跳到主要內容

臺灣博碩士論文加值系統

(3.236.84.188) 您好!臺灣時間:2021/08/02 21:49
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:洪麗敏
研究生(外文):Micah Belle Marie Yap Ang
論文名稱:複合奈米過濾薄膜效能精進之策略
論文名稱(外文):Formulating strategies to boost performance of thin-film composite nanofiltration membranes
指導教授:李魁然黃書賢
指導教授(外文):Kueir-Rarn LeeShu-Hsien Huang
學位類別:博士
校院名稱:中原大學
系所名稱:化學工程研究所
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2018
畢業學年度:107
語文別:英文
論文頁數:249
中文關鍵詞:奈米過濾界面聚合羧酸基單胺二氧化矽聚多巴胺
外文關鍵詞:Nanofiltrationinterfacial polymerizationcarboxylic monoaminessilicapolydopamine
相關次數:
  • 被引用被引用:0
  • 點閱點閱:62
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
因為全球面臨日漸嚴重的缺水危機,同時也凸顯現今薄膜在水處理、純化、回收及重複使用之應用,仍然存在相當大的進步空間。近來學者熱烈討論的薄膜分離技術是奈米過濾,商業化奈米過濾薄膜主要是由哌嗪(PIP)及均苯三甲醯氯(TMC)單體進行界面聚合反應所製得。本研究藉由改性策略的調整,大幅改善聚醯胺奈米過濾薄膜的分離效能。以下為本研究主要的改性策略:(I) 在PIP水相溶液中添加羧酸單胺作為共反應劑; (II) 藉由聚乙二醇(PEG)調整基材膜的特性; (III) 在TMC有機相溶液中添加二氧化矽奈米顆粒,利用界面聚合反應,將奈米顆粒導入聚醯胺層中; (IV) 在PIP水相溶液中原位聚合聚多巴胺哌嗪(PDA-PIP) 顆粒,利用界面聚合反應,將顆粒導入聚醯胺層中; (V)在TMC有機相溶液中添加表面塗布聚多巴胺的二氧化矽顆粒,利用界面聚合反應,將顆粒導入聚醯胺層中。
鑑定薄膜的特性以關聯薄膜的分離效能。利用全射式傅立葉轉換紅外光譜儀及X射線光電子能譜鑑定薄膜的表面特性。以能量散射光譜儀分析二氧化矽奈米顆粒的分散性。藉由場發射式掃描顯微鏡及原子力顯微鏡分別觀察薄膜的型態及表面粗糙度。利用表面張力儀分析薄膜的親水性質。以固體表面電動分析儀或動態光散射儀測量材料的表面電性。利用對流式奈米過濾模組測試薄膜在不同壓力、鹽濃度及溫度下的分離效能及抗結垢能力。
改質方法(I): 在本研究中以具有不同羧酸基結構的一元胺(對胺基苯甲酸(ABA),6-胺基乙酸(ACA)及3-胺基丙酸(APA))作為共反應劑,利用界面聚合反應製備奈米過濾複合薄膜。ABA、ACA及APA分別添加入水相PIP溶液中,與TMC在多孔的聚碸基材膜表面進行界面聚合反應,並分別命名為TFC50PEG200-ABA、TFC50PEG200-ACA及TFC50PEG200-APA (TFC為複合薄膜; 50PEG200 為分子量為200的PEG,相對於聚碸含量的PEG的濃度為50% )。實驗結果指出,薄膜表面親水性與電荷密度會隨著羧酸基的導入而增加,藉由一元胺結構及含量的變化可調控薄膜的分離效能。薄膜的純水通量由低至高依序為TFC50PEG200 < TFC50PEG200-APA < TFC50PEG200-ACA < TFC50PEG200-ABA。當ABA:PIP = 5:5(w/w) 時,TFC50PEG200-ABA具有最佳奈米過濾效能,水透過量為JH2O = 66.4 ± 6.8 L∙m−2∙h−1; 且Na2SO4及NaCl的截留率分別為93.2 ± 1.6% 及RNaCl = 15.5 ± 1.2% (條件為1000 ppm 鹽水溶液, 0.6 MPa, 25 °C) 。TFC50PEG200-ABA在不同操作條件亦展現穩定的奈米過濾效能且具有傑出的抗結垢能力。
改質方法(II): 本研究以改質方法(I)的最佳效能(ABA:PIP = 5:5(w/w))的製備條件為基準做為起始,在聚碸高分子溶液中添加PEG,藉由改變PEG的分子量(200–35k Da)與濃度(10–70 wt%,以聚碸為基準),以調整聚碸基材膜表面親水性及性質。此改質影響界面聚合聚醯胺層的生成機制。FESEM 和 AFM的結果顯示,在基材中導入PEG,使聚醯胺層的表面由粗糙轉變為平滑。由奈米過濾測試結果顯示,添加50 wt% PEG20k的薄膜 可得到最高的水通量(當0.6 MPa 時,通量為75.6 ± 6.4 L∙m−2∙h−1)及鹽的截留率(93.1 ± 4.4% Na2SO4; 19.4% ± 4.9% NaCl)。其所製備的聚碸基材膜具有低表面孔隙度、較小的孔大小分佈及適當的親水性,使得薄膜具有高的奈米過濾分離效能。
