跳到主要內容

臺灣博碩士論文加值系統

(3.236.50.201) 您好!臺灣時間:2021/08/05 20:40
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:羅荷如
研究生(外文):Dika Rahayu Widiana
論文名稱:空氣污染暴露源分析與健康風險評估。案例分析:污水處理廠和餐館
論文名稱(外文):Source Apportionment and health risk assessment of air pollution exposure
指導教授:游勝傑王雅玢
指導教授(外文):Sheng-Jie YouYa-Fen Wang
學位類別:博士
校院名稱:中原大學
系所名稱:土木工程研究所
學門:工程學門
學類:土木工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:131
中文關鍵詞:大氣污染物,城市污水處理,主成分分析,絕對主成分得分致癌風險揮發性有機化合物甲醛餐廳
外文關鍵詞:air pollutantmunicipal wastewater treatmentPCAAPCScarcinogenic riskVOCsformaldehyderestaurant
相關次數:
  • 被引用被引用:0
  • 點閱點閱:86
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
中文摘要

監測城市污水處理廠的空氣質量是防止與空氣排放有關的若干問題的初始階段。本研究測定了位於兩個城市污水處理廠的103種揮發性有機化合物(VOCs),總VOC(TVOC)和一些主要空氣污染物(CO,CO2,NH3,H2S,PM1,PM2.5,PM7,PM10,TSP)。在台灣北部。在第一個城市污水處理廠中發現了三十三種揮發性有機化合物,分為烷烴,芳烴,烯烴,酯,醚,鹵代烷和酮。從主成分分析(PCA)和絕對主成分得分(APCS)確定了五種主要的空氣污染源。第一個來源(35.21%)涉及室內活動(如工人顆粒物再懸浮)和戶外活動(如車輛尾氣)。來源2(26.04%)是自動塗裝和生活污水分解。來源3(16.13%)是溶劑使用。來源4(7.03%)是道路灰塵。來源5(15.59%)是氯化處理過程的副產品。根據國際癌症研究機構的報告,在第二個廢水處理廠中,確定了24種揮發性有機化合物,其中一些被歸類為人類致癌物(第1組),可能對人類致癌(第2B組)。根據美國環境保護署(USEPA)的方法估算了污水處理廠附近居民的健康風險。累積的致癌風險為3.48×10-5,並被歸類為可能的風險,而非致癌風險指數的幅度小於1.在本研究中,室內空氣質量參數包括CO2,CO,甲醛,TVOCs,細菌,真菌,PM2.5,PM10和O3在四種不同烹飪方法的餐館中進行了調查。根據美國環保局和ACGIH提供的方法估算吸入甲醛的餐館工人的職業健康風險。甲醛濃度超過台灣室內空氣質量管理法。基於USEPA為男性工人提供的方法,終生癌症風險在1.01×10-4至3.52×10-4範圍內,而女性工作者在8.30×10-5至2.89×10-4範圍內。被歸類為可能和明確的風險。根據ACGIH提供的方法,職業癌症風險在0.69至2.4之間。

