跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.69) 您好!臺灣時間:2021/07/29 13:54
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:馬艾莉
研究生(外文):Irish Maggay
論文名稱:轉化型負極材料應用於鈉離子電池之電化學分析
論文名稱(外文):Electrochemical Analyses of Conversion-type Anode Materials for Sodium-Ion Batteries
指導教授:劉偉仁劉偉仁引用關係
指導教授(外文):Wei-Ren Liu
學位類別:博士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:241
中文關鍵詞:鈉離子電池負極材料轉化型材料
外文關鍵詞:Sodium-ion batteriesanode materialsconversion materials.
相關次數:
  • 被引用被引用:0
  • 點閱點閱:68
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著行動裝置與除能設備的需求上升,鈉離子電池系統成為了新一代能源材料的主流,與鋰離子電池相比,鈉的豐富來源與其低成本的優點,成為了可取代鋰離子電池重要因素,因此本研究中開發了一種簡單製備方法製備轉化型負極材料,透過溶劑熱與水熱法來製備 ZnV2O4、FeV2O4、ZnMn2O4 和 ZnIn2S4,並研究材料在鈉離子電池的電化學特性表現。
第一章針對鈉離子電池進行簡單的介紹,第二章針對鈉離子電池近幾年相關文獻介紹與其反應機制,第三章是ZnV2O4的電化學特性進行分析。在電化學測試下,ZnV2O4的第一圈電容量為537 mAh∙g-1,在100 mA∙g-1的電流測試下,30圈循環後還保有113 mAh∙g-1的可逆電容量。通過理論計算,可以得知ZnV2O4的能隙為0.314 eV,這也證實了ZnV2O4有較低的RCT與電阻率
第四章我們開發了一種新型負極材料FeV2O4,並針對此材料進行電化學測試,本章節還探討了PVdF與CMC和SBR作為黏著劑的探討與比較,其電化學結果得知,經過200次的循環後,由於材料從Cu箔上剝離,PVdF配方下的電極僅27mAh•g-1。 同時,使用SBR / CMC的電極獲得穩定的循環壽命測試並且在200次循環後保持容量97mAh•g-1。 此外,透過拆解電池後的極版,並利用XRD分析可得知在充電和放電過程中Fe和V的轉化並不完全。
第五章我們將介紹了不同煅燒溫度對ZnV2O4電化學性能的影響。 透過燒結溫度700℃且在2℃∙min -1的低加熱速率慢慢升溫,使ZnV2O4¬生成多孔結構並提高顆粒的表面積。 在700℃煅燒下的ZnV2O4的BET分析下,孔徑、孔體積與表面積分別為275.08 Å,0.1663 cm3∙g-1和26.62 m2∙g-1,其結果遠高於500°C和600°C煅燒後的結果。透過電化學測試下,在700℃的燒結條件下,ZnV2O4經過400次循環後的保留率為64%,其結果來至其多孔結構和高表面積,透過高表面積與多孔結構增
第六章內容包含了煅燒過程中不同加熱速率對ZnMn2O4的電化學性能的影響。 透過緩慢的加熱速率讓材料有足夠的時間能夠緩慢釋放氣體,在微球表面上生成孔洞。 實際上在電化學測試下,在1℃∙min-1的升溫速率下,微球獲得了最大的孔徑和表面積,其結果改善了電解質與電極界面中的電荷轉移速度,並讓電極中的Na+擴散加快,讓材料有高度穩定的循環壽命和116 mAh∙g-1的可逆電容量,其測試結果也沒有明顯的電容量衰減
第七章是對ZnIn-2S4的電化學特性進行了初步分析。 透過CTAB作為表面活性劑,ZnIn2S4的表面形貌從不規則形狀的層狀顆粒塊變為花狀微球。在循環壽命測試下,兩種表面形貌皆有較大的電容量衰減,並且在100次循環測試後,其可替電容量百分比僅為36%和49%。為了解決此問題,我們將會透過碳塗層或將顆粒嵌入碳基質中可以減少體積膨脹。
第八章我們將針對以上的實驗成果進行總結,並且針對本論文研究中提出一些改進方法
The need to sustain the demands of portable devices and stationary energy storage devices have opened new opportunities for sodium-ion battery systems (SIBs). The abundant sources and low-cost of sodium compared to lithium made it a viable alternative for lithium-ion batteries (LIBS). This dissertation provides a simple preparation of conversion type anode materials such ZnV2O4, FeV2O4, ZnMn2O4 and ZnIn2S4 using solvothermal or hydrothermal methods and investigates their electrochemical properties as viable electrode materials for sodium-ion batteries.
Chapter 1 describes a brief introduction about SIBs and chapter 2 provides some of the most recent related literatures on SIBs and the principles that governs it. Chapter 3 focuses on the preliminary electrochemical analyses of ZnV2O4. An initial capacity of 537 mAh∙g-1 is obtained and reversible capacity of 113 mAh∙g-1 is maintained after 30 cycles at a constant current rate of 100 mA∙g-1. Through theoretical calculations the band gap of ZnV2O4 is determined to be 0.314 eV which verifies the low RCT of the electrode and generates low electrical resistivity.
Chapter 4 presents the electrochemical performance of FeV2O4 as a novel anode material. This chapter also explores the comparison between PVdF a non-aqueous binder and CMC and SBR as aqueous binders for the electrode preparations. The electrochemical results reveal that after 200 cycles of sodiation and de-sodiation, PVdF-based electrode obtained only 27 mAh∙g-1 due to the detachment of the electrode from the Cu foil. Meanwhile, SBR/CMC based electrodes obtained a stable cycle life test and retained a capacity 97 mAh∙g-1 after 200 cycles. Furthermore, the ex-situ XRD analyses of the electrode unveil the incomplete conversion of the Fe and V during charge and discharge process.
Chapter 5 puts an emphasis on the effect of different calcination temperature on the electrochemical performance of ZnV2O4. Increasing the calcination to 700°C at a low heating rate of 2°C∙min-1 induced the formation of porous structure and increased the surface area of the particles. the BET analysis of ZnV2O4 calcined at 700°C has pore size, pore volume and surface area of 275.08Å, 0.1663 cm3∙g-1 and 26.62 m2∙g-1, respectively which are considerably higher than 500°C and 600°C. The electrochemical tests reveal that the retention rate after 400 cycles of ZnV2O4 calcined at 700°C is 64% which is attributable to its porous structure and high surface which enhanced the kinetics of Na+ ions during charge and discharge and increased the charge-transfer at the electrode-electrolyte interface.
Chapter 6 involves the study of different heating rates during the calcination method on the electrochemical performance of ZnMn2O4. Slow heating rate permitted the slow release of gas which in turn induced pores on the surface of the microspheres. In fact, the electrochemical results divulge at 1°C∙min-1 the microspheres obtained the highest pore size and surface area which facilitated the increased charge-transfer in the electrolyte-electrode interface and permitted fast Na+ diffusion in the electrode, generating a highly stable cycle life and a reversible capacity of 116 mAh∙g-1 with no obvious capacity fade.
Chapter 7 provides a preliminary analysis on the electrochemical properties of ZnIn¬2S4. Using CTAB as a surfactant, the morphology of ZnIn2S4 is changed from an irregularly shaped block of layered particle to a flower-like microsphere. Cycle life test revealed that both morphologies suffer from huge capacity fading and only delivered 36% and 49% retention rates after 100 cycles. In order to resolve this, carbon coating or embedding the particles on a carbon matrix can reduce the volume expansion.
Chapter 8 provides an overall conclusion of all the experimental findings and also imparts a few strategies on the future work of the studies conducted in this dissertation
Table of Contents
摘要 I
Abstract III
Acknowledgements VI
Table of Contents VIII
Table of Figures XIII
List of Tables XXII
1 -Introduction 1
1.1 Background of the study 1
1.2 From Lithium-ion to Sodium-ion batteries 2
1.3 Motivation and objective of the study 6
1.4 Scope and limitations of dissertation 8
1.5 References 9
2 -Review of Related Literature 13
2.1 General terminologies and principle of operations 13
2.1.1 Definitions 13
2.1.2 Thermodynamics 15
2.1.3 Kinetics 15
2.1.4 Battery criteria for practical use 17
2.1.4.1 Specific capacity, energy densities and power density 17
2.1.4.2 Coulombic efficiency 19
2.1.4.3 Open Circuit Voltage (OCV) and Solid Electrolyte Interface (SEI) layer 20
2.2 Sodium-ion battery technology 23
2.2.1 Electrode materials Sodium-ion batteries 27
2.2.1.1 Cathode materials 28
2.2.1.1.1 Layered Transition Metal Oxides 29
2.2.1.1.2 Prussian blue and its analogs 33
2.2.1.1.3 Polyanionic Phosphate compounds 35
2.2.1.2 Anode materials 38
2.2.1.2.1 Intercalation-type 38
2.2.1.2.1.1 Carbon-based 38
2.2.1.2.1.2 Other layered structured compounds 42
2.2.1.2.2 Alloying metals and their derivatives 43
2.2.1.2.3 Conversion-type materials 45
2.2.1.2.3.1 Single metal conversion-type 46
2.2.1.2.3.2 Binary metal conversion-type 51
2.5 References 60
3 -ZnV2O4: A potential anode material for sodium-ion batteries 75
3.1 Abstract 75
3.2 Introduction 75
3.3 Experimental 78
3.3.1 Materials and methods 78
3.3.2 Structural and physical characterizations 79
3.3.3 Theoretical Calculations 79
3.3.4 Electrochemical measurements 80
3.4 Results and discussion 81
3.5 Conclusions 94
3.6 References 95
4 -Electrochemical properties of novel FeV2O4 as an anode material for Na-ion batteries 101
4.1 Abstract 101
4.2 Introduction 101
4.3 Experimental 105
4.3.1 Materials and methods 105
4.3.2 Structural and physical characterizations 105
4.3.3 Electrochemical measurements 106
4.4 Results and discussion 107
4.5 Conclusions 134
4.6 Supplementary Data 134
4.7 References 136
5 -Effect of different calcination temperatures on the electrochemical properties of ZnV2O4 as an anode material for Na-ion batteries 144
5.1 Abstract 144
5.2 Introduction 145
5.3 Experimental 146
5.3.1 Materials and Methods 146
5.3.2 Structural and physical characterizations 146
5.3.3 Electrochemical measurements 147
5.4 Results and discussion 148
5.5 Conclusions 169
5.6 References 169
6 -Modulating the porosity of ZnMn2O4 and its applications in sodium-ion battery 172
6.1 Introduction 172
6.2 Experimental 173
6.2.1 Materials and Methods 173
6.2.2 Structural and physical characterizations 173
6.2.3 Electrochemical measurements 174
6.3 Results and discussion 174
6.4 Conclusions 192
6.5 References 193
7 -Preliminary analysis of the electrochemical performance of ZnIn2S4 196
7.1 Introduction 196
7.2 Experimental 197
7.2.1 Materials and Methods 197
7.2.2 Structural and physical characterizations 197
7.2.3 Electrochemical measurements 198
7.3 Results and discussion 198
7.4 Conclusions 212
7.5 References 212
8 -Conclusions and Future Work 214
9 -Publications 217

Table of Figures
Figure 1.1 Volumetric energy density vs. gravimetric energy density of different batteries. (Reprinted from Priya and Inman, 2009[5]). 2
Figure 1.2 Galvanostatic charge and discharge curves of graphite vs. Na metal. (Reprinted from Kuze et al., 2013 [19]). 5
Figure 1.3 Hard carbon intercalated with Na+ model as proposed by Steven and Dahns. (Reprinted from Steven and Dahns, 2000 [28]). 6
Figure 1.4 Published articles on (top) cathode and (bottom) anode materials for Na-ion batteries with their corresponding Voltage-Capacity plots. (Reprinted from Kim et al., 2016 [29]). 7
Figure 2.1 Discharge curve of a battery. (Reprinted from Winter and Brodd, 2004 [1] ). 17
Figure 2.2 Schematic diagram of the electronic structures of (a) cathode, electrolyte and anode at open circuit and (b) with passivating films at electrode/electrolyte interface. (Reprinted from Molenda, 2011 [10]). 22
Figure 2.3 Schematic diagram of SEI growth on Graphite electrode. (Reprinted from Pinson and Bazant, 2013 [11]). 23
Figure 2.4 Abundance of element in the Earth’s crust. (Reprinted from Carmichael, 1988 [14]). 24
Figure 2.5 Schematic Illustration of Na-ion battery. (Reprinted from Yabuuchi, 2014 [13]). 26
Figure 2.6 Standard manufacturing techniques for both LIBs and SIBs. (Reprinted from Roberts et al., 2018 [12]). 27
Figure 2.7 Sodium-ion battery system. (Reprinted from Hwang et al., 2017 [4]). 28
Figure 2.8 Typical crystal strucure of O- and P-type polymorphs of layered transition oxides. (Reprinted from Yabuuchi et al., 2014 [13]). 29
Figure 2.9 In-situ evolution of the XRD pattern of NaxCoO2 during charge/discharge. (a) (002) diffraction, (b) (004) diffraction and (c) (100) diffraction peaks with their (d) corresponding voltage-Na content profile. (Reprinted from Rai et al., 2014[26] ). 31
Figure 2.10 Rate performance of Na0.7MnO2 nanoplates. (Reprinted from Su et al., 2013[28]). 32
Figure 2.11 Crystal structure of Prussian blue. (Reprinted from Qian et al., 2018 [32]). 34
Figure 2.12 Crystal Structure of NASICON-structured Na3V2(PO4)3. (Reprinted from Zhang et al., 2018 [41]). 36
Figure 2.13 House of card model of hard carbon with Na+ ions intercalated between the layers and voids caused by its random stacking with its corresponding discharge profile. The blue and red balls represent intercalation and pore filling, respectively. (Reprinted from Bommier, 2015[53]). 40
Figure 2.14 (a) Discharge profile near 0.0 V and (b) proposed storage mechanism of hard carbon by Bommier et al., [53]. 41
Figure 2.15 Full cell schematic diagram by Oh et al., [22]. 47
Figure 2.16 Surface morphologies and electrochemical properties of single metal oxides as anode for SIBs. (Reprinted from Yan et al. [120]). 49
Figure 2.17 Galvanostatic cycles of (a) Li/LiPF6 (EC/DEC)/NiCo2O4 cell between 3.0 and 0.1 V and (b) Na/NaClO4 (EC/DEC)/NiCo2O4 cell from 3.3 and 0.1 V both run at C/10 rate. (Reprinted from Steven and Dahns [16]). 53
Figure 2.18 Galvanostatic cycles of full cell NiCo2O4/NaClO4 (EC/DEC)/NaxCoO2 from (a) 0.0 – 4.1 V and (b) 1.5 – 4.0 V run at C/10 rate. (Reprinted from Steven and Dahns, 2000 [16]). 54
Figure 2.19 Graphical illustration of CuV2S4 as novel anode material for SIBs. (Reprinted from Hansen et al., 2017 [134]). 56
Figure 2.20 Morphological analyses of NTO nanoparticles prepared via hydrothermal synthesis. (Reprinted from Kalubarme et al., 2014 [110]). 59
Figure 2.21 Electrochemical properties of NTO. (Reprinted from Kalubarme et al., 2014[110]). 59
Figure 3.1 (a) XRD profiles of as-synthesized ZnV2O4 for 1 and 3 days, and (b) ZnV2O4 crystal structure with ZnO4 and VO6 polyhedra. 82
Figure 3.2 SEM images (a-b), HRTEM (c) and EDS mapping (d) of ZnV2O4 synthesized for 3 days. 83
Figure 3.3 XPS wide scan (a), and XPS narrow scans of V 2p (b), Zn 2p (c), and O 1s (d). 85
Figure 3.4 X-ray absorption near edge (XANES) spectra of (a) Zn and (b) V K-edge. 86
Figure 3.5 (a) Formation cycle of ZnV2O4 from 0.01 – 3.0 V at 50 mA•g-1, (b) cycle life test, (c) galvanostatic charge/discharge profiles at 100 mA•g-1 and (d) c-rate test of ZnV2O4. 88
Figure 3.6 (a) EIS and (b) diffusion coefficient calculation. 89