改質方法(III): 在此部分選用尺寸為50 nm的二氧化矽,以顆粒/單體重量比例為0.35 g/g的含量添加入PIP或TMC溶液,並用薄膜特性及效能來選擇二氧化矽的分散液。從FESEM及EDX結果可得知,當二氧化矽添加入TMC溶液時,其界面聚合後所形成的聚醯胺層中,埋入較多的二氧化矽。奈米過濾測試結果顯示,在TMC溶液中添加二氧化矽粒子所形成的薄膜具有較高分離效能(當操作壓力為0.6 MPa時,純水透過量為 58.3 ± 3.8 L∙m−2∙h−1,且Na2SO4截留率為 98.3 ± 1.0 %)。本研究亦探討二氧化矽顆粒尺寸 (50, 200, 500 nm)與添加濃度(0–0.95 g silica/g TMC)對薄膜效能的影響。FESEM可觀測到小顆粒在薄膜中具有良好的分散性(顆粒與顆粒間具有一定的距離),而大顆粒則會團聚,進而形成層狀的顆粒層。當添加的顆粒濃度較低時(0.35 g/g 二氧化矽/TMC),TFN50PEG20k-silica50o 薄膜(TFN = 奈米複合薄膜; 50PEG20k 為分子量為20k的PEG 相對於PSf時的濃度為50 wt%; silica50 為二氧化矽顆粒大小為50奈米;下標 o 表示二氧化細顆粒分佈在油相溶液中) 具有最高的純水透過量(58.3 ± 3.8 L∙m−2∙h−1),且具有較其他薄膜優異的阻鹽率[RNa2SO4 (98.3 ± 1.0%) > RMgSO4 (96.5 ± 2.6%) > RMgCl2 (67.2 ± 1.3%) > RNaCl (42.6 ± 2.3%)]。當添加的顆粒濃度較高時,純水通量取決於埋入聚醯胺層的顆粒尺寸,而阻鹽率隨著顆粒尺寸增加而降低。本研究也用牛血清蛋白 (BSA)做為結垢物,有埋入二氧化矽顆粒的薄膜具有傑出的水通量回復率及抗結垢能力。
改質方法(IV): 因有機粒子對高分子材料的貼附性較無機粒子高,故本研究利用水及乙醇做為溶劑,原位聚合聚多巴胺-哌嗪(PDA-PIP)奈米粒子。多巴胺與哌嗪經歷環化及氧化反應(麥克加成反應及希夫鹼),可聚合成聚多巴胺-哌嗪(PDA-PIP) 奈米粒子,且此粒子不須再度純化。PDA-PIP 奈米粒子被視為改質劑,且直接製成奈米過濾薄膜。奈米粒子的尺寸與形貌可藉由改變以下實驗參數進行調控:多巴胺自聚合時間、水-乙醇的比例、PIP溶液之pH、多巴胺的濃度等。含有PDA-PIP奈米粒子之薄膜具較佳的親水性。UV可見光譜顯示,在多巴胺自聚合30小時後,有大量奈米顆粒形成。當水-乙醇比例為5:2;PIP溶液之pH為11.2;多巴胺濃度為0.15 wt%時,可在水相溶液中形成尺寸均一奈米粒子,且獲得高效能的奈米過濾薄膜。其中TFN50PEG20k-PDA-PIPa (下標 a 表示二氧化矽顆粒分佈在水相溶液中) 薄膜具有最佳的奈米過濾效能:純水通量為59.1 ± 3.3 L∙m−2∙h−1;硫酸鈉阻鹽率為98.0 ± 2.0%;氯化鈉阻鹽率為44.1 ± 0.7%。在牛血清蛋白抗結垢測試中,薄膜經過三次循環測試(每次皆包含清洗)後,雖然部分牛血清蛋白附著於薄膜表面上,但薄膜通量回復率仍達1.32,顯示此薄膜具有高抗結垢能力。
改質方法(V): 構築通道以提升薄膜效能為一具有發展潛力的方法。此方法常由結合無機及有機特性的奈米粒子作為添加劑,以提升薄膜的分離效能。聚多巴胺披覆二氧化矽,係利用聚多巴胺仿生特性--仿效貽貝類的黏附性質,達到批覆效果。此批覆程序可視為多巴胺自聚合於二氧化矽表面。本研究將聚多巴胺包覆二氧化矽導入由PIP及TMC進行的界面聚合反應,將顆粒嵌入聚醯胺層內。由EDX分析結果證實,相較於僅含有二氧化矽之薄膜,含PDA-silica50的薄膜(TFN50PEG20k-PDA-silica50o) 表面出現較多奈米粒子,因此,含PDA-silica50的薄膜有較高的親水性。當比例為0.35 g PDA-silica50/g TMC時,TFN50PEG20k-PDA-silica50o薄膜具有最高純水通量:80.0 ± 4.6 L∙m−2∙h−1;阻鹽率分別為:硫酸鈉97.4 ± 1.6%; 硫酸鎂94.2 ± 2.4%;氯化鎂68.2 ± 1.9%;氯化鈉35.2 ± 7.5%。此薄膜能承受各種操作條件,顯示其具有高操作穩定性,且在牛血清蛋白抗結垢測試中,此薄膜具有最高的通量回復率。
綜合改質方法(I)到(V)的實驗結果得知,導入聚多巴胺披覆二氧化矽混成奈米粒子的薄膜可獲得最佳奈米過濾效能。結合有機/無機奈米粒子的優點可製備具高效能的薄膜。針對奈米過濾薄膜效能的提升,本研究提供一有系統且有效的改質新觀點。
