the C. elegans. Further, we used aak-2, sir-2.1, jnk-1, skn-1, daf-15 and akt-1 mutants to investigate the signaling mechanisms for both the lifesapn-prolonged effect of low-dose parapryuvate and the lifespan-shortening effect of high-dose parapyruvate. It was found that the lifespan-prolonged effect of low-dose parapryuvate was disappeared in aak-2, sir-2.1, jnk-1and daf-15 mutants, indicating that the lifespan-prolonged effect of low-dose parapryuvate may be related to the caloric restriction-mimicking effects. The lifespan-shortening effect of high-dose parapyruvate was also disappeared in jnk-1 and skn-1 mutants, and even the high dose of parapyruvate in turn prolonged the lifespan of jnk-1 mutant, indicating that the lifespan-shortening effect of high-dose parapyruvate may be associated with the increased oxidative stress.
謝誌 ii
中文摘要 I
Abstract III
目錄 V
表次 VIII
圖次 IX
縮寫檢索表 1
前言 2
文獻探討 4
1. 丙酮酸鹽膳食補充品(pyruvate dietary supplumnets) 4
2. Parapyruvate (2-hydroxy-2-methyl-4-oxopentanedioic acid) 4
3. α-酮戊二酸去氫酶複合體 (α-ketoglutarate dehydrogenase complex , KGDHC) 5
4. 胰島素/類胰島素生長因子-1信號傳導 (IIS pathway) 6
5. c-Jun N-末端激酶(The c-Jun N-terminal kinase;JNK pathway 7
6. 單磷酸腺苷活化蛋白質激酶( (AMP activated protein kinase ;AMPK pathway) 8
7. mTOR pathway 9
8. 活性氧化物質 (Reactive oxygen species, ROS) 9
9. Sirtuin 10
10. 秀麗隱桿線蟲 (Caenorhabditis elegans) 10
11. 研究動機與目的 11
一、實驗架構 13
二、材料與方法 14
1. 藥品試劑 14
2. 線蟲種類及來源 15
3. E. coli 培養與製備 15
4. 線蟲壽命模式 16
5. 線蟲KGDHC試驗 17
6. 蛋白質測定 18
7. 線蟲游泳試驗 (活動力試驗) 18
8. 線蟲咽喉跳動試驗 (活動力試驗) 19
9. 自體螢光試驗(Lipofuscin的紅光發射和NADH的藍光發射之測定) 19
10. 統計分析 19
三、結果 20
1. Parapyruvate對N2線蟲之壽命影響(trial 1) 20
2. Parapyruvate對N2線蟲之壽命影響(trail 2) 20
3. N2線蟲生理試驗 20
4. Parapyruvate體外及體內抑制N2線蟲KGDHC活性的能力 21
5. KGDHC突變株Tm6589/nt1生命期試驗 21
6. KGDHC突變株Tm6589/nt1生理試驗 22
7. KGDHC突變株體內KGDHC活性試驗 22
8. Ca2+拮抗高劑量parapyruvate延長蟲壽命的作用 22
9. Ca2+拮抗低劑量parapyruvate延長線蟲壽命的作用 23
10. Parapyruvate對aak-2突變株之壽命試驗 23
11. Parapyruvate對sir2.1突變株之壽命試驗 23
12. Parapyruvate對jnk-1突變株之壽命試驗 23
13. Parapyruvate對skn-1突變株之壽命試驗 24
14. Parapyruvate對daf-15突變株之壽命試驗 24
15. Parapyruvate對akt-1突變株之壽命試驗 24
四、討論 26
五、結論 29
六、參考文獻 30
七、實驗圖表 37
Algieri F, Rodriguez-Nogales A, Garrido-Mesa J, Camuesco D, Vezza T, Garrido-Mesa N, Utrilla P, Rodriguez-Cabezas ME, Pischel I, Galvez J. Intestinal anti-inflammatory activity of calcium pyruvate in the TNBS model of rat colitis: Comparison with ethyl pyruvate. Biochem Pharmacol. 2016;103:53-63. doi: 10.1016/j.bcp.2015.12.022.
Aguirre V, Uchida T, Yenush L, Davis R, White MF. The c-Jun NH(2)-terminal kinase promotes insulin resistance during association with insulin receptor substrate-1 and phosphorylation of Ser(307). J Biol Chem. 2000;275(12):9047-54. doi: 10.1074/jbc.275.12.9047.