Figure 3.7 (a) Cyclic voltammogram profile from 0.01 – 3.0V at a scan rate of 0.1 mV•s-1 (b) Galvanostatic charge/discharge curves of the corresponding (c) ex-situ XRD electrode ZnV2O4 (A = pristine, B = D0.3V, C = D0.01V, D = C1.0V, E = C3.0V.) 92
Figure 3.8 Calculated electronic band structure of ZnV2O4, showing (a) spin-up and (b) spin-down channels. (c) Total density of states for the compound and partial density of states for (d) vanadium 3d and (e) oxygen 2p orbitals. 94
Figure 4.1 (a) XRD profiles of FeV2O4 calcined at different temperatures under H2/N2 atmosphere and (b) Rietveld refinement. Insets: crystal structure of FeV2O4 with the FeO4 and VO6 polyhedra. 108
Figure 4.2 (a) Lattice parameters and (b) cell volume of FeV2O4 with their corresponding error bars. 109
Figure 4.3 Comparison of FeV2O4 calcined at 400°C with different XRD scan rate. 110
Figure 4.4 (a-b) SEM, (c) TEM and inset: SAED, and (d) HRTEM images of FeV2O4. 111
Figure 4.5 (a) EDS spectra of FeV2O4 and (b) its error bar. 112
Figure 4.6 Elemental mapping of FeV2O4. 113
Figure 4.7 XPS of FeV2O4: (a) Wide scan and narrow scans of (b) Fe, (c) V, and (c) O. 114
Figure 4.8 (a) X-ray absorption near edge (XANES) spectra of V K-edge and the (b) zoomed in graph of the edge energies. 116
Figure 4.9 Electrochemical performance of FeV2O4 electrodes. Galvanostatic charge/discharge profiles of (a) FVO-PVdF and (b) FVO-CMC/SBR electrodes at potential window of 0.01 – 3.0V. Comparisons of the (c) cycle life and (d) rate capability tests of FVO-PVdF and FVO-CMC/SBR electrodes. 119
Figure 4.10 Ex-situ SEM images of FVO-PVdF electrodes (a) before, after the (b) 1st and (c) 200th charge/discharge cycle. Cross-section SEM images of (d) before, (e) after the 1st, and (f) low and (g) high magnification of the electrode after the 200th cycle. 121
Figure 4.11 Ex-situ SEM images of FVO-CMC/SBR electrodes (a) before, after the (b) 1st and (c) 200th charge/discharge cycle. Cross-section SEM images of (d) before, after the (e) 1st and (f) 200th charge/discharge cycle. 123
Figure 4.12 Molecular structures of (a) PVdF, (b) CMC1, and (c) SBR. 124
Figure 4.13 CV profiles of FVO-CMC/SBR at a scan rate of 0.1 mV•s-1 from 0.01 – 3.0V. 125
Figure 4.14 . (a) CV curves of FVO-CMC/SBR with different scan rates from 0.05 to 1.0 mV•s-1 from 0.01 – 3.0V. (b) Graph of log(v) vs. log(i). 127
Figure 4.15 (a) Galvanostatic charge/discharge profile of FVO-CMC/SBR electrodes with orange marks corresponding to different depths of charge and discharge and (b) Ex-situ XRD profiles as indicated by the orange marks (A = pristine; B = D1.5V, C = D0.5V, D = D0.01 and E = C1.5V, F = 2.8V and G = C3.0V). 130
Figure 4.16 (a) EIS and (b) diffusion coefficient calculations of FVO-PVdF and -CMC/SBR electrodes. 133
Figure 4.17 Cycle life tests of FVO-CMC/SBR electrodes with and without FEC. 135
Figure 5.1 (a) XRD profiles of ZnV2O4 calcined at different temperatures and (b) Rietveld refinement of ZVO-700. (Insets: crystal structure of ZnV2O4 with ZnO4 and VO6 polyhedra. 149
Figure 5.2 SEM and TEM images of ZnV2O4 calcined at (a-b) 500°C, (c-d) 600°C and (e-f) 700°C, respectively. 151
Figure 5.3 HR-TEM images of ZVO-700 showing (a) grain boundaries, (b) pores, (c) lattice fringes and (d) SAED patterns. 152
Figure 5.4 XPS spectra of ZnV2O4: (a) wide scan and narrow scans of (b) V2p, (c) Zn2p and (d) O1s. 153
Figure 5.5 (a) N2 adsorption-desorption isotherms and (b) pore volume measurements of ZVO-500, ZVO-600 and ZVO-700. (INSET: tabulated result of the surface area, pore volume and pore size of the samples) 155
Figure 5.6 Galvanostatic charge/discharge profiles of (a) ZVO-500, (b) ZVO-600 and (b) ZVO-700 during formation cycles at 100 mA.g-1. 157
Figure 5.7 (a) Cycle life test of ZVO and Galvanostatic charge/discharge of (b) ZVO-500, (c) ZVO-600 and (d) ZVO-700 at 200 mA.g-1. 160
Figure 5.8 (a) C-rate and (b) AC Impedance of ZVO-500, ZVO-600 and ZVO-700. Insets include equivalent circuit of the cell and internal resistance values. 162
Figure 5.9 Linear fitting of the Warburg impedance of the ZVO-500, ZVO-600 and ZVO-700 after 2 cycles and 100 cycles. 164
Figure 5.10 CV profile of ZVO-700 at a scan rate of 0.1 mV•s-1 from 0.01 – 3.0V. 166
Figure 5.11 (a) Galvanostatic charge/discharge profile of ZVO-700 electrode with red marks corresponding to different depths of charge and discharge and (b) Ex-situ XRD profiles as indicated by the red marks (A = pristine; B = D0.01 V, C = C 3.0 V). 168
Figure 6.1 (a) XRD profiles of ZnMn2O4 with different calcination ramp rate and (b) crystal structure of ZnMn2O4. 176
Figure 6.2 Comparison of powder XRD of ZMO-1 and standard ZMO pattern. 176
Figure 6.3 SEM images of ZMO (a-b) without PVP at 1oC.min-1 and with PVP at (c-d) 1oC.min-1, at (e-f) 2oC.min-1, and (g-h) 5oC.min-1. 178
Figure 6.4 TEM images of (a) ZMO-1, (b) ZMO-3 and (c) ZMO-5. 179
Figure 6.5 (a) Low and (b) high HR-TEM magnifications of ZMO-1 and (c) SAED of ZMO-1. 180
Figure 6.6 (a) EDS spectrum and (b) elemental mapping of ZMO microsphere. 180
Figure 6.7 N2 adsorption-desorption isotherms of ZMO-1, ZMO-3 and ZMO-5. 181
Figure 6.8 Galvanostatic charge/discharge profiles of (a) ZMO-1, (b) ZMO-3, (c) ZMO-5 and (d) No PVP during formation cycle at 100 mA.g-1. 183
Figure 6.9 (a) Cycle life tests and (b) rate capability tests of ZMO-1, ZMO-3, ZMO-5 and No PVP electrodes. 186
Figure 6.10 Galvanostatic charge/discharge profiles of (a) ZMO-1, (b) ZMO-3, (c) ZMO-5 and (d) No PVP at 200 mA.g-1. 187
Figure 6.11 AC Impedance profiles of ZMO-1, ZMO-3 and ZMO-5 after the 2nd and 100th cycle. 189
Figure 6.12 Linear fitting of the Warburg impedance of the ZMO-1, ZMO-3 and ZMO-5 after 2 cycles and 100 cycles. 190
Figure 6.13 Slope and diffusion values of the electrodes after the 2nd and 100th cycle. 190
Figure 6.14 Cyclic voltammetry profile of ZnMn2O4 microsphere at a scan rate of 0.1 mV.s-1 from 0.01-3.0V. 192
Figure 7.1 (a) XRD comparisons of ZIS without and with CTAB, (b) XRD of C-ZIS using beamline 17A2 and (c) crystal structure of hexagonal ZIS. 201
Figure 7.2 Low and high magnification SEM of (a-b) B-ZIS and (c-d) C-ZIS. 202
Figure 7.3 EDS of (a) B-ZIS and (b) C-ZIS. 203
Figure 7.4 TEM images of B-ZIS and C-ZIS. 204
Figure 7.5 (a) HR-TEM and (b) SAED images of C-ZIS. 204
Figure 7.6 Galvanostatic charge and discharge profiles of (a) B-ZIS and (b) C-ZIS during the formation cycle at 100 mA.g-1. 205
Figure 7.7 Electrochemical tests of B-ZIS and C-ZIS: (a) cycle life test, (b-c) galvanostatic charge and discharge profiles and (d) rate capabilities. 208
Figure 7.8 (a) AC impedance and (b) diffusion coefficient calculations of B-ZIS and C-ZIS. 210
Figure 7.9 CV profile of ZIS at a scan rate 0.1mV.s-1 from 0.01 - 3.0 V 211


List of Tables
Table 1.1 Lithium vs. Sodium. Reprinted from [19]. 4
Table 2.1 Table of Terms and Definitions. (Excerpt from Winter and Brodd, 2004 [1]). 13
Table 2.2 Selected carbon anode materials for SIBs 41
Table 2.3 Layer structured anode material for SIBs. 42
Table 2.4 Alloying metals and their corresponding theoretical capacities. 43
Table 2.5 Layered metal disulfide as anode materials for SIBs. 50
Table 2.6 Non-layered metal disulfide 51
Table 2.7 Recent binary metal compounds as negative electrodes for SIBs. 57
Table 4.1 Measured thickness of FVO-PVdF electrode before and after charge/discharge cycle. 121
Table 4.2 Measured thickness of FVO-CMC/SBR electrode before and after charge/discharge cycle. 123
Table 5.1 Comparison of the discharge/charge capacities and Coulombic efficiencies of ZVO-500, ZVO-600 and ZVO-700 during the formation cycle tests. 157
Table 5.2 Average discharge capacities of ZVO-500, ZVO-600 and ZVO-700 at different current densities. 163
Table 5.3 Impedance values after the 2nd and 100th cycles. 163
Table 5.4 Slope and diffusion values of the electrodes after the 2nd and 100th cycle. 165
Table 6.1 Summary report of the BJH parameters 181
Table 6.2 Comparison of the discharge/charge capacities and Coulombic efficiencies of ZMO-1, ZMO-3, ZMO-5 and No PVP during the formation cycle tests. 183
Table 6.3 Average discharge capacities of the electrodes at different current densities. 186
Table 6.4 Lists of the calculated internal resistance of the electrodes after the 2nd and 100th cycle. 189
Table 7.1Comparison of the discharge/charge profiles and Coulombic efficiencies of B-ZIS and C-ZIS during the formation cycle tests. 206
Table 7.2 Average discharge capacities of B-ZIS and C-ZIS at different current rates. 208
1.5References
[1]J. B. Goodenough and K.-S. Park, "The Li-Ion Rechargeable Battery: A Perspective," Journal of the American Chemical Society, vol. 135, pp. 1167-1176, 2013/01/30 2013.
[2]C. Liang, M. Gao, H. Pan, Y. Liu, and M. Yan, "Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries," Journal of Alloys and Compounds, vol. 575, pp. 246-256, 10/25/ 2013.
[3]P. Roy and S. K. Srivastava, "Nanostructured anode materials for lithium ion batteries," Journal of Materials Chemistry A, vol. 3, pp. 2454-2484, 2015.
[4]M. Winter and R. J. Brodd, "What Are Batteries, Fuel Cells, and Supercapacitors?," Chemical Reviews, vol. 104, pp. 4245-4270, 2004/10/01 2004.
[5]S. Priya and D. J. Inman, Energy harvesting technologies vol. 21: Springer, 2009.
[6]G.-A. Nazri and G. Pistoia, Lithium batteries: Science and Technology: Springer Science & Business Media, 2008.
[7]I. V. B. Maggay, L. M. Z. De Juan, J.-S. Lu, M. T. Nguyen, T. Yonezawa, T.-S. Chan, and W.-R. Liu, "Electrochemical properties of novel FeV2O4 as an anode for Na-ion batteries," Scientific Reports, vol. 8, p. 8839, 2018.
[8]B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y. S. Meng, T. Wang, and J. Y. Lee, "Layered SnS2‐Reduced Graphene Oxide Composite–A High‐Capacity, High‐Rate, and Long‐Cycle Life Sodium‐Ion Battery Anode Material," Advanced materials, vol. 26, pp. 3854-3859, 2014.
[9]M. D. Slater, D. Kim, E. Lee, and C. S. Johnson, "Sodium‐ion batteries," Advanced Functional Materials, vol. 23, pp. 947-958, 2013.
[10]C. Zheng, L. Zeng, M. Wang, H. Zheng, and M. Wei, "Synthesis of hierarchical ZnV2 O4 microspheres and its electrochemical properties," CrystEngComm, vol. 16, pp. 10309-10313, 2014.
[11]K. Kaliyappan, J. Liu, A. Lushington, R. Li, and X. Sun, "Highly Stable Na2/3(Mn0.54Ni0.13Co0.13)O2 Cathode Modified by Atomic Layer Deposition for Sodium‐Ion Batteries," ChemSusChem, vol. 8, pp. 2537-2543, 2015.
[12]M. Krengel, P. Adelhelm, F. Klein, and W. Bensch, "FeV2S4 as a high capacity electrode material for sodium-ion batteries," Chemical Communications, vol. 51, pp. 13500-13503, 2015.
[13]Z. Jian, W. Han, X. Lu, H. Yang, Y. S. Hu, J. Zhou, Z. Zhou, J. Li, W. Chen, and D. Chen, "Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room‐temperature sodium‐ion batteries," Advanced Energy Materials, vol. 3, pp. 156-160, 2013.
[14]Y. Xu, Y. Zhu, Y. Liu, and C. Wang, "Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries," Advanced Energy Materials, vol. 3, pp. 128-133, 2013.
[15]Q. Liu, J. Wang, Y. Luo, L. Miao, Y. Yan, L. Xue, and W. Zhang, "Facile synthesis of FeSi 4 P 4 and its Sodium Ion Storage Performance," Electrochimica Acta, 2017.
[16]X. Jiang, H. Liu, J. Song, C. Yin, and H. Xu, "Hierarchical mesoporous octahedral K2Mn1− xCoxFe(CN)6 as a superior cathode material for sodium-ion batteries," Journal of Materials Chemistry A, vol. 4, pp. 16205-16212, 2016.
[17]Y. Kim, K. H. Ha, S. M. Oh, and K. T. Lee, "High‐Capacity Anode Materials for Sodium‐Ion Batteries," Chemistry-A European Journal, vol. 20, pp. 11980-11992, 2014.
[18]Y. Liu, N. Zhang, C. Yu, L. Jiao, and J. Chen, "MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries," Nano Letters, vol. 16, pp. 3321-3328, 2016.
[19]S. Kuze, J.-i. Kageura, S. Matsumoto, T. Nakayama, M. Makidera, M. Saka, T. Yamaguchi, T. Yamamoto, and K. Nakane, "Development of a sodium ion secondary battery," Sumitomo Kagaku, vol. 2013, pp. 1-13, 2013.
[20]M. Krengel, A.-L. Hansen, M. Kaus, S. Indris, N. Wolff, L. Kienle, D. Westfal, and W. Bensch, "CuV2S4: A high rate-capacity and stable anode material for sodium-ion batteries," ACS Applied Materials & Interfaces, 2017.
[21]Y. Huang, X. Li, J. Luo, K. Wang, Q. Zhang, Y. Qiu, S. Sun, S. Liu, J. Han, and Y. Huang, "Enhancing Sodium-Ion Storage Behaviors in TiNb2O7 by Mechanical Ball Milling," ACS Applied Materials & Interfaces, vol. 9, pp. 8696-8703, 2017.
[22]D. Su, S. Dou, and G. Wang, "Hierarchical Vanadium Pentoxide Spheres as High‐Performance Anode Materials for Sodium‐Ion Batteries," ChemSusChem, vol. 8, pp. 2877-2882, 2015.
[23]S.-O. Kim and A. Manthiram, "The facile synthesis and enhanced sodium-storage performance of a chemically bonded CuP2/C hybrid anode," Chemical Communications, vol. 52, pp. 4337-4340, 2016.
[24]H. Su, S. Jaffer, and H. Yu, "Transition metal oxides for sodium-ion batteries," Energy Storage Materials, vol. 5, pp. 116-131, 2016.
[25]H. Pan, Y.-S. Hu, and L. Chen, "Room-temperature stationary sodium-ion batteries for large-scale electric energy storage," Energy & Environmental Science, vol. 6, pp. 2338-2360, 2013.