關鍵詞:大氣污染物,城市污水處理,主成分分析,絕對主成分得分,致癌風險,揮發性有機化合物,甲醛,餐廳
Abstract

Monitoring air quality in municipal wastewater treatment plants is an initial stage in preventing several problems related to air emissions. This study measured 103 volatile organic compounds (VOCs), total VOC (TVOC), and some prominent air pollutants (CO, CO2, NH3, H2S, PM1, PM2.5, PM7, PM10, TSP) in two municipal wastewater treatment plants located in North of Taiwan. Thirty-three VOCs are identified in the first of municipal wastewater treatment plant which categorized as alkane, aromatic, alkene, ester, ether, haloalkane and ketone. Five dominant sources of air pollutants were determined from principal component analysis (PCA) and absolute principal component score (APCS). The first source (35.21%) involves indoor activities (such as workers particulate matter resuspension), and outdoor activities (such as vehicles exhaust). Source 2 (26.04%) was auto painting and domestic wastewater decomposition. Source 3 (16.13%) was solvent use. Source 4 (7.03%) was road dust. Source 5 (15.59%) was a byproduct of chlorination treatment process. While in the second wastewater treatment plant twenty four VOCs were identified, some of which were categorized as carcinogenic to humans (Group 1) and possibly carcinogenic to humans (Group 2B) according to the International Agency for Research on Cancer. The health risk for residents nearby wastewater treatment plant was estimated following the method from United States Environmental Protection Agency (USEPA). The cumulative of carcinogenic risk was 3.48 × 10-5 and categorized as a possible risk, whereas the magnitude for non-carcinogenic risk index was less than 1. In the present study, indoor air quality parameters including CO2, CO, formaldehyde, TVOCs, bacteria, fungi, PM2.5, PM10 and O3 were investigated in four kind restaurants with different cooking methods. Occupational health risk for restaurant workers of inhalation formaldehyde was estimated based on the method provided by USEPA and ACGIH. Formaldehyde has a concentration exceeds Taiwan Indoor Air Quality Management Act. The lifetime cancer risk based on the method provided by USEPA for male worker in the range from 1.01 × 10-4 to 3.52 × 10-4, while for female worker in the range from 8.30 × 10-5 to 2.89 × 10-4 and were categorized as probable and definite risk. According to the method provided by ACGIH, occupational cancer risk in the range from 0.69 to 2.4.

Keywords: air pollutant, municipal wastewater treatment, PCA, APCS, carcinogenic risk, VOCs, formaldehyde, restaurant
Table of Contents
中文摘要 i
Abstract ii
Acknowledgement iii
Table of Contents iv
List of Figures vii
List of Tables viii
Abbreviation ix
CHAPTER 1 1
General Introduction and Objectives 1
1.1 Introduction 2
1.2 Objective of the Study 5
1.3 Significance of the Study 5
1.4 Scope and Limitation 5
CHAPTER 2 7
Literature Review 7
2.1 Types and sources of air pollutant 8
2.2 Volatile organic compounds in air 11
2.3 Air pollution in sewage treatment 12
2.4 Air pollution health effect 15
CHAPTER 3 17
Materials and Methods 17
3.1 Data Sampling and Analysis 18
3.2 Source Apportionment Technic. 23
3.3 Ozone Formation Potential (OFP) 25
3.4 Health Risk Assessment 27
3.4.1 Lifetime Cancer Risk (LCR) 27
3.4.2 Hazard Quotient (HQ) 28
CHAPTER 4 30
Source Apportionment of Air Pollution and Characteristic of Volatile Organic Compounds above a Municipal Wastewater Treatment Plant, Northern Taiwan. 30
Abstract 31
4.1 Introduction 32
4.2 Data and Methods 34
4.2.1 Sample collection 34
4.2.2 Chemical analysis and data treatment 36
4.2.3 Estimation of ozone formation potential 42
4.2.4 Principal component analysis (PCA)/Absolute principal component analysis (APCA). 42
4.3 Results and Discussion 43
4.3.1 Air pollutant concentration 43
4.3.2 Level of TVOC 45
4.3.3 VOC characteristic during sampling period 51
4.3.4 Analysis of ozone formation potential 55
4.3.5 Source apportionment using PCA/APCS 57
4.4 Conclusion 60
CHAPTER 5 61
Air Pollution Profiles and Health Risk Assessment of Ambient Volatile Organic Compounds Emitted from a Municipal Wastewater Treatment Plant, Taiwan. 61
Abstract 62
5.1 Introduction 63
5.2 Data and Methods 64
5.2.1 Sample Collection 64
5.2.2 Chemical Analysis and Data Treatment 65
5.2.3 Health Risk Assessment for the Residents 66
5.3 Results and Discussions 67
5.3.1 Level of Air Pollutants 67
5.3.2 Level of TVOCs 67
5.3.3 VOCs Characteristics 68
5.3.4 Health Risk Assessment 74
5.4 Conclusions 76
CHAPTER 6 77
Indoor Air Quality and Occupational Health Risk Assessment of Inhalation Exposure to Formaldehyde at Different Kind Restaurants in Northern Taiwan. 77
Abstract 78
6.1 Introduction 79
6.2 Data and Methods 80
6.2.1 Site Selection 80
6.2.2 Analytical Methods 82
6.2.3 Occupational Health Risk Assessment 83
6.3 Results and Discussions 84
6.3.1 Concentration of Air Pollutants 84
6.3.2 Occupational Health Risk Assessment 90
6.4 Conclusions 93
CHAPTER 7 94
Conclusions and Suggestions. 94
7.1 Conclusions 95
7.2 Suggestions 97
References 98
Supplementary Documents 105

