Ann K. Corsi. A Biochemist’s Guide to C. elegans. Anal Biochem. 2006; 359(1): 1–17. doi: 10.1016/j.ab.2006.07.033.
Apfeld J, O''Connor G, McDonagh T, DiStefano PS, Curtis R. The AMP-activated protein kinase AAK-2 links energy levels and insulin-like signals to lifespan in C. elegans. Genes Dev. 2004;18(24):3004-9.
Bayliss JA, Lemus MB, Stark R, Santos VV, Thompson A, Rees DJ, Galic S, Elsworth JD, Kemp BE, Davies JS, Andrews ZB. Ghrelin-AMPK Signaling Mediates the Neuroprotective Effects of Calorie Restriction in Parkinson''s Disease. J Neurosci. 2016 ;36(10):3049-63. doi: 10.1523/JNEUROSCI.4373-15.2016.
Berndt N, Holzhutter HG, Bulik S.Implications of enzyme deficiencies on mitochondrial energy metabolism and reactive oxygen species formation of neurons involved in rotenone-induced Parkinson''s disease: a model-based analysis. FEBS J. 2013;280(20):5080-93. doi: 10.1111/febs.12480. Epub 2013 Sep 12
Bratic A, Larsson NG. The role of mitochondria in aging. J Clin Invest. 2013;123(3):951-7. doi: 10.1172/JCI64125Manea A. NADPH oxidase-derived reactive oxygen species: involvement in vascular physiology and pathology.Cell Tissue Res. 2010;342(3):325-39. doi: 10.1007/s00441-010-1060-y.
Brenner S. The genetics of Caenorhabditis elegans. Genetics. 1974;77(1):71-94.
Burnett C, Valentini S, Cabreiro F, Goss M, Somogyvari M, Piper MD, Hoddinott M, Sutphin GL, Leko V, McElwee JJ, Vazquez-Manrique RP, Orfila AM, Ackerman D, Au C, Vinti G, Riesen M, Howard K, Neri C, Bedalov A, Kaeberlein M, Soti C, Partridge L, Gems D. Absence of effects of Sir2 overexpression on lifespan in C. elegans and Drosophila. Nature. 2011;477(7365):482-5. doi: 10.1038/nature10296.
Carles Canto and Johan Auwerx. Caloric restriction, SIRT1 and longevity. Trends Endocrinol Metab. 2009; 20(7): 325–331. doi: 10.1016/j.tem.2009.03.008.
Chang SC, Lee I, Ting H, Chang YJ, Yang NC. Parapyruvate, an Impurity in Pyruvate Supplements, Induces Senescence in Human Fibroblastic Hs68 Cells via Inhibition of the α-Ketoglutarate Dehydrogenase Complex. J Agric Food Chem. 2018 ;66(28):7504-7513. doi: 10.1021/acs.jafc.8b01138.
Clair Crewe, Michael Kinter, and Luke I. Szweda. Rapid Inhibition of Pyruvate Dehydrogenase: An Initiating Event in High Dietary Fat-Induced Loss of Metabolic Flexibility in the Heart. PLoS One. 2013; 8(10): e77280.doi: 10.1371/journal.pone.0077280.
Coughlan KA, Valentine RJ, Ruderman NB, Saha AK. AMPK activation: a therapeutic target for type 2 diabetes? Diabetes Metab Syndr Obes. 2014;7:241-53. doi: 10.2147/DMSO.S43731.
Das UN. Pyruvate is an endogenous anti-inflammatory and anti-oxidant molecule. Med Sci Monit. 2006;12(5):RA79-84.
Dehghan E, Zhang Y, Saremi B, Yadavali S, Hakimi A, Dehghani M, Goodarzi M, Tu X, Robertson S, Lin R, Chudhuri A, Mirzaei H. Hydralazine induces stress resistance and extends C. elegans lifespan by activating the NRF2/SKN-1 signalling pathway. Nat Commun. 2017;8(1):2223. doi: 10.1038/s41467-017-02394-3.Donmez G, Guarente L. Aging and disease: connections to sirtuins. Aging Cell. 2010;9(2):285-90. doi: 10.1111/j.1474-9726.2010.00548.x.
Felix MA, Braendle C. The natural history of Caenorhabditis elegans. Curr Biol. 2010;20(22):R965-9. doi: 10.1016/j.cub.2010.09.050.
Fink MP. Ethyl pyruvate: a novel anti-inflammatory agent. Crit Care Med. 2003;31(1 Suppl):S51-6. doi: 10.1097/01.CCM.0000042476.32014.43.