[26]Y. Liu, B. V. Merinov, and W. A. Goddard, "Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals," Proceedings of the National Academy of Sciences, vol. 113, pp. 3735-3739, 2016.
[27]Y. Jiang, M. Hu, D. Zhang, T. Yuan, W. Sun, B. Xu, and M. Yan, "Transition metal oxides for high performance sodium ion battery anodes," Nano Energy, vol. 5, pp. 60-66, 2014.
[28]D. Stevens and J. Dahn, "High capacity anode materials for rechargeable sodium‐ion batteries," Journal of The Electrochemical Society, vol. 147, pp. 1271-1273, 2000.
[29]H. Kim, H. Kim, Z. Ding, M. H. Lee, K. Lim, G. Yoon, and K. Kang, "Recent Progress in Electrode Materials for Sodium‐Ion Batteries," Advanced Energy Materials, 2016.
[30]Y. Zhu, X. Han, Y. Xu, Y. Liu, S. Zheng, K. Xu, L. Hu, and C. Wang, "Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode," ACS nano, vol. 7, pp. 6378-6386, 2013.
[31]Y. Wang, C. Wang, H. Guo, Y. Wang, and Z. Huang, "A nitrogen-doped three-dimensional carbon framework for high performance sodium ion batteries," RSC Advances, vol. 7, pp. 1588-1592, 2017.
[32]S. Komaba, W. Murata, T. Ishikawa, N. Yabuuchi, T. Ozeki, T. Nakayama, A. Ogata, K. Gotoh, and K. Fujiwara, "Electrochemical Na insertion and solid electrolyte interphase for hard‐carbon electrodes and application to Na‐Ion batteries," Advanced Functional Materials, vol. 21, pp. 3859-3867, 2011.
[33]A. Darwiche, C. Marino, M. T. Sougrati, B. Fraisse, L. Stievano, and L. Monconduit, "Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism," Journal of the American Chemical Society, vol. 134, pp. 20805-20811, 2012.
[34]V. L. Chevrier and G. Ceder, "Challenges for Na-ion negative electrodes," Journal of The Electrochemical Society, vol. 158, pp. A1011-A1014, 2011.
[35]Y. Kim, K. H. Ha, S. M. Oh, and K. T. Lee, "High‐Capacity Anode Materials for Sodium‐Ion Batteries," Chemistry–A European Journal, vol. 20, pp. 11980-11992, 2014.
[36]R. S. Kalubarme, A. I. Inamdar, D. Bhange, H. Im, S. W. Gosavi, and C.-J. Park, "Nickel-titanium oxide as a novel anode material for rechargeable sodium-ion batteries," Journal of Materials Chemistry A, vol. 4, pp. 17419-17430, 2016.
[37]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. Tarascon, "Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries," Nature, vol. 407, p. 496, 2000.
[38]J. Hu, H. Li, X. Huang, and L. Chen, "Improve the electrochemical performances of Cr 2 O 3 anode for lithium ion batteries," Solid State Ionics, vol. 177, pp. 2791-2799, 2006.
[39]J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacin, "Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions," Advanced Materials, vol. 22, 2010.
[40]J.-W. Lee, H.-S. Shin, C.-W. Lee, and K.-N. Jung, "Carbon-and Binder-Free NiCo2O4 Nanoneedle Array Electrode for Sodium-Ion Batteries: Electrochemical Performance and Insight into Sodium Storage Reaction," Nanoscale Research Letters, vol. 11, p. 45, 2016.
[41]C. He, S. Wu, N. Zhao, C. Shi, E. Liu, and J. Li, "Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material," ACS Nano, vol. 7, pp. 4459-4469, 2013.
[42]Z. Li, X. Huang, J. Hu, A. Stein, and B. Tang, "Synthesis and electrochemical performance of three-dimensionally ordered macroporous CoCr2O4 as an anode material for lithium ion batteries," Electrochimica Acta, vol. 247, pp. 1-11, 2017.
[43]R. Alcántara, M. Jaraba, P. Lavela, and J. Tirado, "NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries," Chemistry of Materials, vol. 14, pp. 2847-2848, 2002.

2.5 References
[1]M. Winter and R. J. Brodd, "What Are Batteries, Fuel Cells, and Supercapacitors?," Chemical Reviews, vol. 104, pp. 4245-4270, 2004/10/01 2004.
[2]F. Yang, D. Wang, Y. Zhao, K.-L. Tsui, and S. J. Bae, "A study of the relationship between coulombic efficiency and capacity degradation of commercial lithium-ion batteries," Energy, vol. 145, pp. 486-495, 2018.
[3]I. V. B. Maggay, L. M. Z. De Juan, M. T. Nguyen, T. Yonezawa, B. Chang, T. Chan, and W.-R. Liu, "ZnV2O¬4: A potential anode material for sodium-ion batteries," Journal of the Taiwan Institute of Chemical Engineers, vol. 88, pp. 161-168, 2018.
[4]J.-Y. Hwang, S.-T. Myung, and Y.-K. Sun, "Sodium-ion batteries: present and future," Chemical Society Reviews, vol. 46, pp. 3529-3614, 2017.
[5]J. Yang, Y.-X. Wang, S.-L. Chou, R. Zhang, Y. Xu, J. Fan, W.-x. Zhang, H. K. Liu, D. Zhao, and S. X. Dou, "Yolk-shell silicon-mesoporous carbon anode with compact solid electrolyte interphase film for superior lithium-ion batteries," Nano Energy, vol. 18, pp. 133-142, 2015.
[6]R. Alcántara, M. Jaraba, P. Lavela, and J. Tirado, "NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries," Chemistry of Materials, vol. 14, pp. 2847-2848, 2002.
[7]G. Longoni, "Investigation of Sodium-ion Battery Materials," 2017.
[8]K. Cao, T. Jin, L. Yang, and L. Jiao, "Recent progress in conversion reaction metal oxide anodes for Li-ion batteries," Materials Chemistry Frontiers, vol. 1, pp. 2213-2242, 2017.
[9]Y. G. Guo, J. S. Hu, and L. J. Wan, "Nanostructured materials for electrochemical energy conversion and storage devices," Advanced Materials, vol. 20, pp. 2878-2887, 2008.
[10]J. Molenda, "Material problems and prospects of Li-ion batteries for vehicles applications," Functional Materials Letters, vol. 4, pp. 107-112, 2011.
[11]M. B. Pinson and M. Z. Bazant, "Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction," Journal of the Electrochemical Society, vol. 160, pp. A243-A250, 2013.
[12]S. Roberts and E. Kendrick, "The re-emergence of sodium ion batteries: testing, processing, and manufacturability," Nanotechnology, science and applications, vol. 11, p. 23, 2018.
[13]N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, "Research development on sodium-ion batteries," Chemical reviews, vol. 114, pp. 11636-11682, 2014.
[14]R. S. Carmichael, Practical Handbook of Physical Properties of Rocks and Minerals (1988): CRC press, 2017.
[15]Y. Xu, Y. Zhu, Y. Liu, and C. Wang, "Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries," Advanced Energy Materials, vol. 3, pp. 128-133, 2013.
[16]D. Stevens and J. Dahn, "High capacity anode materials for rechargeable sodium‐ion batteries," Journal of The Electrochemical Society, vol. 147, pp. 1271-1273, 2000.
[17]M. D. Farrington, "Proposed amendments to UN ST/SG/AC. 10/11: transport of dangerous goods—lithium batteries," Journal of power sources, vol. 80, pp. 278-285, 1999.
[18]M. D. Farrington, "Safety of lithium batteries in transportation," Journal of Power Sources, vol. 96, pp. 260-265, 2001.
[19]H. Pan, Y.-S. Hu, and L. Chen, "Room-temperature stationary sodium-ion batteries for large-scale electric energy storage," Energy & Environmental Science, vol. 6, pp. 2338-2360, 2013.
[20]Z. Dai, U. Mani, H. T. Tan, and Q. Yan, "Advanced Cathode Materials for Sodium‐Ion Batteries: What Determines Our Choices?," Small Methods, vol. 1, p. 1700098, 2017.
[21]L. Mu, S. Xu, Y. Li, Y. S. Hu, H. Li, L. Chen, and X. Huang, "Prototype Sodium‐Ion Batteries Using an Air‐Stable and Co/Ni‐Free O3‐Layered Metal Oxide Cathode," Advanced materials, vol. 27, pp. 6928-6933, 2015.
[22]S.-M. Oh, S.-T. Myung, C. S. Yoon, J. Lu, J. Hassoun, B. Scrosati, K. Amine, and Y.-K. Sun, "Advanced Na [Ni0.25Fe0.5Mn0.25]O2/C–Fe3O4 sodium-ion batteries using EMS electrolyte for energy storage," Nano Letters, vol. 14, pp. 1620-1626, 2014.
[23]Y. Li, Z. Yang, S. Xu, L. Mu, L. Gu, Y. S. Hu, H. Li, and L. Chen, "Air‐Stable Copper‐Based P2‐Na7/9Cu2/9Fe1/9Mn2/3O2 as a New Positive Electrode Material for Sodium‐Ion Batteries," Advanced Science, vol. 2, p. 1500031, 2015.
[24]M. H. Han, E. Gonzalo, G. Singh, and T. Rojo, "A comprehensive review of sodium layered oxides: powerful cathodes for Na-ion batteries," Energy & Environmental Science, vol. 8, pp. 81-102, 2015.
[25]J. Ding, Y. Zhou, Q. Sun, X. Yu, X. Yang, and Z. Fu, "Electrochemical properties of P2-phase Na0.74CoO2 compounds as cathode material for rechargeable sodium-ion batteries," Electrochimica Acta, vol. 87, pp. 388-393, 2013.
[26]A. K. Rai, L. T. Anh, J. Gim, V. Mathew, and J. Kim, "Electrochemical properties of NaxCoO2(x~ 0.71) cathode for rechargeable sodium-ion batteries," Ceramics International, vol. 40, pp. 2411-2417, 2014.
[27]N. Ortiz-Vitoriano, N. E. Drewett, E. Gonzalo, and T. Rojo, "High performance manganese-based layered oxide cathodes: overcoming the challenges of sodium ion batteries," Energy & Environmental Science, vol. 10, pp. 1051-1074, 2017.
[28]D. Su, C. Wang, H. j. Ahn, and G. Wang, "Single Crystalline Na0.7MnO2 Nanoplates as Cathode Materials for Sodium‐Ion Batteries with Enhanced Performance," Chemistry–A European Journal, vol. 19, pp. 10884-10889, 2013.
[29]J. Zhao, L. Zhao, N. Dimov, S. Okada, and T. Nishida, "Electrochemical and thermal properties of α-NaFeO2 cathode for Na-ion batteries," Journal of The Electrochemical Society, vol. 160, pp. A3077-A3081, 2013.
[30]E. Lee, D. E. Brown, E. E. Alp, Y. Ren, J. Lu, J.-J. Woo, and C. S. Johnson, "New insights into the performance degradation of Fe-based layered oxides in sodium-ion batteries: Instability of Fe3+/Fe4+ redox in α-NaFeO2," Chemistry of Materials, vol. 27, pp. 6755-6764, 2015.
[31]K. Itaya, I. Uchida, and V. D. Neff, "Electrochemistry of polynuclear transition metal cyanides: Prussian blue and its analogues," Accounts of Chemical Research, vol. 19, pp. 162-168, 1986.
[32]J. Qian, C. Wu, Y. Cao, Z. Ma, Y. Huang, X. Ai, and H. Yang, "Prussian Blue Cathode Materials for Sodium‐Ion Batteries and Other Ion Batteries," Advanced Energy Materials, p. 1702619, 2018.
[33]A. Paolella, C. Faure, V. Timoshevskii, S. Marras, G. Bertoni, A. Guerfi, A. Vijh, M. Armand, and K. Zaghib, "A review on hexacyanoferrate-based materials for energy storage and smart windows: challenges and perspectives," Journal of Materials Chemistry A, vol. 5, pp. 18919-18932, 2017.
[34]H. Buser, D. Schwarzenbach, W. Petter, and A. Ludi, "The crystal structure of Prussian blue: Fe4[Fe(CN)6]3.xH2O," Inorganic Chemistry, vol. 16, pp. 2704-2710, 1977.
[35]M. Takachi, Y. Fukuzumi, and Y. Moritomo, "Na+ diffusion kinetics in nanoporous metal-hexacyanoferrates," Dalton Transactions, vol. 45, pp. 458-461, 2016.
[36]T. Shibata and Y. Moritomo, "Ultrafast cation intercalation in nanoporous nickel hexacyanoferrate," Chemical Communications, vol. 50, pp. 12941-12943, 2014.
[37]Y. You, X.-L. Wu, Y.-X. Yin, and Y.-G. Guo, "High-quality Prussian blue crystals as superior cathode materials for room-temperature sodium-ion batteries," Energy & Environmental Science, vol. 7, pp. 1643-1647, 2014.
[38]D. Yang, J. Xu, X.-Z. Liao, H. Wang, Y.-S. He, and Z.-F. Ma, "Prussian blue without coordinated water as a superior cathode for sodium-ion batteries," Chemical Communications, vol. 51, pp. 8181-8184, 2015.
[39]Q. Ni, Y. Bai, F. Wu, and C. Wu, "Polyanion‐Type Electrode Materials for Sodium‐Ion Batteries," Advanced Science, vol. 4, p. 1600275, 2017.
[40]K. Nakamoto, R. Sakamoto, M. Ito, A. Kitajou, and S. Okada, "Effect of concentrated electrolyte on aqueous sodium-ion battery with sodium manganese hexacyanoferrate cathode," Electrochemistry, vol. 85, pp. 179-185, 2017.
[41]X. Zhang, J. Ma, P. Hu, B. Chen, C. Lu, X. Zhou, P. Han, L. Chen, and G. Cui, "An insight into failure mechanism of NASICON-structured Na3V2(PO4)3 in hybrid aqueous rechargeable battery," Journal of Energy Chemistry, 2018.
[42]C. Zhu, K. Song, P. A. van Aken, J. Maier, and Y. Yu, "Carbon-coated Na3V2(PO4)3 embedded in porous carbon matrix: an ultrafast Na-storage cathode with the potential of outperforming Li cathodes," Nano Letters, vol. 14, pp. 2175-2180, 2014.
[43]Q. Zheng, H. Yi, W. Liu, X. Li, and H. Zhang, "Improving the electrochemical performance of Na3V2(PO4)3 cathode in sodium ion batteries through Ce/V substitution based on rational design and synthesis optimization," Electrochimica Acta, vol. 238, pp. 288-297, 2017.
[44]F. Lalère, V. Seznec, M. Courty, R. David, J. Chotard, and C. Masquelier, "Improving the energy density of Na3V2(PO4)3-based positive electrodes through V/Al substitution," Journal of Materials Chemistry A, vol. 3, pp. 16198-16205, 2015.
[45]H. Li, X. Yu, Y. Bai, F. Wu, C. Wu, L.-Y. Liu, and X.-Q. Yang, "Effects of Mg doping on the remarkably enhanced electrochemical performance of Na3V2(PO4)3 cathode materials for sodium ion batteries," Journal of Materials Chemistry A, vol. 3, pp. 9578-9586, 2015.
[46]R. Klee, P. Lavela, M. Aragón, R. Alcántara, and J. Tirado, "Enhanced high-rate performance of manganese substituted Na3V2(PO4)3/C as cathode for sodium-ion batteries," Journal of Power Sources, vol. 313, pp. 73-80, 2016.
[47]H. Li, Y. Bai, F. Wu, Q. Ni, and C. Wu, "Na-Rich Na3+xV2–xNix(PO4)3/C for Sodium Ion Batteries: Controlling the Doping Site and Improving the Electrochemical Performances," ACS Applied Materials & Interfaces, vol. 8, pp. 27779-27787, 2016.
[48]Q. Zheng, X. Ni, L. Lin, H. Yi, X. Han, X. Li, X. Bao, and H. Zhang, "Towards enhanced sodium storage by investigation of the Li ion doping and rearrangement mechanism in Na3V2(PO4)3 for sodium ion batteries," Journal of Materials Chemistry A, vol. 6, pp. 4209-4218, 2018.