List of Figures

Figure 1 Health effect of pollution 16
Figure 2 Framework of study 19
Figure 3 Gas chromatograph agilent 6890 N 20
Figure 4 Q-TRAKTM indoor air quality monitor 7575 20
Figure 5 Met one aerocet 531 particle profilers 21
Figure 6 Photo-ionization detector PpbRAE 3000 22
Figure 7 MultiRAE lite PGM-620X 22
Figure 8 PCA/APCS step 25
Figure 9 Health risk assessment of VOCs exposure 29
Figure 10 Location sampling in the sport park X (outdoor) 35
Figure 11 Location sampling in the municipal treatment plant X (indoor) 36
Figure 12 TVOC concentration (ppbv) contour maps of the sport park X (outdoor) 47
Figure 13 TVOC concentration (ppbv) contour maps of the municipal wastewater treatment plant X (indoor) 48
Figure 14 Boxplots of concentrations of VOCs by category 55
Figure 15 Source contribution (%) for each variable 60
Figure 16 Sampling point in wastewater treatment plant A 65
Figure 17 TVOCs distribution wastewater treatment A 70
Figure 18 a) concentration b) distribution of seven VOC groups 71
Figure 19 Location of the sampling site 81
Figure 20 The mean and standard deviation of CO concentrations 86
Figure 21 The mean and standard deviation of CO2 concentrations 86
Figure 22 The mean and standard deviation of O3 concentrations 87
Figure 23 The mean and standard deviation of PM2.5 concentrations 87
Figure 24 The mean and standard deviation of PM10 concentrations 88
Figure 25 The mean and standard deviation of TVOCs concentrations 88
Figure 26 The mean and standard deviation of HCHO concentrations 89
Figure 27 The mean and standard deviation of bacteria concentrations 89
Figure 28 The mean and standard deviation of fungi concentrations 90


List of Tables

Table 1 Short-term symptoms and effect of H2S exposure 13
Table 2 MIR Values 26
Table 3 Method of detection limit (MDL) of 103 VOCs 38
Table 4 Overall and seasonal concentration of CO, CO2, particulate matter, H2S, NH3 and TVOCs 46
Table 5 Overall and seasonal concentration of CO, CO2, particulate matter, H2S, NH3 and TVOCs in the sport parks and municipal wastewater treatment plant X for one day investigation 49
Table 6 Characteristic and concentration of VOC (ppbv) in the sport park and municipal wastewater treatment plant for one day investigation 52
Table 7 Characteristic and concentration of VOCs (ppbv) 53
Table 8 Ozone formation potential of VOCs 56
Table 9 Varimax-rotated principal component matrix 59
Table 10 The exposure assessment factors 67
Table 11 CO, CO2, PM, TSP, H2S and NH3 concentrations in municipal wastewater treatment plant A 72
Table 12 VOCs concentrations (µg m-3) in municipal wastewater treatment plant A 73
Table 13 Carcinogenic (LCR) and non-carcinogenic risk (HI) of VOCs 75
Table 14 The stipulated standards of Taiwan''s indoor air quality management act (TIAQMA) 79
Table 15 A summary of four kind restaurants 81
Table 16 The exposure assessment factors 83
Table 17 Carcinogenic risk of formaldehyde exposure 92