Gary E Gibson, John P. Blass, Victoria I. The α-ketoglutarate-dehydrogenase complex. BunikPublished in Molecular Neurobiology 2005;31(1-3):43-63.doi:10.1385/MN:31:1-3:043.
Georgakoudi I, Jacobson BC, Muller MG, Sheets EE, Badizadegan K, Carr-Locke DL, Crum CP, Boone CW, Dasari RR, Van Dam J, Feld MS. NAD(P)H and collagen as in vivo quantitative fluorescent biomarkers of epithelial precancerous changes. Cancer Res. 2002 Feb 1;62(3):682-7.
Gray LR, Tompkins SC, Taylor EB. Regulation of pyruvate metabolism and human disease. Cell Mol Life Sci. 2014;71(14):2577-604. doi: 10.1007/s00018-013-1539-2.
Guarente L. Sirtuins in aging and disease. Cold Spring Harb Symp Quant Biol. 2007;72:483-8. doi: 10.1101/sqb.2007.72.024.
Igarashi M, Guarente L.mTORC1 and SIRT1 Cooperate to Foster Expansion of Gut Adult Stem Cells during Calorie Restriction. Cell. 2016 ;166(2):436-450. doi: 10.1016/j.cell.2016.05.044.
Jeitner TM, Xu H, Gibson GE. Inhibition of the alpha-ketoglutarate dehydrogenase complex by the myeloperoxidase products, hypochlorous acid and mono-N-chloramine. J Neurochem. 2005;92(2):302-10. doi: 10.1111/j.1471-4159.2004.02868.x.
Jonathan O. Lipton and Mustafa Sahin. The Neurology of mTOR. Neuron. 2014; 84(2): 275–291.doi: 10.1016/j.neuron.2014.09.034.
Jovaisaite V, Mouchiroud L, Auwerx J. The mitochondrial unfolded protein response, a conserved stress response pathway with implications in health and disease. J Exp Biol. 2014;217(Pt 1):137-43. doi: 10.1242/jeb.090738.
Keri L. H. Carpenter, Ibrahim Jalloh, and Peter J. Hutchinson. Glycolysis and the significance of lactate in traumatic brain injury. Front Neurosci. 2015; 9: 112. doi:10.3389/fnins.2015.00112.
Kim J, Kundu M, Viollet B, Guan KL. AMPK and mTOR regulate autophagy through direct phosphorylation of Ulk1. Nat Cell Biol. 2011;13(2):132-41. doi: 10.1038/ncb2152.
Kim JY, Lee SH, Bae IH, Shin DW, Min D, Ham M, Kim KH, Lee TR, Kim HJ, Son ED, Lee AY, Song YW, Kil IS. Pyruvate Protects against Cellular Senescence through the Control of Mitochondrial and Lysosomal Function in Dermal Fibroblasts. J Invest Dermatol. 2018;138(12):2522-2530. doi: 10.1016/j.jid.2018.05.033.
Koh-Banerjee PK, Ferreira MP, Greenwood M, Bowden RG, Cowan PN, Almada AL, Kreider RB. Effects of calcium pyruvate supplementation during training on body composition, exercise capacity, and metabolic responses to exercise. Nutrition. 2005;21(3):312-9. DOI: 10.1016/j.nut.2004.06.026
Kyle S. McCommis and Brian N. Finck. Mitochondrial pyruvate transport: a historical perspective and future research directions. Biochem J. Author manuscript; available in PMC 2016.doi: 10.1042/BJ20141171.
Lin K, Hsin H, Libina N, Kenyon C. Regulation of the Caenorhabditis elegans longevity protein DAF-16 by insulin/IGF-1 and germline signaling. Nat Genet. 2001;28(2):139-45. doi: 10.1038/88850.
Martin N, Bernard D. Calcium signaling and cellular senescence. Cell Calcium. 2018;70:16-23. doi: 10.1016/j.ceca.2017.04.001.Maulik M, Mitra S, Hunter S, Hunstiger M, Oliver SR, Bult-Ito A, Taylor BE. Sir-2.1 mediated attenuation of α-synuclein expression by Alaskan bog blueberry polyphenols in a transgenic model of Caenorhabditis elegans. Sci Rep. 2018;8(1):10216. doi: 10.1038/s41598-018-26905-4.
Mihaylova MM, Shaw RJ. The AMPK signalling pathway coordinates cell growth, autophagy and metabolism. Nat Cell Biol. 2011;13(9):1016-23. doi: 10.1038/ncb2329.