[49]R. Muruganantham, Y.-T. Chiu, C.-C. Yang, C.-W. Wang, and W.-R. Liu, "An Efficient Evaluation of F-doped Polyanion Cathode Materials with Long Cycle Life for Na-Ion Batteries Applications," Scientific Reports, vol. 7, p. 14808, 2017.
[50]Y. Liu, B. V. Merinov, and W. A. Goddard, "Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals," Proceedings of the National Academy of Sciences, vol. 113, pp. 3735-3739, 2016.
[51]M. M. Doeff, Y. Ma, S. J. Visco, and L. C. De Jonghe, "Electrochemical insertion of sodium into carbon," Journal of The Electrochemical Society, vol. 140, pp. L169-L170, 1993.
[52]E. Irisarri, A. Ponrouch, and M. Palacin, "Hard carbon negative electrode materials for sodium-ion batteries," Journal of The Electrochemical Society, vol. 162, pp. A2476-A2482, 2015.
[53]C. Bommier, T. W. Surta, M. Dolgos, and X. Ji, "New mechanistic insights on Na-ion storage in nongraphitizable carbon," Nano Letters, vol. 15, pp. 5888-5892, 2015.
[54]K. Tang, L. Fu, R. J. White, L. Yu, M. M. Titirici, M. Antonietti, and J. Maier, "Hollow carbon nanospheres with superior rate capability for sodium‐based batteries," Advanced Energy Materials, vol. 2, pp. 873-877, 2012.
[55]J. Xu, M. Wang, N. P. Wickramaratne, M. Jaroniec, S. Dou, and L. Dai, "High‐Performance Sodium Ion Batteries Based on a 3D Anode from Nitrogen‐Doped Graphene Foams," Advanced materials, vol. 27, pp. 2042-2048, 2015.
[56]H. Hou, C. E. Banks, M. Jing, Y. Zhang, and X. Ji, "Carbon Quantum Dots and Their Derivative 3D Porous Carbon Frameworks for Sodium‐Ion Batteries with Ultralong Cycle Life," Advanced Materials, vol. 27, pp. 7861-7866, 2015.
[57]X. Wang, G. Li, F. M. Hassan, J. Li, X. Fan, R. Batmaz, X. Xiao, and Z. Chen, "Sulfur covalently bonded graphene with large capacity and high rate for high-performance sodium-ion batteries anodes," Nano Energy, vol. 15, pp. 746-754, 2015.
[58]T. Sun, Z. j. Li, H. g. Wang, D. Bao, F. l. Meng, and X. b. Zhang, "A Biodegradable Polydopamine‐Derived Electrode Material for High‐Capacity and Long‐Life Lithium‐Ion and Sodium‐Ion Batteries," Angewandte Chemie International Edition, vol. 55, pp. 10662-10666, 2016.
[59]J. Ye, J. Zang, Z. Tian, M. Zheng, and Q. Dong, "Sulfur and nitrogen co-doped hollow carbon spheres for sodium-ion batteries with superior cyclic and rate performance," Journal of Materials Chemistry A, vol. 4, pp. 13223-13227, 2016.
[60]B. Cao, H. Liu, B. Xu, Y. Lei, X. Chen, and H. Song, "Mesoporous soft carbon as an anode material for sodium ion batteries with superior rate and cycling performance," Journal of Materials Chemistry A, vol. 4, pp. 6472-6478, 2016.
[61]L. Yu, H. Song, Y. Li, Y. Chen, X. Chen, J. Zhou, Z. Ma, X. Wan, P. Tian, and J. Wu, "Rod-like ordered mesoporous carbons with various lengths as anode materials for sodium ion battery," Electrochimica Acta, vol. 218, pp. 285-293, 2016.
[62]X. Dou, C. Geng, D. Buchholz, and S. Passerini, "Research Update: Hard carbon with closed pores from pectin-free apple pomace waste for Na-ion batteries," APL Materials, vol. 6, p. 047501, 2018.
[63]Y. Yan, Y. X. Yin, Y. G. Guo, and L. J. Wan, "A Sandwich‐Like Hierarchically Porous Carbon/Graphene Composite as a High‐Performance Anode Material for Sodium‐Ion Batteries," Advanced Energy Materials, vol. 4, p. 1301584, 2014.
[64]H. Hou, L. Shao, Y. Zhang, G. Zou, J. Chen, and X. Ji, "Large‐Area Carbon Nanosheets Doped with Phosphorus: A High‐Performance Anode Material for Sodium‐Ion Batteries," Advanced Science, vol. 4, p. 1600243, 2017.
[65]R. Sun, Q. Wei, Q. Li, W. Luo, Q. An, J. Sheng, D. Wang, W. Chen, and L. Mai, "Vanadium sulfide on reduced graphene oxide layer as a promising anode for sodium ion battery," ACS Applied Materials & Interfaces, vol. 7, pp. 20902-20908, 2015.
[66]D. Wu, X. Li, B. Xu, N. Twu, L. Liu, and G. Ceder, "NaTiO2: a layered anode material for sodium-ion batteries," Energy & Environmental Science, vol. 8, pp. 195-202, 2015.
[67]A. Rudola, K. Saravanan, C. W. Mason, and P. Balaya, "Na2Ti3O7: an intercalation based anode for sodium-ion battery applications," Journal of Materials Chemistry A, vol. 1, pp. 2653-2662, 2013.
[68]Y. Huang, X. Li, J. Luo, K. Wang, Q. Zhang, Y. Qiu, S. Sun, S. Liu, J. Han, and Y. Huang, "Enhancing sodium-ion storage behaviors in TiNb2O7 by mechanical ball milling," ACS Applied Materials & Interfaces, vol. 9, pp. 8696-8703, 2017.
[69]Y. Wu, P. Nie, L. Wu, H. Dou, and X. Zhang, "2D MXene/SnS2 composites as high-performance anodes for sodium ion batteries," Chemical Engineering Journal, vol. 334, pp. 932-938, 2018.
[70]X. Xie, K. Kretschmer, B. Anasori, B. Sun, G. Wang, and Y. Gogotsi, "Porous Ti3C2T x MXene for Ultrahigh-Rate Sodium-Ion Storage with Long Cycle Life," ACS Applied Nano Materials, vol. 1, pp. 505-511, 2018.
[71]V. Natu, M. Clites, E. Pomerantseva, and M. W. Barsoum, "Mesoporous MXene powders synthesized by acid induced crumpling and their use as Na-ion battery anodes," Materials Research Letters, vol. 6, pp. 230-235, 2018.
[72]K. Zhu, S. Guo, J. Yi, S. Bai, Y. Wei, G. Chen, and H. Zhou, "A new layered sodium molybdenum oxide anode for full intercalation-type sodium-ion batteries," Journal of Materials Chemistry A, vol. 3, pp. 22012-22016, 2015.
[73]S. Li, X. Cao, C. N. Schmidt, Q. Xu, E. Uchaker, Y. Pei, and G. Cao, "TiNb2O7/graphene composites as high-rate anode materials for lithium/sodium ion batteries," Journal of Materials Chemistry A, vol. 4, pp. 4242-4251, 2016.
[74]M. R. Panda, Q. Bao, and S. Mitra, "MoTe2, A novel anode material for sodium ion battery," in AIP Conference Proceedings, 2018, p. 140078.
[75]C. Chen, Y. Wen, X. Hu, X. Ji, M. Yan, L. Mai, P. Hu, B. Shan, and Y. Huang, "Na+ intercalation pseudocapacitance in graphene-coupled titanium oxide enabling ultra-fast sodium storage and long-term cycling," Nature Communications, vol. 6, p. 6929, 2015.
[76]C. J. Pelliccione, E. V. Timofeeva, and C. U. Segre, "Potential-resolved in situ X-ray absorption spectroscopy study of Sn and SnO2 nanomaterial anodes for lithium-ion batteries," The Journal of Physical Chemistry C, vol. 120, pp. 5331-5339, 2016.
[77]S. Chou, "Low Cost Anode Materials for Sodium-Ion Battery," in Meeting Abstracts, 2016, pp. 1102-1102.
[78]H. Ying and W. Q. Han, "Metallic Sn‐Based Anode Materials: Application in High‐Performance Lithium‐Ion and Sodium‐Ion Batteries," Advanced Science, vol. 4, p. 1700298, 2017.
[79]Z. Li, J. Ding, and D. Mitlin, "Tin and tin compounds for sodium ion battery anodes: phase transformations and performance," Accounts of Chemical Research, vol. 48, pp. 1657-1665, 2015.
[80]L. D. Ellis, T. D. Hatchard, and M. N. Obrovac, "Reversible insertion of sodium in tin," Journal of the Electrochemical Society, vol. 159, pp. A1801-A1805, 2012.
[81]V. Chevrier and G. Ceder, "Challenges for Na-ion negative electrodes," Journal of The Electrochemical Society, vol. 158, pp. A1011-A1014, 2011.
[82]F. Zhang, J. Zhu, D. Zhang, U. Schwingenschlögl, and H. N. Alshareef, "Two-dimensional SnO anodes with a tunable number of atomic layers for sodium ion batteries," Nano Letters, vol. 17, pp. 1302-1311, 2017.
[83]T. Zhou, W. K. Pang, C. Zhang, J. Yang, Z. Chen, H. K. Liu, and Z. Guo, "Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS," Acs Nano, vol. 8, pp. 8323-8333, 2014.
[84]P. K. Dutta, U. K. Sen, and S. Mitra, "Excellent electrochemical performance of tin monosulphide (SnS) as a sodium-ion battery anode," RSC Advances, vol. 4, pp. 43155-43159, 2014.
[85]Y. Zhang, P. Zhu, L. Huang, J. Xie, S. Zhang, G. Cao, and X. Zhao, "Few‐Layered SnS2 on Few‐Layered Reduced Graphene Oxide as Na‐Ion Battery Anode with Ultralong Cycle Life and Superior Rate Capability," Advanced Functional Materials, vol. 25, pp. 481-489, 2015.
[86]Y. Liu, H. Kang, L. Jiao, C. Chen, K. Cao, Y. Wang, and H. Yuan, "Exfoliated-SnS2 restacked on graphene as a high-capacity, high-rate, and long-cycle life anode for sodium ion batteries," Nanoscale, vol. 7, pp. 1325-1332, 2015.
[87]B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y. S. Meng, T. Wang, and J. Y. Lee, "Layered SnS2‐Reduced Graphene Oxide Composite–A High‐Capacity, High‐Rate, and Long‐Cycle Life Sodium‐Ion Battery Anode Material," Advanced Materials, vol. 26, pp. 3854-3859, 2014.
[88]Y. Kim, Y. Kim, Y. Park, Y. N. Jo, Y.-J. Kim, N.-S. Choi, and K. T. Lee, "SnSe alloy as a promising anode material for Na-ion batteries," Chemical Communications, vol. 51, pp. 50-53, 2015.
[89]Y. Kim, Y. Kim, A. Choi, S. Woo, D. Mok, N. S. Choi, Y. S. Jung, J. H. Ryu, S. M. Oh, and K. T. Lee, "Tin Phosphide as a Promising Anode Material for Na‐Ion Batteries," Advanced materials, vol. 26, pp. 4139-4144, 2014.
[90]J. Qian, Y. Xiong, Y. Cao, X. Ai, and H. Yang, "Synergistic Na-storage reactions in Sn4P3 as a high-capacity, cycle-stable anode of Na-ion batteries," Nano Letters, vol. 14, pp. 1865-1869, 2014.
[91]P. K. Allan, J. M. Griffin, A. Darwiche, O. J. Borkiewicz, K. M. Wiaderek, K. W. Chapman, A. J. Morris, P. J. Chupas, L. Monconduit, and C. P. Grey, "Tracking Sodium-Antimonide phase transformations in Sodium-ion anodes: Insights from operando pair distribution function analysis and solid-state NMR spectroscopy," Journal of the American Chemical Society, vol. 138, pp. 2352-2365, 2016.
[92]A. Darwiche, C. Marino, M. T. Sougrati, B. Fraisse, L. Stievano, and L. Monconduit, "Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism," Journal of the American Chemical Society, vol. 134, pp. 20805-20811, 2012.
[93]H. Hou, M. Jing, Z. Huang, Y. Yang, Y. Zhang, J. Chen, Z. Wu, and X. Ji, "One-dimensional rod-like Sb2S3-based anode for high-performance sodium-ion batteries," ACS Applied Materials & Interfaces, vol. 7, pp. 19362-19369, 2015.
[94]K. Ramakrishnan, C. Nithya, B. Kundoly Purushothaman, N. Kumar, and S. Gopukumar, "Sb2O4@ rGO Nanocomposite Anode for High Performance Sodium-Ion Batteries," ACS Sustainable Chemistry & Engineering, vol. 5, pp. 5090-5098, 2017.
[95]W. Li, M. Zhou, H. Li, K. Wang, S. Cheng, and K. Jiang, "Carbon-coated Sb2Se3 composite as anode material for sodium ion batteries," Electrochemistry Communications, vol. 60, pp. 74-77, 2015.
[96]M. Lao, Y. Zhang, W. Luo, Q. Yan, W. Sun, and S. X. Dou, "Alloy‐Based Anode Materials toward Advanced Sodium‐Ion Batteries," Advanced Materials, vol. 29, p. 1700622, 2017.
[97]W.-J. Li, S.-L. Chou, J.-Z. Wang, H.-K. Liu, and S.-X. Dou, "Simply mixed commercial red phosphorus and carbon nanotube composite with exceptionally reversible sodium-ion storage," Nano Letters, vol. 13, pp. 5480-5484, 2013.
[98]G.-L. Xu, Z. Chen, G.-M. Zhong, Y. Liu, Y. Yang, T. Ma, Y. Ren, X. Zuo, X.-H. Wu, and X. Zhang, "Nanostructured black phosphorus/Ketjenblack–multiwalled carbon nanotubes composite as high performance anode material for sodium-ion batteries," Nano Letters, vol. 16, pp. 3955-3965, 2016.
[99]M. Dahbi, N. Yabuuchi, M. Fukunishi, K. Kubota, K. Chihara, K. Tokiwa, X.-f. Yu, H. Ushiyama, K. Yamashita, and J.-Y. Son, "Black phosphorus as a high-capacity, high-capability negative electrode for sodium-ion batteries: investigation of the electrode/electrolyte interface," Chemistry of Materials, vol. 28, pp. 1625-1635, 2016.
[100]D. Lan, W. Wang, and Q. Li, "Cu4SnP10 as a promising anode material for sodium ion batteries," Nano Energy, vol. 39, pp. 506-512, 2017.
[101]S.-O. Kim and A. Manthiram, "Phosphorus-rich CuP2 embedded in carbon matrix as a high-performance anode for lithium-ion batteries," ACS Applied Materials & Interfaces, vol. 9, pp. 16221-16227, 2017.
[102]W.-J. Li, Q.-R. Yang, S.-L. Chou, J.-Z. Wang, and H.-K. Liu, "Cobalt phosphide as a new anode material for sodium storage," Journal of Power Sources, vol. 294, pp. 627-632, 2015.
[103]M. Walter, M. I. Bodnarchuk, K. V. Kravchyk, and M. V. Kovalenko, "Evaluation of metal phosphide nanocrystals as anode materials for Na-ion batteries," CHIMIA International Journal for Chemistry, vol. 69, pp. 724-728, 2015.
[104]J. Fullenwarth, A. Darwiche, A. Soares, B. Donnadieu, and L. Monconduit, "NiP 3: a promising negative electrode for Li-and Na-ion batteries," Journal of Materials Chemistry A, vol. 2, pp. 2050-2059, 2014.
[105]J. W. Wang, X. H. Liu, S. X. Mao, and J. Y. Huang, "Microstructural evolution of tin nanoparticles during in situ sodium insertion and extraction," Nano Letters, vol. 12, pp. 5897-5902, 2012.
[106]H. Hou, M. Jing, Y. Yang, Y. Zhang, W. Song, X. Yang, J. Chen, Q. Chen, and X. Ji, "Antimony nanoparticles anchored on interconnected carbon nanofibers networks as advanced anode material for sodium-ion batteries," Journal of Power Sources, vol. 284, pp. 227-235, 2015.
[107]L. Wu, H. Lu, L. Xiao, X. Ai, H. Yang, and Y. Cao, "Electrochemical properties and morphological evolution of pitaya-like Sb@ C microspheres as high-performance anode for sodium ion batteries," Journal of Materials Chemistry A, vol. 3, pp. 5708-5713, 2015.