Membrane technology for water treatment and purification, recycling, and reuse must be improved further because of the increasingly serious global water scarcity. A popular pressure-driven membrane technology is nanofiltration. The main method of fabricating commercial nanofiltration membranes is interfacial polymerization that involves piperazine (PIP) and trimesoyl chloride (TMC) monomers. In this Ph.D. dissertation, thin-film composite nanofiltration polyamide membranes were fabricated differently by modifying existing methods to improve efficiency. The following modifications were adopted: (1) addition of carboxylic monoamines to PIP solution as co-reactant; (2) tailoring the surface properties of supporting layer by using polyethylene glycol (PEG); (3) embedding silica nanoparticles in polyamide layer by integrating them into interfacial polymerization; (4) in situ generation of polydopamine-piperazine (PDA-PIP) nanoparticles integrated into the reaction between PIP and TMC; and (5) embedding PDA-coated silica nanoparticles (PDA-silica50) in polyamide layer by way of adding them to TMC solution.
The fabricated membranes were characterized and their properties were correlated with performance. Their surface properties were understood through attenuated total reflectance-Fourier transform infrared and X-ray photoelectron spectrometry. Membranes with silica nanoparticles were mapped for Si distribution by using energy dispersive spectroscopy (EDX). Morphology and surface roughness were examined using field emission scanning electron microscopy (FESEM) and atomic force microscopy (AFM), respectively. The hydrophilic properties were determined using an automatic interfacial tensiometer. Surface charge was measured by a SurPASS electrokinetic analyzer or dynamic light scattering instrument. Membrane performance and antifouling ability were evaluated using a crossflow nanofiltration setup as a function of several operating conditions: pressure, salt concentration, pH, and temperature.