References

Abe, K.C., Santos, G.M.S.d., Coêlho, M.d.S.Z.S. and Miraglia, S.G.E.K. (2018). Pm10 exposure and cardiorespiratory mortality – estimating the effects and economic losses in são paulo, brazil. Aerosol Air Qual. Res.
Alam, K., Rahman, N., Khan, H.U., Haq, B.S. and Rahman, S. (2015). Particulate matter and its source apportionment in peshawar, northern pakistan. Aerosol and Air Quality Research 15: 634-647.
Alves, C., Nunes, T., Silva, J., and Duarte, M. (2013). Comfort Parameters and Particulate Matter (PM10 and PM2.5) in School Classrooms and Outdoor Air. Aerosol Air Qual Res.13: 1521–1535.
An, T., Huang, Y., Li, G., He, Z., Chen, J. and Zhang, C. (2014). Pollution profiles and health risk assessment of vocs emitted during e-waste dismantling processes associated with different dismantling methods. Environment International 73: 186-194.
Biesiada, M. (2001). Simulations in health risk assessment. Int J Occup Env Heal. 14: 397-402.
Carter, W. P. L. (2010). Updated Maximum Incremental Reactivity Scale And Hydrocarbon Bin Reactivities For Regulatory Applications. College of Engineering Center for Environmental Research and Technology University of California. Retrieved from http://www. arb.ca.gov/research/reactivity/mir09.pdf.
Chang, T., Ren, D., Shen, Z., Huang, Y., Sun, J., Cao, J., Zhou, J., Liu, H., Xu, H., Zheng, C., Pan, H. and He, C. (2017). Indoor air pollution levels in decorated residences and public places over xi’an, china. Aerosol and Air Quality Research 17: 2197-2205.
Chen, Y.-Y., Sung, F.-C., Chen, M.-L., Mao, I.F. and Lu, C.-Y. (2016). Indoor air quality in the metro system in north taiwan. International Journal of Environmental Research and Public Health 13: 1200.
Cheng, J.-H., Lee, Y.-S. and Chen, K.-S. (2016). Carbonyl compounds in dining areas, kitchens and exhaust streams in restaurants with varying cooking methods in kaohsiung, taiwan. Journal of Environmental Sciences 41: 218-226.
Chen, L., Bao, K., Li, K., Lv, B., Bao, Z., Lin, C., Wu, X., Zheng, C., Gao, X., Cen, K. (2017a). Ozone and Secondary Organic Aerosol Formation of Toluene/NOx Irradiation under Complex Pollution Scenarios. Aerosol Air Qual Res. 17: 11760–1771.
Chen, Y., Li, X., Zhu, T., Han, Y., Lv, D. (2017b). PM2.5-bound PAHs in Three Indoor and One Outdoor Air in Beijing: Concentration, source and health risk assessment. Sci Total Environ. 586: 255–264.
Chen, W.H., Yang, W.B., Yuan, C.C., Yang, J.C., Zhao, Q.L. (2013). Influences of Aeration and Biological Treatment on the Fates of Aromatic VOCs in Wastewater Treatment Processes. Aerosol Air Qual Res. 13: 225–236.
Cheng, J.H., Hsieh, M.J., Chen, K.S. (2016). Characteristic and Source Apportionment of Ambient Volatile Organic Compounds in Science Park in Central Taiwan. Aerosol Air Qual Res. 16: 221–229.
Ciuzas, D. (2016). Indoor air quality management by combined ventilation and air cleaning: An experimental study. Aerosol and Air Quality Research 16: 2550-2559.
El-Sharkawy, M.F. and Javed, W. (2018). Study of indoor air quality level in various restaurants in saudi arabia. Environmental Progress & Sustainable Energy 37: 1713-1721.
Gendebien, A.(2010). Environmental, Economic and Social Impacts of the Use of Sewage Sludge on Land. Project Interim Report for European Commission, DG Environment. Retrieved from http://ec.europa.eu/environment/archives/waste/sludge/pdf/sludge_pollutants_3.pdf
Geng, F., Cai, C., Tie, X., Yu, Q., An, J., Peng, L., Zhou, G., Xu, J. (2009). Analysis of VOC Emissions Using PCA/APCS Receptor Model at City of Shanghai, China. J. Atmos. Chem. 62: 229–247.