[108]Y. Kim, Y. Park, A. Choi, N. S. Choi, J. Kim, J. Lee, J. H. Ryu, S. M. Oh, and K. T. Lee, "An amorphous red phosphorus/carbon composite as a promising anode material for sodium ion batteries," Advanced Materials, vol. 25, pp. 3045-3049, 2013.
[109]Y. Kim, K. H. Ha, S. M. Oh, and K. T. Lee, "High‐Capacity Anode Materials for Sodium‐Ion Batteries," Chemistry–A European Journal, vol. 20, pp. 11980-11992, 2014.
[110]R. S. Kalubarme, A. I. Inamdar, D. Bhange, H. Im, S. W. Gosavi, and C.-J. Park, "Nickel-titanium oxide as a novel anode material for rechargeable sodium-ion batteries," Journal of Materials Chemistry A, vol. 4, pp. 17419-17430, 2016.
[111]X. Ge, Z. Li, C. Wang, and L. Yin, "Metal–organic frameworks derived porous core/shell structured ZnO/ZnCo2O4/C hybrids as anodes for high-performance lithium-ion battery," ACS Applied Materials & Interfaces, vol. 7, pp. 26633-26642, 2015.
[112]I. V. B. Maggay, L. M. Z. De Juan, J.-S. Lu, M. T. Nguyen, T. Yonezawa, T.-S. Chan, and W.-R. Liu, "Electrochemical properties of novel FeV2O4 as an anode for Na-ion batteries," Scientific Reports, vol. 8, p. 8839, 2018.
[113]S. Komaba, T. Mikumo, N. Yabuuchi, A. Ogata, H. Yoshida, and Y. Yamada, "Electrochemical insertion of Li and Na ions into nanocrystalline Fe3O4 and α‐Fe2O3 for rechargeable batteries," Journal of The Electrochemical Society, vol. 157, pp. A60-A65, 2010.
[114]Z. Jian, B. Zhao, P. Liu, F. Li, M. Zheng, M. Chen, Y. Shi, and H. Zhou, " Fe2O3 nanocrystals anchored onto graphene nanosheets as the anode material for low-cost sodium-ion batteries," Chemical Communications, vol. 50, pp. 1215-1217, 2014.
[115]Z. Zhang, X. Zhao, and J. Li, "Facile Synthesis of Nanostructured MnO2 as Anode Materials for Sodium‐Ion Batteries," ChemNanoMat, vol. 2, pp. 196-200, 2016.
[116]F. Li, J. Ma, H. Ren, H. Wang, and G. Wang, "Fabrication of MnO nanowires implanted in graphene as an advanced anode material for sodium-ion batteries," Materials Letters, vol. 206, pp. 132-135, 2017.
[117]G. Longoni, M. Fiore, J.-H. Kim, Y. H. Jung, D. K. Kim, C. M. Mari, and R. Ruffo, "Co3O4 negative electrode material for rechargeable sodium ion batteries: An investigation of conversion reaction mechanism and morphology-performances correlations," Journal of Power Sources, vol. 332, pp. 42-50, 2016.
[118]H. Kang, Y. Liu, K. Cao, Y. Zhao, L. Jiao, Y. Wang, and H. Yuan, "Update on anode materials for Na-ion batteries," Journal of Materials Chemistry A, vol. 3, pp. 17899-17913, 2015.
[119]Y. Lu, N. Zhang, Q. Zhao, J. Liang, and J. Chen, "Micro-nanostructured CuO/C spheres as high-performance anode materials for Na-ion batteries," Nanoscale, vol. 7, pp. 2770-2776, 2015.
[120]Y. Jiang, M. Hu, D. Zhang, T. Yuan, W. Sun, B. Xu, and M. Yan, "Transition metal oxides for high performance sodium ion battery anodes," Nano Energy, vol. 5, pp. 60-66, 2014.
[121]J. Park, J.-S. Kim, J.-W. Park, T.-H. Nam, K.-W. Kim, J.-H. Ahn, G. Wang, and H.-J. Ahn, "Discharge mechanism of MoS2 for sodium ion battery: Electrochemical measurements and characterization," Electrochimica Acta, vol. 92, pp. 427-432, 2013.
[122]C. Zhu, X. Mu, P. A. van Aken, Y. Yu, and J. Maier, "Single‐layered ultrasmall nanoplates of MoS2 embedded in carbon nanofibers with excellent electrochemical performance for lithium and sodium storage," Angewandte Chemie, vol. 126, pp. 2184-2188, 2014.
[123]Y.-X. Wang, K. H. Seng, S.-L. Chou, J.-Z. Wang, Z. Guo, D. Wexler, H.-K. Liu, and S.-X. Dou, "Reversible sodium storage via conversion reaction of a MoS2–C composite," Chemical Communications, vol. 50, pp. 10730-10733, 2014.
[124]Y. Liu, X. He, D. Hanlon, A. Harvey, J. N. Coleman, and Y. Li, "Liquid phase exfoliated MoS2 nanosheets percolated with carbon nanotubes for high volumetric/areal capacity sodium-ion batteries," ACS Nano, vol. 10, pp. 8821-8828, 2016.
[125]P. Zhang, F. Qin, L. Zou, M. Wang, K. Zhang, Y. Lai, and J. Li, "Few-layered MoS2/C with expanding d-spacing as a high-performance anode for sodium-ion batteries," Nanoscale, vol. 9, pp. 12189-12195, 2017.
[126]R. Wang, S. Gao, K. Wang, M. Zhou, S. Cheng, and K. Jiang, "MoS2@ rGO Nanoflakes as High Performance Anode Materials in Sodium Ion Batteries," Scientific Reports, vol. 7, p. 7963, 2017.
[127]D. Su, S. Dou, and G. Wang, "WS2@ graphene nanocomposites as anode materials for Na-ion batteries with enhanced electrochemical performances," Chemical Communications, vol. 50, pp. 4192-4195, 2014.
[128]Y. Liu, N. Zhang, H. Kang, M. Shang, L. Jiao, and J. Chen, "WS2 Nanowires as a High‐Performance Anode for Sodium‐Ion Batteries," Chemistry–A European Journal, vol. 21, pp. 11878-11884, 2015.
[129]T. Wang, P. Hu, C. Zhang, H. Du, Z. Zhang, X. Wang, S. Chen, J. Xiong, and G. Cui, "Nickel disulfide–graphene nanosheets composites with improved electrochemical performance for sodium ion battery," ACS Applied Materials & Interfaces, vol. 8, pp. 7811-7817, 2016.
[130]K. Zhu, G. Liu, Y. Wang, J. Liu, S. Li, L. Yang, S. Liu, H. Wang, and T. Xie, "Metal-Organic Frameworks derived novel hierarchical durian-like nickel sulfide (NiS2) as an anode material for high-performance sodium-ion batteries," Materials Letters, vol. 197, pp. 180-183, 2017.
[131]M. Walter, T. Zünd, and M. V. Kovalenko, "Pyrite (FeS2) nanocrystals as inexpensive high-performance lithium-ion cathode and sodium-ion anode materials," Nanoscale, vol. 7, pp. 9158-9163, 2015.
[132]C. Shang, S. Dong, S. Zhang, P. Hu, C. Zhang, and G. Cui, "A Ni3S2-PEDOT monolithic electrode for sodium batteries," Electrochemistry Communications, vol. 50, pp. 24-27, 2015.
[133]A. Feltz and J. Töpfer, "Investigations on electronically conducting oxide systems XXVI. Preparation and properties of Ni6MnO8 and NiMnO3-δ(δ≈ 0.02)," Journal of Alloys and Compounds, vol. 196, pp. 75-79, 1993.
[134]M. Krengel, A.-L. Hansen, M. Kaus, S. Indris, N. Wolff, L. Kienle, D. Westfal, and W. Bensch, "CuV2S4: A high rate-capacity and stable anode material for sodium-ion batteries," ACS Applied Materials & Interfaces, 2017.
[135]J.-W. Lee, H.-S. Shin, C.-W. Lee, and K.-N. Jung, "Carbon-and Binder-Free NiCo2O4 Nanoneedle Array Electrode for Sodium-Ion Batteries: Electrochemical Performance and Insight into Sodium Storage Reaction," Nanoscale Research Letters, vol. 11, p. 45, 2016.
[136]Y. Liu, N. Zhang, C. Yu, L. Jiao, and J. Chen, "MnFe2O4@C nanofibers as high-performance anode for sodium-ion batteries," Nano Letters, vol. 16, pp. 3321-3328, 2016.
[137]M. Krengel, P. Adelhelm, F. Klein, and W. Bensch, "FeV2S4 as a high capacity electrode material for sodium-ion batteries," Chemical Communications, vol. 51, pp. 13500-13503, 2015.
[138]Z. Zhang, Z. Li, and L. Yin, "Hollow prism NiCo2S4 linked with interconnected reduced graphene oxide as a high performance anode material for sodium and lithium ion batteries," New Journal of Chemistry, vol. 42, pp. 1467-1476, 2018.
[139]B. Liu, D. Kong, Y. Wang, Y. Von Lim, S. Huang, and H. Y. Yang, "Three-Dimensional Hierarchical NiCo2S4@ MoS2 Heterostructure Arrays for High Performance Sodium Ion Battery," FlatChem, 2018.
[140]J. Chen, Q. Ru, Y. Mo, S. Hu, and X. Hou, "Design and synthesis of hollow NiCo2O4 nanoboxes as anodes for lithium-ion and sodium-ion batteries," Physical Chemistry Chemical Physics, vol. 18, pp. 18949-18957, 2016.
[141]X. Luo, X. Zhang, L. Chen, L. Li, G. Zhu, G. Chen, D. Yan, H. Xu, and A. Yu, "Mesoporous ZnMn2O4 microtubules derived from a biomorphic strategy for high performance lithium/sodium ion batteries," ACS Applied Materials & Interfaces, 2018.
[142]B. C. Sekhar, P. Packiyalakshmi, and N. Kalaiselvi, "Custom designed ZnMn2O4/nitrogen doped graphene composite anode validated for sodium ion battery application," RSC Advances, vol. 7, pp. 20057-20061, 2017.
[143]Q. Ru, D. Zhao, L. Guo, S. Hu, and X. Hou, "Three-dimensional rose-like ZnCo2O4 as a binder-free anode for sodium ion batteries," Journal of Materials Science: Materials in Electronics, vol. 28, pp. 15451-15456, 2017.
[144]X. Cao, Y. Yang, and A. Li, "Facile Synthesis of Porous ZnCo2O4 Nanosheets and the Superior Electrochemical Properties for Sodium Ion Batteries," Nanomaterials, vol. 8, p. 377, 2018.
[145]L. Wu, J. Lang, P. Zhang, X. Zhang, R. Guo, and X. Yan, "Mesoporous Ni-doped MnCo2O4 hollow nanotubes as an anode material for sodium ion batteries with ultralong life and pseudocapacitive mechanism," Journal of Materials Chemistry A, vol. 4, pp. 18392-18400, 2016.
[146]X. Wu, W. Wu, K. Wang, W. Chen, and D. He, "Synthesis and electrochemical performance of flower-like MnCo2O4 as an anode material for sodium ion batteries," Materials Letters, vol. 147, pp. 85-87, 2015.
[147]Y. Wang, H. Huang, Q. Xie, Y. Wang, and B. Qu, "Rational design of graphene-encapsulated NiCo2O4 core-shell nanostructures as an anode material for sodium-ion batteries," Journal of Alloys and Compounds, vol. 705, pp. 314-319, 2017.
[148]L. Wu, J. Lang, R. Wang, R. Guo, and X. Yan, "Electrospinning Synthesis of Mesoporous MnCoNiO x@ Double-Carbon Nanofibers for Sodium-Ion Battery Anodes with Pseudocapacitive Behavior and Long Cycle Life," ACS Applied Materials & Interfaces, vol. 8, pp. 34342-34352, 2016.

3.6References
[1]H.-J. Qiu, L. Liu, Y.-P. Mu, H.-J. Zhang, and Y. Wang, "Designed synthesis of cobalt-oxide-based nanomaterials for superior electrochemical energy storage devices," Nano Research, vol. 8, pp. 321-339, 2015.
[2]L. Xiao, Y. Zhao, J. Yin, and L. Zhang, "Clewlike ZnV2O4 hollow spheres: nonaqueous sol–gel synthesis, formation mechanism, and lithium storage properties," Chemistry–A European Journal, vol. 15, pp. 9442-9450, 2009.
[3]N. Nitta, F. Wu, J. T. Lee, and G. Yushin, "Li-ion battery materials: present and future," Materials Today, vol. 18, pp. 252-264, 2015.
[4]C. Liang, M. Gao, H. Pan, Y. Liu, and M. Yan, "Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries," Journal of Alloys and Compounds, vol. 575, pp. 246-256, 2013.
[5]J. Zhang, S. Ni, J. Ma, X. Yang, and L. Zhang, "High capacity and superlong cycle life of Li3VO4/N–C hybrids as anode for high performance Li-ion batteries," Journal of Power Sources, vol. 301, pp. 41-46, 2016.
[6]Y. Xiao, X. Li, J. Zai, K. Wang, Y. Gong, B. Li, Q. Han, and X. Qian, "CoFe2O4-graphene nanocomposites synthesized through an ultrasonic method with enhanced performances as anode materials for Li-ion batteries," Nano-Micro Letters, vol. 6, pp. 307-315, 2014.
[7]X. Ge, Z. Li, C. Wang, and L. Yin, "Metal–Organic Frameworks Derived Porous Core/Shell Structured ZnO/ZnCo2O4/C Hybrids as Anodes for High-Performance Lithium-Ion Battery," ACS Applied Materials & Interfaces, vol. 7, pp. 26633-26642, 2015.
[8]W.-T. Wong, B.-H. Chen, I. V. B. Maggay, C. Liu, J.-G. Duh, and W.-R. Liu, "Synthesis and Electrochemical Properties of Hierarchically Porous Zn (Co1‐xMnx) 2O4 Anode for Li‐Ion Batteries via Cation Substitution Design," Energy Technology, 2016.
[9]R. S. Kalubarme, A. I. Inamdar, D. Bhange, H. Im, S. W. Gosavi, and C.-J. Park, "Nickel-titanium oxide as a novel anode material for rechargeable sodium-ion batteries," Journal of Materials Chemistry A, vol. 4, pp. 17419-17430, 2016.
[10]Y. Jiang, M. Hu, D. Zhang, T. Yuan, W. Sun, B. Xu, and M. Yan, "Transition metal oxides for high performance sodium ion battery anodes," Nano Energy, vol. 5, pp. 60-66, 2014.
[11]L.-L. Xie, Y.-D. Xu, J.-J. Zhang, X.-Y. Cao, B. Wang, X.-Y. Yan, and L.-B. Qu, "Facile Synthesis and Characterization of Li4Ti5O12 as Anode Material for Lithium Ion Batteries," Int. J. Electrochem. Sci, vol. 8, pp. 1701-1712, 2013.
[12]Y. Xu, Y. Zhu, Y. Liu, and C. Wang, "Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries," Advanced Energy Materials, vol. 3, pp. 128-133, 2013.
[13]S. W. Kim, D. H. Seo, X. Ma, G. Ceder, and K. Kang, "Electrode materials for rechargeable sodium‐ion batteries: potential alternatives to current lithium‐ion batteries," Advanced Energy Materials, vol. 2, pp. 710-721, 2012.
[14]Y. Kim, K. H. Ha, S. M. Oh, and K. T. Lee, "High‐Capacity Anode Materials for Sodium‐Ion Batteries," Chemistry–A European Journal, vol. 20, pp. 11980-11992, 2014.
[15]B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y. S. Meng, T. Wang, and J. Y. Lee, "Layered SnS2‐Reduced Graphene Oxide Composite–A High‐Capacity, High‐Rate, and Long‐Cycle Life Sodium‐Ion Battery Anode Material," Advanced materials, vol. 26, pp. 3854-3859, 2014.
[16]C. Zheng, L. Zeng, M. Wang, H. Zheng, and M. Wei, "Synthesis of hierarchical ZnV2O4 microspheres and its electrochemical properties," CrystEngComm, vol. 16, pp. 10309-10313, 2014.
[17]M. D. Slater, D. Kim, E. Lee, and C. S. Johnson, "Sodium‐ion batteries," Advanced Functional Materials, vol. 23, pp. 947-958, 2013.