Modification (1): Addition of carboxylic monoamines to PIP solution as co-reactant. A series of high-performance thin-film composite nanofiltration polyamide membranes was fabricated through interfacial polymerization, where different monoamines containing terminal carboxylic groups [4-aminobenzoic acid (ABA), 6-aminocaproic acid (ACA), and 3-aminopropanoic acid (APA)] were incorporated. ABA, ACA, or APA was added to an aqueous PIP solution that was reacted with TMC through interfacial polymerization on a porous polysulfone (PSf) support. Each modified thin-film composite (TFC50PEG200) membrane was designated as TFC50PEG200-ABA, TFC50PEG200-ACA, or TFC50PEG200-APA (TFC = thin-film composite; 50PEG200 referred to PEG concentration of 50 wt%, based on PSf, and molecular weight of 200). Both the membrane hydrophilicity and surface charge density were increased as a result of introducing carboxylic monoamines. The membrane performance was tailored by adjusting the monoamine structure and content. Pure water flux increased in the following trend: TFC50PEG200 < TFC50PEG200-APA < TFC50PEG200-ACA < TFC50PEG200-ABA. Accordingly, TFC50PEG200-ABA, where ABA:PIP = 5:5 (w/w), yielded an optimum performance: water flux, JH2O = 66.2 ± 4.5 L∙m−2∙h−1; salt rejections: RNa2SO4 = 93.2 ± 1.6% and RNaCl = 15.5 ± 1.2% (1000 ppm aqueous salt solution, 0.6 MPa, 25 °C). Moreover, TFC50PEG200-ABA delivered stable performance at various operating conditions and exhibited excellent antifouling properties.
Modification (2): Tailoring the surface properties of PSf support by using PEG. Herein, ABA:PIP = 5:5 (w/w) was considered as it yielded the best membrane performance discussed in Modification (1). A solution of PSf was prepared. PEG with different molecular weights (200–35k Da) and varying concentrations (10–70 wt% based on PSf) was added to alter the hydrophilicity and surface properties of PSf. This alteration facilitated the formation of a thin polyamide layer on PSf during the interfacial polymerization reaction between an aqueous solution containing ABA and PIP and an organic solution of TMC. FESEM and AFM demonstrated that the presence of PEG in the membrane support transformed the thin-film polyamide layer morphology from a rough to a smooth surface. A crossflow nanofiltration test indicated that a thin-film composite polyamide membrane comprising a PSf support with 50 wt% PEG 20k delivered the highest water flux (74.3 ± 4.6 L∙m−2∙h−1 at 0.6 MPa) and salt rejection efficiency (93.1 ± 4.4% Na2SO4; 19.4% ± 4.9% NaCl). This PSf support exhibiting a low surface porosity, small pore size, and suitable hydrophilicity lent to a high-performance thin-film composite polyamide membrane.
Modification (3): Embedding silica nanoparticles in polyamide layer by integrating them into interfacial polymerization. Silica nanoparticles (50 nm) were added to a solution of either PIP or TMC at the same nanoparticle/monomer ratio of 0.35 g/g. The effect of monomer (PIP and TMC) solvents was determined on the basis of the membrane characteristics and performance. According to FESEM and EDX analyses, more silica nanoparticles were embedded in polyamide when the nanoparticles were added to TMC solution. The results from crossflow nanofiltation tests indicated that adding silica nanoparticles to TMC solution yielded higher performance (58.3 ± 3.8 L∙m−2∙h−1 at 0.6 MPa, 98.3 ± 1.0 % Na2SO4 rejection). Next, the effect of the nanoparticle size (50, 200, 500 nm) and concentration (0–0.95 g silica/g TMC) on the membrane performance was systematically investigated. FESEM images delineated that small nanoparticles were widely dispersed in the membrane (spaces between particles existed); whereas large nanoparticles clustered together and gathered into a mass, forming a layer of layer of nanoparticles. When the nanoparticle concentration was low (0.35 g silica/g TMC), TFN50PEG20k-silica50o membrane (TFN = thin-film nanocomposite; 50PEG20k referred to PEG concentration of 50 wt%, based on PSf, and molecular weight of 20k; silica50 designated silica nanoparticles with 50-nm size; subscript o indicated that silica nanoparticles were dispersed in organic phase) delivered the highest pure water flux (58.3 ± 3.8 L∙m−2∙h−1); the salt rejection [RNa2SO4 (98.3 ± 1.0%) > RMgSO4 (96.5 ± 2.6%) > RMgCl2 (67.2 ± 1.3%) > RNaCl (42.6 ± 2.3%)] was comparable with that of the other membranes. At a high concentration of nanoparticles (0.75 g silica/g TMC), the water flux delivered by membranes that differed in the size of embedded nanoparticles was the same; however, the salt rejection decreased with increasing nanoparticle size. In antifouling tests with bovine serum albumin (BSA) used as model foulant, membranes with silica nanoparticles exhibited high water flux recovery and remarkable antifouling property.