Guo, H., Wang, T., Louie, P. K. K. (2004). Source Apportioment of Ambient Non-Methane Hydrocarbons in Hong Kong: Application of A Principal Component Analysis/Absolute Principal Component Scores (PCA/APCS) Receptor Model. Environ Pollut. 129: 489–498.
Hamoda, M. F. (2007). Air Pollutants Emissions from Waste Treatment and Disposal Facilities. J Environ Sci Heal A. 41: 77–85.
He, Z., Li, G., Chen, J., Huang, Y., An, T. and Zhang, C. (2015). Pollution characteristics and health risk assessment of volatile organic compounds emitted from different plastic solid waste recycling workshops. Environment International 77: 85-94.
Huang, H.-L., Lee, M.-K. and Shih, H.-W. (2017). Assessment of indoor bioaerosols in public spaces by real-time measured airborne particles. Aerosol and Air Quality Research 17: 2276-2288.
Huang, C. H., Chen, K.S., Wang, H. K. (2012). Measurement and PCA/APCS Analysis of Volatile Organic Compounds in Kaohsiung Municipal Sewer Systems, Southern Taiwan. Aerosol Air Qual Res. 12: 1315–1326.
Jeon, E. C., Son, H. K, Sa, J. H. (2009). Emissions Characteristic and Factors of Selected Odorous Compounds at a Wastewater Treatment Plant. Sensors. 9: 311–326.
Jones, D. L., and Burklin, C. (1995). Estimation of Hazardous Air Pollutant Emissions From Municipal Sewer Systems. Radian Corp., Research Triangle Park, NC. Retrieved from http://nepis.epa.gov/Exe/ZyPURL.cgi?Dockey=9100RRM2.TXT
Lan, C. H., Huang, Y. L., Ho, S. H., Peng, C. Y. (2014). Volatile Organic Compound Identification and Characterization by PCA and Mapping at A High-Technology Science Park. Environ Pollut. 193: 156–164.
Lee, S.C., Li, W.-M. and Yin Chan, L. (2001). Indoor air quality at restaurants with different styles of cooking in metropolitan hong kong. Science of The Total Environment 279: 181-193.
Lee, J. A., Johnson, J. C., Reynolds, S. J., Thorne, P. S., O’shaughnessy, P. T. (2007). Indoor and Outdoor Air Quality Assessment of Four Wastewater Treatment Plants. J. Occup. Environ. Hyg. 3: 36–43.
Liu, Y., Shao, M., Lu, S., Liao, C-C., Wang, J.-L., Chen, G., (2008). Volatile Organic Compound (VOC) Measurements in The Pearl River Delta (PRD) Region, China. Atmos. Chem. Phys. 8: 1531–1545.
Lin, M.-W., Chen, L.-Y. and Chuah, Y.-K. (2017). Investigation of a potted plant (hedera helix) with photo-regulation to remove volatile formaldehyde for improving indoor air quality. Aerosol and Air Quality Research 17: 2543-2554.
Ling, Z., Guo, H., Chen, G., Lam, S.H.M. and Fan, S. (2016). Formaldehyde and acetaldehyde at different elevations in mountainous areas in hong kong. Aerosol and Air Quality Research 16: 1868-1878.
Madureira, J., Paciencia I., Rufo J., Severo, M., Ramos, E., Barros, H., Fernandes E. d. O. (2016). Source Apportionment of CO2, PM10 and VOCs Levels and Health Risk Assessment in Naturally Ventilated Primary Schools in Porto, Portugal. Build Environ. 96: 198–205.
Mari, M., Soberón, F. S., Miró, C. A., Drooge, B. L. v., Soler, A., Grimalt, J. O., Schuhmacher, M. (2016). Source Apportionment of Inorganic and Organic PM in the Ambient Air around a Cement Plant: Assessment of Complementary Tools. Aerosol Air Qual Res. 16: 3230–3242.
Ou, J., Zheng, J., Li, R., Huang, X., Zhong, Z., Zhong, L., Lin, H. (2015). Speciated OVOC and VOC emission inventories and their implications for reactivity-based ozone control strategy in the Pearl River Delta region, China. Sci Total Environ. 530: 393–402.