[18]X. Xiang, K. Zhang, and J. Chen, "Recent Advances and Prospects of Cathode Materials for Sodium‐Ion Batteries," Advanced Materials, vol. 27, pp. 5343-5364, 2015.
[19]X. Jiang, H. Liu, J. Song, C. Yin, and H. Xu, "Hierarchical mesoporous octahedral K2Mn1−xCoxFe(CN)6 as a superior cathode material for sodium-ion batteries," Journal of Materials Chemistry A, vol. 4, pp. 16205-16212, 2016.
[20]D. Liu and G. T. R. Palmore, "Synthesis, Crystal Structure, and Electrochemical Properties of Alluaudite Na1.7O2Fe3(PO4)3 as a Sodium-Ion Battery Cathode," ACS Sustainable Chemistry & Engineering, 2017.
[21]Y. Zhu, X. Han, Y. Xu, Y. Liu, S. Zheng, K. Xu, L. Hu, and C. Wang, "Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode," ACS Nano, vol. 7, pp. 6378-6386, 2013.
[22]D. Stevens and J. Dahn, "High capacity anode materials for rechargeable sodium‐ion batteries," Journal of The Electrochemical Society, vol. 147, pp. 1271-1273, 2000.
[23]W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji, and L. Hu, "Na-ion battery anodes: materials and electrochemistry," Accounts of Chemical Research, vol. 49, pp. 231-240, 2016.
[24]A. Darwiche, C. Marino, M. T. Sougrati, B. Fraisse, L. Stievano, and L. Monconduit, "Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism," Journal of the American Chemical Society, vol. 134, pp. 20805-20811, 2012.
[25]V. L. Chevrier and G. Ceder, "Challenges for Na-ion negative electrodes," Journal of The Electrochemical Society, vol. 158, pp. A1011-A1014, 2011.
[26]N. Chen, C. Wang, F. Hu, X. Bie, Y. Wei, G. Chen, and F. Du, "Brannerite-type vanadium–molybdenum oxide LiVMoO6 as a promising anode material for lithium-ion batteries with high capacity and rate capability," ACS Applied Materials & Interfaces, vol. 7, pp. 16117-16123, 2015.
[27]J.-Y. Hwang, S.-T. Myung, and Y.-K. Sun, "Sodium-ion batteries: present and future," Chemical Society Reviews, vol. 46, pp. 3529-3614, 2017.
[28]Y.-X. Wang, J. Yang, S.-L. Chou, H. K. Liu, W.-x. Zhang, D. Zhao, and S. X. Dou, "Uniform yolk-shell iron sulfide–carbon nanospheres for superior sodium–iron sulfide batteries," Nature Communications, vol. 6, p. 8689, 2015.
[29]R. Alcántara, M. Jaraba, P. Lavela, and J. Tirado, "NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries," Chemistry of Materials, vol. 14, pp. 2847-2848, 2002.
[30]P. R. Kumar, Y. H. Jung, K. K. Bharathi, C. H. Lim, and D. K. Kim, "High capacity and low cost spinel Fe3O4 for the Na-ion battery negative electrode materials," Electrochimica Acta, vol. 146, pp. 503-510, 2014.
[31]N. Yan, Y. Xu, H. Li, and W. Chen, "The preparation of FeVO4 as a new sort of anode material for lithium ion batteries," Materials Letters, vol. 165, pp. 223-226, 2016.
[32]L. Zhang, K. Zhao, Y. Luo, Y. Dong, W. Xu, M. Yan, W. Ren, L. Zhou, L. Qu, and L. Mai, "Acetylene black induced heterogeneous growth of macroporous CoV2O6 nanosheet for high-rate pseudocapacitive lithium-ion battery anode," ACS Applied Materials & Interfaces, vol. 8, pp. 7139-7146, 2016.
[33]P. Prahasini, R. Subadevi, F.-M. Wang, W.-R. Liu, M. Sivakumar, and I. Maggay, "A novel attempt for employing brannerite type copper vanadate as an anode for lithium rechargeable batteries," Journal of Materials Science: Materials in Electronics, vol. 27, pp. 3292-3297, 2016.
[34]M. Morcrette, P. Rozier, L. Dupont, E. Mugnier, L. Sannier, J. Galy, and J.-M. Tarascon, "A reversible copper extrusion-insertion electrode for rechargeable Li batteries," Nature Materials, vol. 2, p. 755, 2003.
[35]X. Liu, Y. Cao, H. Zheng, X. Chen, and C. Feng, "Synthesis and modification of FeVO4 as novel anode for lithium-ion batteries," Applied Surface Science, vol. 394, pp. 183-189, 2017.
[36]M. Krengel, A.-L. Hansen, M. Kaus, S. Indris, N. Wolff, L. Kienle, D. Westfal, and W. Bensch, "CuV2S4: A high rate-capacity and stable anode material for sodium-ion batteries," ACS Applied Materials & Interfaces, 2017.
[37]M. Krengel, P. Adelhelm, F. Klein, and W. Bensch, "FeV2S4 as a high capacity electrode material for sodium-ion batteries," Chemical Communications, vol. 51, pp. 13500-13503, 2015.
[38]L. Zeng, F. Xiao, J. Wang, S. Gao, X. Ding, and M. Wei, "ZnV2O4–CMK nanocomposite as an anode material for rechargeable lithium-ion batteries," Journal of Materials Chemistry, vol. 22, pp. 14284-14288, 2012.
[39]X. Zhu, X. Jiang, L. Xiao, X. Ai, H. Yang, and Y. Cao, "Nanophase ZnV2O4 as stable and high capacity Li insertion electrode for Li-ion battery," Current Applied Physics, vol. 15, pp. 435-440, 2015.
[40]F. K. Butt, C. Cao, R. Ahmed, W. S. Khan, T. Cao, N. Bidin, P. Li, Q. Wan, X. Qu, and M. Tahir, "Synthesis of novel ZnV2O4 spinel oxide nanosheets and their hydrogen storage properties," CrystEngComm, vol. 16, pp. 894-899, 2014.
[41]F. K. Butt, C. Cao, Q. Wan, P. Li, F. Idrees, M. Tahir, W. S. Khan, Z. Ali, M. J. Zapata, and M. Safdar, "Synthesis, evolution and hydrogen storage properties of ZnV2O4 glomerulus nano/microspheres: A prospective material for energy storage," International Journal of Hydrogen Energy, vol. 39, pp. 7842-7851, 2014.
[42]F. K. Butt, M. Tahir, C. Cao, F. Idrees, R. Ahmed, W. S. Khan, Z. Ali, N. Mahmood, M. Tanveer, and A. Mahmood, "Synthesis of novel ZnV2O4 hierarchical nanospheres and their applications as electrochemical supercapacitor and hydrogen storage material," ACS Applied Materials & Interfaces, vol. 6, pp. 13635-13641, 2014.
[43]S. J. Clark, M. D. Segall, C. J. Pickard, P. J. Hasnip, M. J. Probert, K. Refson, and M. C. Payne, "First principles methods using CASTEP," Z. Kristallogr., vol. 220, pp. 567-570, 2005.
[44]J. P. Perdew, K. Burke, and M. Ernzerhof, "Generalized gradient approximation made simple," Phys. Rev. Lett., vol. 77, pp. 3865-3868, 1996.
[45]B. Reuter, E. Riedel, P. Hug, D. Arndt, U. Geisler, and J. Behnke, "Zur Kristallchemie der Vanadin(III)-Spinelle," Zeitschrift für anorganische und allgemeine Chemie, vol. 369, pp. 306-312, 1969.
[46]D. B. Rogers, R. J. Arnott, A. Wold, and J. B. Goodenough, "The preparation and properties of some vanadium spinels," Journal of Physics and Chemistry of Solids, vol. 24, pp. 347-360, 1963/03/01/ 1963.
[47]S. Meini, "The Influence of Irreversible Electrochemical Reactions on the Fundamental Mechanisms Governing Capacity and Cycle Life of Li-O2 Batteries," München, Technische Universität München, Diss., 2013, 2013.
[48]Q. Liu, J. Wang, Y. Luo, L. Miao, Y. Yan, L. Xue, and W. Zhang, "Facile synthesis of FeSi4P4 and its Sodium Ion Storage Performance," Electrochimica Acta, 2017.
[49]Y. Liu, B. V. Merinov, and W. A. Goddard, "Origin of low sodium capacity in graphite and generally weak substrate binding of Na and Mg among alkali and alkaline earth metals," Proceedings of the National Academy of Sciences, vol. 113, pp. 3735-3739, 2016.
[50]W. Wang, B. Jiang, L. Hu, and S. Jiao, "Nasicon material NaZr2(PO4)3: a novel storage material for sodium-ion batteries," Journal of Materials Chemistry A, vol. 2, pp. 1341-1345, 2014.
[51]V. A. Sethuraman, V. Srinivasan, A. F. Bower, and P. R. Guduru, "In situ measurements of stress-potential coupling in lithiated silicon," Journal of The Electrochemical Society, vol. 157, pp. A1253-A1261, 2010.
[52]V. A. Sethuraman, M. J. Chon, M. Shimshak, V. Srinivasan, and P. R. Guduru, "In situ measurements of stress evolution in silicon thin films during electrochemical lithiation and delithiation," Journal of Power Sources, vol. 195, pp. 5062-5066, 2010.
[53]S. Zhang, K. Xu, and T. Jow, "Electrochemical impedance study on the low temperature of Li-ion batteries," Electrochimica Acta, vol. 49, pp. 1057-1061, 2004.
[54]T. Ong and H. Yang, "Lithium intercalation into mechanically milled natural graphite: electrochemical and kinetic characterization," Journal of The Electrochemical Society, vol. 149, pp. A1-A8, 2002.
[55]J.-S. Lu, I. V. B. Maggay, and W.-R. Liu, "CoV2O4: A novel anode material for lithium-ion batteries with excellent electrochemical performance," Chemical Communications, 2018.
[56]D. B. Rogers, R. Arnott, A. Wold, and J. Goodenough, "The preparation and properties of some vanadium spinels," Journal of Physics and Chemistry of Solids, vol. 24, pp. 347-360, 1963.
[57]S. Singh, R. Maurya, and S. K. Pandey, "Investigation of thermoelectric properties of ZnV2O4 compound at high temperatures," Journal of Physics D: Applied Physics, vol. 49, p. 425601, 2016.

4.7References
[1]S. W. Kim, D. H. Seo, X. Ma, G. Ceder, and K. Kang, "Electrode materials for rechargeable sodium‐ion batteries: potential alternatives to current lithium‐ion batteries," Advanced Energy Materials, vol. 2, pp. 710-721, 2012.
[2]B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y. S. Meng, T. Wang, and J. Y. Lee, "Layered SnS2‐Reduced Graphene Oxide Composite–A High‐Capacity, High‐Rate, and Long‐Cycle Life Sodium‐Ion Battery Anode Material," Advanced materials, vol. 26, pp. 3854-3859, 2014.
[3]M. D. Slater, D. Kim, E. Lee, and C. S. Johnson, "Sodium‐ion batteries," Advanced Functional Materials, vol. 23, pp. 947-958, 2013.
[4]C. Zheng, L. Zeng, M. Wang, H. Zheng, and M. Wei, "Synthesis of hierarchical Z ZnV2O4 microspheres and its electrochemical properties," CrystEngComm, vol. 16, pp. 10309-10313, 2014.
[5]K. Kaliyappan, J. Liu, A. Lushington, R. Li, and X. Sun, "Highly Stable Na2/3(Mn0. 54Ni0.13Co0.13)O2 Cathode Modified by Atomic Layer Deposition for Sodium‐Ion Batteries," ChemSusChem, vol. 8, pp. 2537-2543, 2015.
[6]M. Krengel, P. Adelhelm, F. Klein, and W. Bensch, "FeV2S4 as a high capacity electrode material for sodium-ion batteries," Chemical Communications, vol. 51, pp. 13500-13503, 2015.
[7]Z. Jian, W. Han, X. Lu, H. Yang, Y. S. Hu, J. Zhou, Z. Zhou, J. Li, W. Chen, and D. Chen, "Superior electrochemical performance and storage mechanism of Na3V2(PO4)3 cathode for room‐temperature sodium‐ion batteries," Advanced Energy Materials, vol. 3, pp. 156-160, 2013.
[8]Y. Xu, Y. Zhu, Y. Liu, and C. Wang, "Electrochemical Performance of Porous Carbon/Tin Composite Anodes for Sodium‐Ion and Lithium‐Ion Batteries," Advanced Energy Materials, vol. 3, pp. 128-133, 2013.
[9]Q. Liu, J. Wang, Y. Luo, L. Miao, Y. Yan, L. Xue, and W. Zhang, "Facile synthesis of FeSi 4 P 4 and its Sodium Ion Storage Performance," Electrochimica Acta, 2017.
[10]X. Jiang, H. Liu, J. Song, C. Yin, and H. Xu, "Hierarchical mesoporous octahedral K2Mn1− xCoxFe(CN)6 as a superior cathode material for sodium-ion batteries," Journal of Materials Chemistry A, vol. 4, pp. 16205-16212, 2016.
[11]Y. Kim, K. H. Ha, S. M. Oh, and K. T. Lee, "High‐Capacity Anode Materials for Sodium‐Ion Batteries," Chemistry-A European Journal, vol. 20, pp. 11980-11992, 2014.
[12]Y. Liu, N. Zhang, C. Yu, L. Jiao, and J. Chen, "MnFe2O4@ C nanofibers as high-performance anode for sodium-ion batteries," Nano Letters, vol. 16, pp. 3321-3328, 2016.
[13]M. Krengel, A.-L. Hansen, M. Kaus, S. Indris, N. Wolff, L. Kienle, D. Westfal, and W. Bensch, "CuV2S4: A high rate-capacity and stable anode material for sodium-ion batteries," ACS Applied Materials & Interfaces, 2017.
[14]Y. Huang, X. Li, J. Luo, K. Wang, Q. Zhang, Y. Qiu, S. Sun, S. Liu, J. Han, and Y. Huang, "Enhancing Sodium-Ion Storage Behaviors in TiNb2O7 by Mechanical Ball Milling," ACS Applied Materials & Interfaces, vol. 9, pp. 8696-8703, 2017.
[15]D. Su, S. Dou, and G. Wang, "Hierarchical Vanadium Pentoxide Spheres as High‐Performance Anode Materials for Sodium‐Ion Batteries," ChemSusChem, vol. 8, pp. 2877-2882, 2015.
[16]S.-O. Kim and A. Manthiram, "The facile synthesis and enhanced sodium-storage performance of a chemically bonded CuP2/C hybrid anode," Chemical Communications, vol. 52, pp. 4337-4340, 2016.
[17]H. Su, S. Jaffer, and H. Yu, "Transition metal oxides for sodium-ion batteries," Energy Storage Materials, vol. 5, pp. 116-131, 2016.
[18]H. Pan, Y.-S. Hu, and L. Chen, "Room-temperature stationary sodium-ion batteries for large-scale electric energy storage," Energy & Environmental Science, vol. 6, pp. 2338-2360, 2013.
[19]Y. Zhu, X. Han, Y. Xu, Y. Liu, S. Zheng, K. Xu, L. Hu, and C. Wang, "Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode," ACS Nano, vol. 7, pp. 6378-6386, 2013.
[20]Y. Wang, C. Wang, H. Guo, Y. Wang, and Z. Huang, "A nitrogen-doped three-dimensional carbon framework for high performance sodium ion batteries," RSC Advances, vol. 7, pp. 1588-1592, 2017.
[21]J.-W. Lee, H.-S. Shin, C.-W. Lee, and K.-N. Jung, "Carbon-and Binder-Free NiCo2O4 Nanoneedle Array Electrode for Sodium-Ion Batteries: Electrochemical Performance and Insight into Sodium Storage Reaction," Nanoscale Research Letters, vol. 11, p. 45, 2016.
[22]Y. Jiang, M. Hu, D. Zhang, T. Yuan, W. Sun, B. Xu, and M. Yan, "Transition metal oxides for high performance sodium ion battery anodes," Nano Energy, vol. 5, pp. 60-66, 2014.
[23]D. Stevens and J. Dahn, "High capacity anode materials for rechargeable sodium‐ion batteries," Journal of The Electrochemical Society, vol. 147, pp. 1271-1273, 2000.