Montgomery, C.M., and Webb, J. L. 1956. Metabolic studies on heart mitochondria II: The inhibitoryaction of parapyruvate on the tricarboxylic acid cycle. The Journal of Biological Chemistry. 221: 359-368.
Moreno-Arriola E, El Hafidi M, Ortega-Cuellar D, Carvajal K. AMP-Activated Protein Kinase Regulates Oxidative Metabolism in Caenorhabditis elegans through the NHR-49 and MDT-15 Transcriptional Regulators. PLoS One. 2016;11(1):e0148089. doi: 10.1371/journal.pone.0148089.
Moroz N, Carmona JJ, Anderson E, Hart AC, Sinclair DA, Blackwell TK. Dietary restriction involves NAD⁺ -dependent mechanisms and a shift toward oxidative metabolism. Aging Cell. 2014;13(6):1075-85. doi: 10.1111/acel.12273.
Mouchiroud L, Houtkooper RH, Moullan N, Katsyuba E, Ryu D, Canto C, Mottis A, Jo YS, Viswanathan M, Schoonjans K, Guarente L, Auwerx J. The NAD(+)/sirtuin pathway modulates longevity through activation of mitochondrial UPR and FOXO signaling. Cell. 2013;154(2):430-41. doi: 10.1016/j.cell.2013.06.016.
Mouchiroud L, Molin L, Kasturi P, Triba MN, Dumas ME, Wilson MC, Halestrap AP, Roussel D, Masse I, Dalliere N, Segalat L, Billaud M, Solari F. Pyruvate imbalance mediates metabolic reprogramming and mimics lifespan extension by dietary restriction in Caenorhabditis elegans. Aging Cell. 2011;10(1):39-54.doi: 10.1111/j.1474-9726.2010.00640.x.
Murphy CT1, Hu PJ. Insulin/insulin-like growth factor signaling in Caenorhabditis elegans. WormBook. 2013:1-43. doi: 10.1895/wormbook.1.164.1.
Nguyen MT, Somogyvari M, Sőti C. Hsp90 Stabilizes SIRT1 Orthologs in mammalian cells and Caenorhabditis elegans. Int J Mol Sci. 2018;19(11). pii: E3661. doi: 10.3390/ijms19113661.
Oh SW, Mukhopadhyay A, Svrzikapa N, Jiang F, Davis RJ, Tissenbaum HA. JNK regulates lifespan in Caenorhabditis elegans by modulating nuclear translocation of forkhead transcription factor/DAF-16. Proc Natl Acad Sci U.S. A. 2005;102(12):4494-9. doi: 10.1073/pnas.0500749102.
Poulose N, Raju R. Sirtuin regulation in aging and injury. Biochim Biophys Acta. 2015;1852(11):2442-55. doi: 10.1016/j.bbadis.2015.08.017.
Ray PD, Huang BW, Tsuji Y. Reactive oxygen species (ROS) homeostasis and redox regulation in cellular signaling. Cell Signal. 2012;24(5):981-90. doi: 10.1016/j.cellsig.2012.01.008.
Reid E.BarnettDenise C.BaileyHolly E.HatfieldVanessa A.Fitsanakis. Caenorhabditis elegans: A Model Organism for Nutraceutical Safety and Toxicity Evaluation. Nutraceuticals. 2016, 341-354. https://doi.org/10.1016/B978-0-12-802147-7.00026-7.
R.W.Von Korff. Purity and stability of pyruvate and α-ketoglutarate. Methods in Enzymology. 1969, 519-523. https://doi.org/10.1016/0076-6879(69)13075-X.
Salminen A, Kaarniranta K. AMP-activated protein kinase (AMPK) controls the aging process via an integrated signaling network. Ageing Res Rev. 2012 ;11(2):230-41. doi: 10.1016/j.arr.2011.12.005.
Satoh A, Stein L, Imai S. The role of mammalian sirtuins in the regulation of metabolism, aging, and longevity. Handb Exp Pharmacol. 2011;206:125-62. doi: 10.1007/978-3-642-21631-2_7.
Shi Q, Xu H, Yu H, Zhang N, Ye Y, Estevez AG, Deng H, Gibson GE. Inactivation and reactivation of the mitochondrial α-ketoglutarate dehydrogenase complex. J Biol Chem. 2011;286(20):17640-8. doi: 10.1074/jbc.M110.203018.