Ou-Yang, C. F., Chang, C. C., Wang, J. L., Shimada, K., Hatakeyama, S., Kato, S., Chiu, J. Y., Sheu, G. R., Lin, N. H. (2017). Characteristics of Summertime Volatile Organic Compounds in the Lower Free Troposphere: Background Measurements at Mt. Fuji. Aerosol Air Qual Res. Accepted Manuscripts.
Oullette, B. A. (1994). Volatile Organic Compound Emissions From USAF Wastewater Treatment Plants In Ozone Nonattainment Areas. (Master thesis, Air Force Institute of Technology). Retrieved from http://www.dtic.mil/dtic/tr/fulltext/u2/a284699.pdf
Pandey, M., Pandey, A. K., Mishra, A., Tripathi, B. D. (2015). Application of Chemometric Analysis and Self Organizing Map-Artificial Neural Network as Source Receptor Modeling for Metal Speciation in River Sediment. Environ Pollut. 204: 64–73.
Quigley, C. J., and Corsi, R. L. (1995). Emissions of VOC from a Municipal Sewer. J. Air Waste Manag. Assoc. 45: 395–403.
Rasheed, A., Aneja, V, P., Aiyyer, A., Rafique, U. (2015). Measurement and Analysis of Fine Particulate Matter (PM2.5) in Urban Areas of Pakistan. Aerosol Air Qual Res. 15: 426–439.
Singh, D., Kumar, A., Kumar, K., Singh, B., Mina, U., Braj, B. B., Jain, V. K. (2016). Statistical modeling of O3, NOx, CO, PM2.5, VOCs and Noise Levels in Commercial Complex and Associated Health Risk Assessment in an Academic Institution. Sci Total Environ. 572: 586–594.
Sousa, F.W., Caracas, I.B., Nascimento, R.F. and Cavalcante, R.M. (2011). Exposure and cancer risk assessment for formaldehyde and acetaldehyde in the hospitals, fortaleza-brazil. Building and Environment 46: 2115-2120.
Taipei City Government. (2017). Neihu Sewage Treatment Plant’s Recreational Sports Park. Sewerage Systems Office of the Public Works Department. Retrieved from http://english.sec.gov.taipei/ct.asp?xItem=660693&ctNode=15202&mp=101002.
Thurston, G. D., Ito, K., Lall, R. (2011). Source Apportionment of U.S. Fine Particulate Matter Air Pollution. J.atmosenv. 45: 3924–3936.
Titos, G., Lyamani, H., Pandolfi, M., Alastuey, A., Arboledas, L., A. (2014). Identification of Fine (PM1) and Coarse (PM10-1) Sources of Particulate Matter in an Urban Environment. Atmospheric Enviro. 89: 593–602.
Wang, G., Cheng, S., Wei, W., Zhou, Y., Yao, S., Zhang, H. (2016). Characteristics and source apportionment of VOCs in the suburban area of Beijing, China. Atmos. Pollut. Res. 7: 711–724.
Washington State Department of Ecology. (1998). Washington State Air Toxic Sources and Emission Estimation Methods. State of Washington. Retrieved from http://www.ecy.wa.gov/programs/air/pdfs/wwtm3.pdf.
Wei, W., Cheng, S., Li, G., Wang, G., Wang, H. (2014). Characteristics of volatile organic compounds (VOCs) emitted from a petroleum refinery in Beijing, China. Atmos. Environ. 89: 358-366.
Wu, X., Huang, W., Zhang, Y., Zheng, C., Jiang, X., Gao, X. and Cen, K. (2015). Characteristics and uncertainty of industrial vocs emissions in china. Aerosol and Air Quality Research 15: 1045-1058.
Yang, M., Wang, Y., Chen, J., Li, H., Li, Y. (2016). Aromatic Hydrocarbons and Halocarbons at a Mountaintop in Southern China. Aerosol Air Qual Res. 16: 478–491.
Yu, K.-P., Yang, K.R., Chen, Y.C., Gong, J.Y., Chen, Y.P., Shih, H.-C. and Candice Lung, S.-C. (2015). Indoor air pollution from gas cooking in five taiwanese families. Building and Environment 93: 258-266.
Zheng, C., Shen, J., Zhang, Y., Zhu, X., Wu, X., Chen, L., Gao, X. (2017). Atmospheric Emission Characteristics and Control Policies of Anthropogenic VOCs from Industrial Sources in Yangtze River Delta Region, China. Aerosol Air Qual Res. 17: 2263–2275.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top