[24]W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji, and L. Hu, "Na-ion battery anodes: materials and electrochemistry," Accounts of Chemical Research, vol. 49, pp. 231-240, 2016.
[25]A. Darwiche, C. Marino, M. T. Sougrati, B. Fraisse, L. Stievano, and L. Monconduit, "Better cycling performances of bulk Sb in Na-ion batteries compared to Li-ion systems: an unexpected electrochemical mechanism," Journal of the American Chemical Society, vol. 134, pp. 20805-20811, 2012.
[26]V. L. Chevrier and G. Ceder, "Challenges for Na-ion negative electrodes," Journal of The Electrochemical Society, vol. 158, pp. A1011-A1014, 2011.
[27]P. Poizot, S. Laruelle, S. Grugeon, L. Dupont, and J. Tarascon, "Nano-sized transition-metal oxides as negative-electrode materials for lithium-ion batteries," Nature, vol. 407, p. 496, 2000.
[28]J. Hu, H. Li, X. Huang, and L. Chen, "Improve the electrochemical performances of Cr2O3 anode for lithium ion batteries," Solid State Ionics, vol. 177, pp. 2791-2799, 2006.
[29]J. Cabana, L. Monconduit, D. Larcher, and M. R. Palacin, "Beyond Intercalation‐Based Li‐Ion Batteries: The State of the Art and Challenges of Electrode Materials Reacting Through Conversion Reactions," Advanced Materials, vol. 22, 2010.
[30]C. He, S. Wu, N. Zhao, C. Shi, E. Liu, and J. Li, "Carbon-encapsulated Fe3O4 nanoparticles as a high-rate lithium ion battery anode material," ACS Nano, vol. 7, pp. 4459-4469, 2013.
[31]Z. Li, X. Huang, J. Hu, A. Stein, and B. Tang, "Synthesis and electrochemical performance of three-dimensionally ordered macroporous CoCr2O4 as an anode material for lithium ion batteries," Electrochimica Acta, vol. 247, pp. 1-11, 2017.
[32]R. Alcántara, M. Jaraba, P. Lavela, and J. Tirado, "NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries," Chemistry of Materials, vol. 14, pp. 2847-2848, 2002.
[33]N. Yan, Y. Xu, H. Li, and W. Chen, "The preparation of FeVO4 as a new sort of anode material for lithium ion batteries," Materials Letters, vol. 165, pp. 223-226, 2016.
[34]X. Xu, C. Niu, M. Duan, X. Wang, L. Huang, J. Wang, L. Pu, W. Ren, C. Shi, and J. Meng, "Alkaline earth metal vanadates as sodium-ion battery anodes," Nature communications, vol. 8, p. 460, 2017.
[35]L. Zeng, F. Xiao, J. Wang, S. Gao, X. Ding, and M. Wei, " ZnV2O4–CMK nanocomposite as an anode material for rechargeable lithium-ion batteries," Journal of Materials Chemistry, vol. 22, pp. 14284-14288, 2012.
[36]X. Zhu, X. Jiang, L. Xiao, X. Ai, H. Yang, and Y. Cao, "Nanophase ZnV2O4 as stable and high capacity Li insertion electrode for Li-ion battery," Current Applied Physics, vol. 15, pp. 435-440, 2015.
[37]L. Zhang, K. Zhao, Y. Luo, Y. Dong, W. Xu, M. Yan, W. Ren, L. Zhou, L. Qu, and L. Mai, "Acetylene black induced heterogeneous growth of macroporous CoV2O6 nanosheet for high-rate pseudocapacitive lithium-ion battery anode," ACS Applied Materials & Interfaces, vol. 8, pp. 7139-7146, 2016.
[38]P. Prahasini, R. Subadevi, F.-M. Wang, W.-R. Liu, M. Sivakumar, and I. Maggay, "A novel attempt for employing brannerite type copper vanadate as an anode for lithium rechargeable batteries," Journal of Materials Science: Materials in Electronics, vol. 27, pp. 3292-3297, 2016.
[39]M. Morcrette, P. Rozier, L. Dupont, E. Mugnier, L. Sannier, J. Galy, and J.-M. Tarascon, "A reversible copper extrusion-insertion electrode for rechargeable Li batteries," Nature Materials, vol. 2, p. 755, 2003.
[40]X. Liu, Y. Cao, H. Zheng, X. Chen, and C. Feng, "Synthesis and modification of FeVO4 as novel anode for lithium-ion batteries," Applied Surface Science, vol. 394, pp. 183-189, 2017.
[41]V. Augustyn and B. Dunn, "Low-potential lithium-ion reactivity of vanadium oxide aerogels," Electrochimica Acta, vol. 88, pp. 530-535, 2013.
[42]S. Yu, V. M. H. Ng, F. Wang, Z. Xiao, C. Li, L. B. Kong, W. Que, and K. Zhou, "Synthesis and Application of Iron-based Nanomaterials as Anode of Lithium-Ion Batteries and Supercapacitors," Journal of Materials Chemistry A, 2018.
[43]B. R. Myoung, S. J. Kim, J. T. Lim, T. Kouh, and C. S. Kim, "Microscopic evidence of magnetic and structure phase transition in multiferroic spinel FeV2O4," AIP Advances, vol. 7, p. 055828, 2017.
[44]M. Wakihara, Y. Shimizu, and T. Katsura, "Preparation and magnetic properties of the FeV2O4/Fe3O4 system," Journal of Solid State Chemistry, vol. 3, pp. 478-483, 1971.
[45]G. MacDougall, I. Brodsky, A. A. Aczel, V. O. Garlea, G. E. Granroth, A. D. Christianson, T. Hong, H. Zhou, and S. E. Nagler, "Magnons and a two-component spin gap in FeV2O4," Physical Review B, vol. 89, p. 224404, 2014.
[46]S.-L. Chou, Y. Pan, J.-Z. Wang, H.-K. Liu, and S.-X. Dou, "Small things make a big difference: binder effects on the performance of Li and Na batteries," Physical Chemistry Chemical Physics, vol. 16, pp. 20347-20359, 2014.
[47]W. Zhang, M. Dahbi, and S. Komaba, "Polymer binder: a key component in negative electrodes for high-energy Na-ion batteries," Current Opinion in Chemical Engineering, vol. 13, pp. 36-44, 2016.
[48]H. Maleki, G. Deng, I. Kerzhner‐Haller, A. Anani, and J. N. Howard, "Thermal Stability Studies of Binder Materials in Anodes for Lithium‐Ion Batteries," Journal of The Electrochemical Society, vol. 147, pp. 4470-4475, 2000.
[49]J. Li, L. Christensen, M. Obrovac, K. Hewitt, and J. Dahn, "Effect of heat treatment on Si electrodes using polyvinylidene fluoride binder," Journal of the Electrochemical Society, vol. 155, pp. A234-A238, 2008.
[50]G. Liu, H. Zheng, A. Simens, A. Minor, X. Song, and V. Battaglia, "Optimization of acetylene black conductive additive and PVDF composition for high-power rechargeable lithium-ion cells," Journal of The Electrochemical Society, vol. 154, pp. A1129-A1134, 2007.
[51]D. Choi, D. Wang, V. V. Viswanathan, I.-T. Bae, W. Wang, Z. Nie, J.-G. Zhang, G. L. Graff, J. Liu, and Z. Yang, "Li-ion batteries from LiFePO4 cathode and anatase/graphene composite anode for stationary energy storage," Electrochemistry Communications, vol. 12, pp. 378-381, 2010.
[52]A. Fedorková, R. Oriňáková, A. Oriňák, I. Talian, A. Heile, H.-D. Wiemhöfer, D. Kaniansky, and H. F. Arlinghaus, "PPy doped PEG conducting polymer films synthesized on LiFePO4 particles," Journal of Power Sources, vol. 195, pp. 3907-3912, 2010.
[53]N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, "Research development on sodium-ion batteries," Chemical Reviews, vol. 114, pp. 11636-11682, 2014.
[54]R. Zhang, X. Yang, D. Zhang, H. Qiu, Q. Fu, H. Na, Z. Guo, F. Du, G. Chen, and Y. Wei, "Water soluble styrene butadiene rubber and sodium carboxyl methyl cellulose binder for ZnFe2O4 anode electrodes in lithium ion batteries," Journal of Power Sources, vol. 285, pp. 227-234, 2015.
[55]Q. Zhang, K. Singh, F. Guillou, C. Simon, Y. Breard, V. Caignaert, and V. Hardy, "Ordering process and ferroelectricity in a spinel derived from FeV2O4," Physical Review B, vol. 85, p. 054405, 2012.
[56]H. Hager, S. Greiner, G. Heubl, and E. Stahl-Biskup, Hagers Handbuch der Pharmazeutischen Praxis: Drogen PZ Folgeband 2: Springer-Verlag, 2013.
[57]J. Wong, F. W. Lytle, R. P. Messmer, and D. H. Maylotte, "K-edge absorption spectra of selected vanadium compounds," Physical Review B, vol. 30, pp. 5596-5610, 11/15/ 1984.
[58]M. Nabavi, C. Sanchez, and J. Livage, "Structure and properties of amorphous V2O5," Philosophical Magazine B, vol. 63, pp. 941-953, 1991.
[59]W. Wang, B. Jiang, L. Hu, and S. Jiao, "Nasicon material NaZr2(PO4)3: a novel storage material for sodium-ion batteries," Journal of Materials Chemistry A, vol. 2, pp. 1341-1345, 2014.
[60]H. Wang, N. Mao, J. Shi, Q. Wang, W. Yu, and X. Wang, "Cobalt oxide-carbon nanosheet nanoarchitecture as an anode for high-performance lithium-ion battery," ACS Applied Materials & Interfaces, vol. 7, pp. 2882-2890, 2015.
[61]Y. Kim, S. Muhammad, H. Kim, Y. H. Cho, H. Kim, J. M. Kim, and W. S. Yoon, "Probing the additional capacity and reaction mechanism of the RuO2 anode in lithium rechargeable batteries," ChemSusChem, vol. 8, pp. 2378-2384, 2015.
[62]B.-R. Lee and E.-S. Oh, "Effect of molecular weight and degree of substitution of a sodium-carboxymethyl cellulose binder on Li4Ti5O12 anodic performance," The Journal of Physical Chemistry C, vol. 117, pp. 4404-4409, 2013.
[63]B. Lestriez, S. Bahri, I. Sandu, L. Roué, and D. Guyomard, "On the binding mechanism of CMC in Si negative electrodes for Li-ion batteries," Electrochemistry Communications, vol. 9, pp. 2801-2806, 2007.
[64]J. Chong, S. Xun, H. Zheng, X. Song, G. Liu, P. Ridgway, J. Q. Wang, and V. S. Battaglia, "A comparative study of polyacrylic acid and poly (vinylidene difluoride) binders for spherical natural graphite/LiFePO4 electrodes and cells," Journal of Power Sources, vol. 196, pp. 7707-7714, 2011.
[65]Y. Wang, H. Huang, Q. Xie, Y. Wang, and B. Qu, "Rational design of graphene-encapsulated NiCo2O4 core-shell nanostructures as an anode material for sodium-ion batteries," Journal of Alloys and Compounds, vol. 705, pp. 314-319, 2017.
[66]N. Zhang, X. Han, Y. Liu, X. Hu, Q. Zhao, and J. Chen, "3D Porous γ‐Fe2O3@ C Nanocomposite as High‐Performance Anode Material of Na‐Ion Batteries," Advanced Energy Materials, vol. 5, 2015.
[67]K. Zhou, M. Kang, X. He, Z. Hong, Z. Huang, and M. Wei, "A multi-functional gum arabic binder for NiFe2O4 nanotube anodes enabling excellent Li/Na-ion storage performance," Journal of Materials Chemistry A, vol. 5, pp. 18138-18147, 2017.
[68]J. Li, J. Wang, X. Liang, Z. Zhang, H. Liu, Y. Qian, and S. Xiong, "Hollow MnCo2O4 submicrospheres with multilevel interiors: from mesoporous spheres to yolk-in-double-shell structures," ACS Applied Materials & Interfaces, vol. 6, pp. 24-30, 2013.
[69]M. Gao, P. Zhou, P. Wang, J. Wang, C. Liang, J. Zhang, and Y. Liu, "FeO/C anode materials of high capacity and cycle stability for lithium-ion batteries synthesized by carbothermal reduction," Journal of Alloys and Compounds, vol. 565, pp. 97-103, 2013.
[70]H. Jiang, G. Jia, Y. Hu, Q. Cheng, Y. Fu, and C. Li, "Ultrafine V2O3 nanowire embedded in carbon hybrids with enhanced lithium storage capability," Industrial & Engineering Chemistry Research, vol. 54, pp. 2960-2965, 2015.
[71]D. Xu, C. Chen, J. Xie, B. Zhang, L. Miao, J. Cai, Y. Huang, and L. Zhang, "A Hierarchical N/S‐Codoped Carbon Anode Fabricated Facilely from Cellulose/Polyaniline Microspheres for High‐Performance Sodium‐Ion Batteries," Advanced Energy Materials, vol. 6, 2016.
[72]V. Augustyn, J. Come, M. A. Lowe, J. W. Kim, P.-L. Taberna, S. H. Tolbert, H. D. Abruña, P. Simon, and B. Dunn, "High-rate electrochemical energy storage through Li+ intercalation pseudocapacitance," Nature Materials, vol. 12, pp. 518-522, 2013.
[73]S. Zhu, Q. Li, Q. Wei, R. Sun, X. Liu, Q. An, and L. Mai, "NiSe2 nanooctahedra as an anode material for high-rate and long-life sodium-ion battery," ACS Applied Materials & Interfaces, vol. 9, pp. 311-316, 2016.
[74]X. Ma, K. An, J. Bai, and H. Chen, "NaAlTi3O8, A Novel Anode Material for Sodium Ion Battery," Scientific Reports, vol. 7, p. 162, 2017.
[75]S. Zhang, K. Xu, and T. Jow, "Electrochemical impedance study on the low temperature of Li-ion batteries," Electrochimica Acta, vol. 49, pp. 1057-1061, 2004.
[76]T. Ong and H. Yang, "Lithium intercalation into mechanically milled natural graphite: electrochemical and kinetic characterization," Journal of The Electrochemical Society, vol. 149, pp. A1-A8, 2002.
[77]K. Kubota and S. Komaba, "Practical issues and future perspective for Na-ion batteries," Journal of The Electrochemical Society, vol. 162, pp. A2538-A2550, 2015.
[78]A. Bordes, K. Eom, and T. F. Fuller, "The effect of fluoroethylene carbonate additive content on the formation of the solid-electrolyte interphase and capacity fade of Li-ion full-cell employing nano Si–graphene composite anodes," Journal of Power Sources, vol. 257, pp. 163-169, 2014.
[79]S. Dalavi, P. Guduru, and B. L. Lucht, "Performance enhancing electrolyte additives for lithium ion batteries with silicon anodes," Journal of The Electrochemical Society, vol. 159, pp. A642-A646, 2012.
[80]V. Etacheri, O. Haik, Y. Goffer, G. A. Roberts, I. C. Stefan, R. Fasching, and D. Aurbach, "Effect of fluoroethylene carbonate (FEC) on the performance and surface chemistry of Si-nanowire Li-ion battery anodes," Langmuir, vol. 28, pp. 965-976, 2011.
[81]G. M. Veith, M. Doucet, R. L. Sacci, B. Vacaliuc, J. K. Baldwin, and J. F. Browning, "Determination of the Solid Electrolyte Interphase Structure Grown on a Silicon Electrode Using a Fluoroethylene Carbonate Additive," Scientific Reports, vol. 7, p. 6326, 2017.

5.6References
[1]J. B. Goodenough and K.-S. Park, "The Li-ion rechargeable battery: a perspective," Journal of the American Chemical Society, vol. 135, pp. 1167-1176, 2013.
[2]C. Liang, M. Gao, H. Pan, Y. Liu, and M. Yan, "Lithium alloys and metal oxides as high-capacity anode materials for lithium-ion batteries," Journal of Alloys and Compounds, vol. 575, pp. 246-256, 10/25/ 2013.
[3]Y. Zhu, X. Han, Y. Xu, Y. Liu, S. Zheng, K. Xu, L. Hu, and C. Wang, "Electrospun Sb/C fibers for a stable and fast sodium-ion battery anode," ACS Nano, vol. 7, pp. 6378-6386, 2013.