Stacpoole PW. The pyruvate dehydrogenase complex as a therapeutic target for age-related diseases. Aging Cell. 2012;11(3):371-7. doi: 10.1111/j.1474-9726.2012.00805.x.
Stanko RT, Reynolds HR, Hoyson R, Janosky JE, Wolf R. Pyruvate supplementation of a low-cholesterol, low-fat diet: effects on plasma lipid concentrations and body composition in hyperlipidemic patients. Am J Clin Nutr. 1994;59(2):423-7. doi: 10.1093/ajcn/59.2.423.
Starkov AA. An update on the role of mitochondrial α-ketoglutarate dehydrogenase in oxidative stress. Mol Cell Neurosci. 2013 ;55:13-6. doi: 10.1016/j.mcn.2012.07.005.
Sungmi Park, Jae-Han Jeon, Byong-Keol Min, Chae-Myeong Ha, Themis Thoudam, Bo-Yoon Park, and In-Kyu Lee. Role of the Pyruvate Dehydrogenase Complex in Metabolic Remodeling: Differential Pyruvate Dehydrogenase Complex Functions in Metabolism Diabetes Metab J. 2018; 42(4): 270–281.doi: 10.4093/dmj.2018.0101.
Tapias V, Jainuddin S, Ahuja M, Stack C, Elipenahli C, Vignisse J, Gerges M, Starkova N, Xu H, Starkov AA, Bettendorff L, Hushpulian DM, Smirnova NA, Gazaryan IG, Kaidery NA, Wakade S, Calingasan NY, Thomas B, Gibson GE, Dumont M, Beal MF. Benfotiamine treatment activates the Nrf2/ARE pathway and is neuroprotective in a transgenic mouse model of tauopathy. Hum Mol Genet. 2018;27(16):2874-2892. doi: 10.1093/hmg/ddy201.
Tissenbaum HA, Guarente L. Increased dosage of a sir-2 gene extends lifespan in Caenorhabditis elegans. Nature. 2001;410(6825):227-30. doi: 10.1038/35065638.
Vonkorff RW. Pyruvate-C14, purity and stability. Anal Biochem. 1964;8:171-8. https://doi.org/10.1016/0003-2697(64)90043-0.
Waetzig V, Herdegen T. Context-specific inhibition of JNKs: overcoming the dilemma of protection and damage. Trends Pharmacol Sci. 2005;26(9):455-61. doi: 10.1016/j.tips.2005.07.006.
Weston CR, Davis RJ. The JNK signal transduction pathway. Curr Opin Genet Dev. 2002;12(1):14-21. https://doi.org/10.1016/S0959-437X(01)00258-1.
White JG, Southgate E, Thomson JN, Brenner S. The structure of the nervous system of the nematode Caenorhabditis elegans. Philos Trans R Soc Lond B Biol Sci. 1986;314(1165):1-340. doi: 10.1098/rstb.1986.0056.
Willems JL, de Kort AF, Vree TB, Trijbels JM, Veerkamp JH, Monnens LA. Non-enzymic conversion of pyruvate in aqueous solution to 2,4-dihydroxy-2-methylglutaric acid. FEBS Lett. 1978;86(1):42-4. https://doi.org/10.1016/0014-5793(78)80094-5.
Wullschleger S, Loewith R, Hall MN. TOR signaling in growth and metabolism. Cell. 2006;124(3):471-84. doi: 10.1016/j.cell.2006.01.016.
Uno M, Nishida E. Lifespan-regulating genes in C. elegans. NPJ Aging Mech Dis. 2016;2:16010. doi: 10.1038/npjamd.2016.10.
Xiaojuan Sun, Wei-Dong Chen and Yan-Dong Wang. DAF-16/FOXO transcription factor in aging and longevity. frontiers in pharmacology. 2017 doi: 10.3389/fphar.2017.00548
Yin Y, Hua H, Li M, Liu S, Kong Q, Shao T, Wang J, Luo Y, Wang Q, Luo T, Jiang Y. mTORC2 promotes type I insulin-like growth factor receptor and insulin receptor activation through the tyrosine kinase activity of mTOR. Cell Res. 2016;26(1):46-65. doi: 10.1038/cr.2015.133.
Zorov DB, Juhaszova M1, Sollott SJ1. Mitochondrial reactive oxygen species (ROS) and ROS-induced ROS release. Physiol Rev. 2014;94(3):909-50. doi: 10.1152/physrev.00026.2013.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top