Modification (4): In situ generation of PDA-PIP nanoparticles integrated into the reaction between PIP and TMC. Inorganic nanoparticles are known to have less adhesion properties than organic nanoparticles. Herein, organic nanoparticles—PDA-PIP—were synthesized in situ in a solution of PIP with binary solvents (water and ethanol), where dopamine and PIP underwent oxidation/cyclization (Michael addition and Schiff base) reactions, resulting in the in situ formation of PDA-PIP nanoparticles that required no further purification. Hence, they were directly adopted as a modifier for fabricating nanofiltration membranes. The particle size and morphology were tailored by varying the following experimental conditions: dopamine self-polymerization time, water-ethanol ratio, PIP solution pH, and dopamine concentration. Membranes with PDA-PIP nanoparticles were more hydrophilic. Ultraviolet-visible spectroscopy revealed that numerous nanoparticles were formed within 30 h of dopamine self-polymerization. The following operating conditions proved conducive to producing uniform nanoparticles and fabricating high-performance nanofiltration membranes: water-ethanol ratio = 5:2; PIP solution pH = 11.2; and dopamine concentration = 0.15 wt%. The TFN50PEG20k-PDA-PIPa (subscript a represented nanoparticle in aqueous phase) membranes delivered an optimum performance (high water permeability and high salt selectivity): JH2O = 59.1 ± 3.3 L∙m−2∙h−1; RNa2SO4 = 98.0 ± 2.0%; RNaCl = 44.1 ± 0.7%. More than three cycles of antifouling tests, including membrane washing after each cycle, were conducted; BSA was the model foulant. The results indicated that although BSA was immobilized on the membrane surface, the permeate flux recovery ratio (= final flux/initial flux) reached 1.32. Therefore, the modified membrane exhibited high antifouling ability.
Modification (5): Embedding PDA-coated silica nanoparticles in polyamide layer by way of adding them to TMC solution. Windows for improving further the membrane performance almost always open innovative avenues. In this regard, the notion was to combine the advantages of inorganic and organic nanoparticles, which were used as additives to elevate and upgrade the membrane performance. Silica50 were coated with PDA, which are known for its biomimicry of the adhesive characteristics of mussels. The coating process entailed the self-polymerization of dopamine on the surface of silica50. PDA-coated silica50 were embedded in the polyamide layer formed through the interfacial polymerization reaction between PIP and TMC. TFN membranes containing PDA-silica50 (TFN50PEG20k-PDA-silica50o) were compared with pristine polyamide membrane and with polyamide membrane embedded with uncoated silica50. EDX confirmed that TFN50PEG20k-silica50o contained more nanoparticles than the polyamide membrane with uncoated silica50. Accordingly, the hydrophilicity of TFN50PEG20k-PDA-silica50o was higher. TFN50PEG20k-PDA-silica50o fabricated from using a concentration of 0.35 g PDA-silica50/g TMC delivered the highest pure water flux of 80.0 ± 4.6 L∙m−2∙h−1; salt rejections were as follows: RNa2SO4 = 97.4 ± 1.6%; RMgSO4 = 94.2 ± 2.4%; RMgCl2 = 68.2 ± 1.9%; RNaCl = 35.2 ± 7.5%. Such a membrane withstood a wide range of operating conditions, showcasing its stability. Moreover, TFN50PEG20k-PDA-silica50o demonstrated the greatest antifouling ability, as its flux was the highest at the end of three cycles of antifouling tests, where BSA was used as model protein foulant.