[4]X. Ge, Z. Li, C. Wang, and L. Yin, "Metal–Organic Frameworks Derived Porous Core/Shell Structured ZnO/ZnCo2O4/C Hybrids as Anodes for High-Performance Lithium-Ion Battery," ACS Applied Materials & Interfaces, vol. 7, pp. 26633-26642, 2015.
[5]N. Chen, C. Wang, F. Hu, X. Bie, Y. Wei, G. Chen, and F. Du, "Brannerite-type vanadium–molybdenum oxide LiVMoO6 as a promising anode material for lithium-ion batteries with high capacity and rate capability," A ACS Applied Materials & Interfaces, vol. 7, pp. 16117-16123, 2015.
[6]R. Alcántara, M. Jaraba, P. Lavela, and J. Tirado, "NiCo2O4 spinel: First report on a transition metal oxide for the negative electrode of sodium-ion batteries," Chemistry of Materials, vol. 14, pp. 2847-2848, 2002.
[7]Y. Jiang, M. Hu, D. Zhang, T. Yuan, W. Sun, B. Xu, and M. Yan, "Transition metal oxides for high performance sodium ion battery anodes," Nano Energy, vol. 5, pp. 60-66, 2014.
[8]X. Zhu, X. Jiang, L. Xiao, X. Ai, H. Yang, and Y. Cao, "Nanophase ZnV2O4 as stable and high capacity Li insertion electrode for Li-ion battery," Current Applied Physics, vol. 15, pp. 435-440, 2015.
[9]L. Xiao, Y. Zhao, J. Yin, and L. Zhang, "Clewlike ZnV2O4 hollow spheres: nonaqueous sol–gel synthesis, formation mechanism, and lithium storage properties," Chemistry–A European Journal, vol. 15, pp. 9442-9450, 2009.
[10]C. Zheng, L. Zeng, M. Wang, H. Zheng, and M. Wei, "Synthesis of hierarchical ZnV2O4 microspheres and its electrochemical properties," CrystEngComm, vol. 16, pp. 10309-10313, 2014.
[11]S. Meini, "The Influence of Irreversible Electrochemical Reactions on the Fundamental Mechanisms Governing Capacity and Cycle Life of Li-O2 Batteries," München, Technische Universität München, Diss., 2013, 2013.
[12]F. K. Butt, C. Cao, Q. Wan, P. Li, F. Idrees, M. Tahir, W. S. Khan, Z. Ali, M. J. Zapata, and M. Safdar, "Synthesis, evolution and hydrogen storage properties of ZnV2O4 glomerulus nano/microspheres: A prospective material for energy storage," International Journal of Hydrogen Energy, vol. 39, pp. 7842-7851, 2014.
[13]J. S. Kim, S. S. Shin, H. S. Han, L. S. Oh, D. H. Kim, J.-H. Kim, K. S. Hong, and J. Y. Kim, "1-D structured flexible supercapacitor electrodes with prominent electronic/ionic transport capabilities," ACS Applied Materials & Interfaces, vol. 6, pp. 268-274, 2013.
[14]J. Bhagwan, A. Sahoo, K. Yadav, and Y. Sharma, "Nanofibers of spinel-CdMn2O4: A new and high performance material for supercapacitor and Li-ion batteries," Journal of Alloys and Compounds, vol. 703, pp. 86-95, 2017.
[15]D. Palai, A. Carmel Mary Esther, D. Porwal, M. S. Pradeepkumar, D. Raghavendra Kumar, P. Bera, N. Sridhara, and A. Dey, "Reversible phase transition in vanadium oxide films sputtered on metal substrates," Philosophical Magazine Letters, vol. 96, pp. 440-446, 2016.
[16]J. Molenda, "Material problems and prospects of Li-ion batteries for vehicles applications," Functional Materials Letters, vol. 4, pp. 107-112, 2011.
[17]M. B. Pinson and M. Z. Bazant, "Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction," Journal of the Electrochemical Society, vol. 160, pp. A243-A250, 2013.
[18]H. Wang, N. Mao, J. Shi, Q. Wang, W. Yu, and X. Wang, "Cobalt oxide-carbon nanosheet nanoarchitecture as an anode for high-performance lithium-ion battery," ACS Applied Materials & Interfaces, vol. 7, pp. 2882-2890, 2015.
[19]Y. Kim, S. Muhammad, H. Kim, Y. H. Cho, H. Kim, J. M. Kim, and W. S. Yoon, "Probing the additional capacity and reaction mechanism of the RuO2 anode in lithium rechargeable batteries," ChemSusChem, vol. 8, pp. 2378-2384, 2015.
[20]S. Zhang, K. Xu, and T. Jow, "Electrochemical impedance study on the low temperature of Li-ion batteries," Electrochimica acta, vol. 49, pp. 1057-1061, 2004.
[21]T. Ong and H. Yang, "Lithium intercalation into mechanically milled natural graphite: electrochemical and kinetic characterization," Journal of The Electrochemical Society, vol. 149, pp. A1-A8, 2002.
[22]J.-S. Lu, I. V. B. Maggay, and W.-R. Liu, "CoV2O4: A novel anode material for lithium-ion batteries with excellent electrochemical performance," Chemical Communications, 2018.
[23]H. Jiang, G. Jia, Y. Hu, Q. Cheng, Y. Fu, and C. Li, "Ultrafine V2O3 nanowire embedded in carbon hybrids with enhanced lithium storage capability," Industrial & Engineering Chemistry Research, vol. 54, pp. 2960-2965, 2015.
[24]X. Xu, C. Niu, M. Duan, X. Wang, L. Huang, J. Wang, L. Pu, W. Ren, C. Shi, and J. Meng, "Alkaline earth metal vanadates as sodium-ion battery anodes," Nature Communications, vol. 8, p. 460, 2017.
[25]K. Zhou, M. Kang, X. He, Z. Hong, Z. Huang, and M. Wei, "A multi-functional gum arabic binder for NiFe2O4 nanotube anodes enabling excellent Li/Na-ion storage performance," Journal of Materials Chemistry A, vol. 5, pp. 18138-18147, 2017.
[26]X. Ma, K. An, J. Bai, and H. Chen, "NaAlTi3O8, A Novel Anode Material for Sodium Ion Battery," Scientific Reports, vol. 7, p. 162, 2017.

6.5References
[1]N. Yabuuchi, K. Kubota, M. Dahbi, and S. Komaba, "Research development on sodium-ion batteries," Chemical reviews, vol. 114, pp. 11636-11682, 2014.
[2]B. Qu, C. Ma, G. Ji, C. Xu, J. Xu, Y. S. Meng, T. Wang, and J. Y. Lee, "Layered SnS2‐Reduced Graphene Oxide Composite–A High‐Capacity, High‐Rate, and Long‐Cycle Life Sodium‐Ion Battery Anode Material," Advanced materials, vol. 26, pp. 3854-3859, 2014.
[3]W. Li, S. L. Chou, J. Z. Wang, J. H. Kim, H. K. Liu, and S. X. Dou, "Sn4+xP3@ Amorphous Sn‐P Composites as Anodes for Sodium‐Ion Batteries with Low Cost, High Capacity, Long Life, and Superior Rate Capability," Advanced Materials, vol. 26, pp. 4037-4042, 2014.
[4]T. Zhou, W. K. Pang, C. Zhang, J. Yang, Z. Chen, H. K. Liu, and Z. Guo, "Enhanced sodium-ion battery performance by structural phase transition from two-dimensional hexagonal-SnS2 to orthorhombic-SnS," Acs Nano, vol. 8, pp. 8323-8333, 2014.
[5]W. Luo, F. Shen, C. Bommier, H. Zhu, X. Ji, and L. Hu, "Na-ion battery anodes: materials and electrochemistry," Accounts of Chemical Research, vol. 49, pp. 231-240, 2016.
[6]Y. Wang, H. Huang, Q. Xie, Y. Wang, and B. Qu, "Rational design of graphene-encapsulated NiCo2O4 core-shell nanostructures as an anode material for sodium-ion batteries," Journal of Alloys and Compounds, vol. 705, pp. 314-319, 2017.
[7]Y. Yan, Y. X. Yin, Y. G. Guo, and L. J. Wan, "A Sandwich‐Like Hierarchically Porous Carbon/Graphene Composite as a High‐Performance Anode Material for Sodium‐Ion Batteries," Advanced Energy Materials, vol. 4, p. 1301584, 2014.
[8]Y. Yue, A. J. Binder, B. Guo, Z. Zhang, Z. A. Qiao, C. Tian, and S. Dai, "Mesoporous Prussian Blue Analogues: Template‐Free Synthesis and Sodium‐Ion Battery Applications," Angewandte Chemie International Edition, vol. 53, pp. 3134-3137, 2014.
[9]W. Luo, C. Bommier, Z. Jian, X. Li, R. Carter, S. Vail, Y. Lu, J.-J. Lee, and X. Ji, "Low-surface-area hard carbon anode for Na-ion batteries via graphene oxide as a dehydration agent," ACS Applied Materials & Interfaces, vol. 7, pp. 2626-2631, 2015.
[10]Y. Li, Z. Wang, L. Li, S. Peng, L. Zhang, M. Srinivasan, and S. Ramakrishna, "Preparation of nitrogen-and phosphorous co-doped carbon microspheres and their superior performance as anode in sodium-ion batteries," Carbon, vol. 99, pp. 556-563, 2016.
[11]J. Zeng, Y. Ren, S. Wang, Y. Hao, H. Wu, S. Zhang, and Y. Xing, "Hierarchical porous ZnMn2O4 microspheres assembled by nanosheets for high performance anodes of lithium ion batteries," Inorganic Chemistry Frontiers, vol. 4, pp. 1730-1736, 2017.
[12]Q. Sun, M. Bijelić, A. B. Djurišić, C. Suchomski, X. Liu, M. Xie, A. M. Ng, H. K. Li, K. Shih, and S. Burazer, "Graphene-oxide-wrapped ZnMn2O4 as a high performance lithium-ion battery anode," Nanotechnology, vol. 28, p. 455401, 2017.
[13]P. F. Teh, Y. Sharma, Y. W. Ko, S. S. Pramana, and M. Srinivasan, "Tuning the morphology of ZnMn2O4 lithium ion battery anodes by electrospinning and its effect on electrochemical performance," RSC Advances, vol. 3, pp. 2812-2821, 2013.
[14]W. Dang, F. Wang, Y. Ding, C. Feng, and Z. Guo, "Synthesis and electrochemical properties of ZnMn2O4 microspheres for lithium-ion battery application," Journal of Alloys and Compounds, vol. 690, pp. 72-79, 2017.
[15]C. Feng, W. Wang, X. Chen, S. Wang, and Z. Guo, "Synthesis and electrochemical properties of ZnMn2O4 anode for lithium-ion batteries," Electrochimica Acta, vol. 178, pp. 847-855, 2015.
[16]X. Zhong, X. Wang, H. Wang, Z. Yang, Y. Jiang, J. Li, and Z. Tian, "Ultrahigh-performance mesoporous ZnMn2O4 microspheres as anode materials for lithium-ion batteries and their in situ Raman investigation," Nano Research, vol. 11, pp. 3814-3823, 2018.
[17]J. Molenda, "Material problems and prospects of Li-ion batteries for vehicles applications," Functional Materials Letters, vol. 4, pp. 107-112, 2011.
[18]M. B. Pinson and M. Z. Bazant, "Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction," Journal of the Electrochemical Society, vol. 160, pp. A243-A250, 2013.
[19]H. Wang, N. Mao, J. Shi, Q. Wang, W. Yu, and X. Wang, "Cobalt oxide-carbon nanosheet nanoarchitecture as an anode for high-performance lithium-ion battery," ACS Applied Materials & Interfaces, vol. 7, pp. 2882-2890, 2015.
[20]Y. Kim, S. Muhammad, H. Kim, Y. H. Cho, H. Kim, J. M. Kim, and W. S. Yoon, "Probing the additional capacity and reaction mechanism of the RuO2 anode in lithium rechargeable batteries," ChemSusChem, vol. 8, pp. 2378-2384, 2015.
[21]S. Zhang, K. Xu, and T. Jow, "Electrochemical impedance study on the low temperature of Li-ion batteries," Electrochimica Acta, vol. 49, pp. 1057-1061, 2004.
[22]T. Ong and H. Yang, "Lithium intercalation into mechanically milled natural graphite: electrochemical and kinetic characterization," Journal of The Electrochemical Society, vol. 149, pp. A1-A8, 2002.
[23]J.-S. Lu, I. V. B. Maggay, and W.-R. Liu, "CoV2O4: A novel anode material for lithium-ion batteries with excellent electrochemical performance," Chemical Communications, 2018.
[24]B. C. Sekhar, P. Packiyalakshmi, and N. Kalaiselvi, "Custom designed ZnMn2O4/nitrogen doped graphene composite anode validated for sodium ion battery application," RSC Advances, vol. 7, pp. 20057-20061, 2017.
[25]S. H. Choi and Y. C. Kang, "Characteristics of ZnMn2O4 nanopowders prepared by flame spray pyrolysis for use as anode material in lithium ion batteries," Int. J. Electrochem. Sci, vol. 8, pp. 6281-6290, 2013.

7.5References
[1]M. A. Mahadadalkar, S. B. Kale, R. S. Kalubarme, A. P. Bhirud, J. D. Ambekar, S. W. Gosavi, M. V. Kulkarni, C.-J. Park, and B. B. Kale, "Architecture of the CdIn2S4/graphene nano-heterostructure for solar hydrogen production and anode for lithium ion battery," RSC Advances, vol. 6, pp. 34724-34736, 2016.
[2]M. Krengel, P. Adelhelm, F. Klein, and W. Bensch, "FeV2S4 as a high capacity electrode material for sodium-ion batteries," Chemical Communications, vol. 51, pp. 13500-13503, 2015.
[3]M. Krengel, A.-L. Hansen, M. Kaus, S. Indris, N. Wolff, L. Kienle, D. Westfal, and W. Bensch, "CuV2S4: A high rate-capacity and stable anode material for sodium-ion batteries," ACS Applied Materials & Interfaces, 2017.
[4]S. Shen, L. Zhao, and L. Guo, "Cetyltrimethylammoniumbromide (CTAB)-assisted hydrothermal synthesis of ZnIn2S4 as an efficient visible-light-driven photocatalyst for hydrogen production," International Journal of Hydrogen Energy, vol. 33, pp. 4501-4510, 2008.
[5]X. Gou, F. Cheng, Y. Shi, L. Zhang, S. Peng, J. Chen, and P. Shen, "Shape-controlled synthesis of ternary chalcogenide ZnIn2S4 and CuIn(S,Se)2 nano-/microstructures via facile solution route," Journal of the American Chemical Society, vol. 128, pp. 7222-7229, 2006.
[6]F. Donika, R. SI, G. Kiosse, S. SA, T. Donika, and I. Mustya, "Crystal structure of double-pack polytype ZnIn2S4 (II) A, and more careful determination of structure of triple-pack polytype ZnIn2S4 (III) A," vol. 16, ed: Amer Inst Physics Circulation Fulfillment Div, 500 Sunnyside Blvd, Woodbury, NY 11797-2999, 1971, pp. 190-200.
[7]Y. Chen, S. Hu, W. Liu, X. Chen, L. Wu, X. Wang, P. Liu, and Z. Li, "Controlled syntheses of cubic and hexagonal ZnIn2S4 nanostructures with different visible-light photocatalytic performance," Dalton Transactions, vol. 40, pp. 2607-2613, 2011.
[8]J. Molenda, "Material problems and prospects of Li-ion batteries for vehicles applications," Functional Materials Letters, vol. 4, pp. 107-112, 2011.
[9]M. B. Pinson and M. Z. Bazant, "Theory of SEI formation in rechargeable batteries: capacity fade, accelerated aging and lifetime prediction," Journal of the Electrochemical Society, vol. 160, pp. A243-A250, 2013.
[10]T. Ong and H. Yang, "Lithium intercalation into mechanically milled natural graphite: electrochemical and kinetic characterization," Journal of The Electrochemical Society, vol. 149, pp. A1-A8, 2002.
[11]J.-S. Lu, I. V. B. Maggay, and W.-R. Liu, "CoV2O4: A novel anode material for lithium-ion batteries with excellent electrochemical performance," Chemical Communications, 2018.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top