From the aforementioned experimental results of Modification (1) through Modification (5), the introduction of hybrid PDA-coated silica nanoparticles was judged to yield the best membrane performance. Combining the advantages of organic and inorganic particles resulted in high-performance membranes. This Ph.D. dissertation contributes new insights into a systematic and effective modification of nanofiltration membranes.
Table of contents
摘要 i
Abstract iv
Acknowledgements viii
Table of contents xii
List of figures xvii
List of tables xxxiii
List of abbreviations xxxvi
List of symbols xxxvii
Chapter 1: Introduction 1
1.1 Water scarcity: Cause, effect, and solution 1
1.2 Membrane technology for wastewater treatment/recycling (or reuse): now and future 2
1.3 Membrane science and technology 3
1.3.1 Membrane structure 5
1.3.2 Types of membrane module 7
1.4 Pressure-driven membrane processes 10
1.5 Modes of filtration 12
1.6 Nanofiltration membrane 13
1.7 Separation mechanisms for nanofiltration 14
1.7.1 Physical sieving 14
1.7.2 Donnan exclusion 15
1.7.3 Dielectric exclusion 15
1.7.4 Solution–diffusion mechanism 17
1.8 Mechanism of transport in nanofiltration membranes 17
1.8.1 Irreversible thermodynamics 18
1.8.2 Steric Hindrance Pore Model and Hagen–Poiseuille Model 19
1.8.3 Teorell–Meyer–Sievers Model 21
1.8.4 Donnan Steric Pore-Flow Model 22
1.9 Preparation and modification of nanofiltration membranes 22
1.9.1 Phase-inversion process 23
1.9.2 Coating 24
1.9.3 Graft polymerization 25
1.9.4 Self-assembly 26
1.9.5 Interfacial polymerization 27
1.10 Applications of nanofiltration 30
1.10.1 In semiconductor industries 31
1.10.2 In food industries 31
1.10.3 In textile industries 32
1.10.4 In mining industries 32
1.10.5 In petroleum industries 32
1.10.6 In agricultural industries 33
1.10.7 In pharmaceutical and biotechnological industries 33
1.10.8 In water industries 34
1.10.9 In nonwater industries 34
1.11 Membrane Fouling 35
1.12 Polysulfone 36
1.13 Polyamide 36
1.14 Silica 37
1.15 Polydopamine 38
1.16 Motivation, objectives, and scope of dissertation 41
Chapter 2: Materials and Experimentation 42
2.1 Materials 42
2.2 Equipment 47
2.3 Experimental flowchart 48
2.4 Membrane preparation 51
2.4.1 Synthesis of silica spheres with different sizes 51
2.4.2 Polydopamine-piperazine nanoparticles generated in situ 51
2.4.3 Synthesis of polydopamine-coated silica sphere 52
2.4.4 Preparation of polysulfone support 52
2.4.5 Preparation of thin-film composite membranes 53
2.4 Particle and membrane characterization 56
2.4.1 Attenuated total reflectance-Fourier transform infrared spectroscopy 56
2.4.2 X-ray photoelectron spectroscopy 56
2.4.3 Field emission scanning electron microscopy 56
2.4.4 Measurement of surface porosity, pore size and membrane thickness 56
2.4.5 Energy dispersive X-ray spectroscopy 57
2.4.6 Atomic force microscopy 57
2.4.7 Automatic interfacial tensiometry 57
2.4.8 Dynamic light scattering (DLS) 57
2.4.9 SurPASS electrokinetic analysis 58
2.4.10 Thermal gravimetric analysis 58
2.4.11 Total organic carbon measurement 58
2.4.12 Ultraviolet-visible 58
2.4.13 Cross-flow filtration test 59
2.4.12 Antifouling test 59
Chapter 3:
Incorporation of carboxylic monoamines into thin-film composite nanofiltration polyamide membranes to enhance performance 61
3.1 Introduction 61
3.2 Results and discussion 62
3.2.1 Characterization of chemical structure and composition of polyamide membranes 62
3.2.2 Morphology and roughness of polyamide membranes 69
3.2.3 Hydrophilic and surface charge properties of polyamide membranes 71
3.2.4 Effect of carboxylic monoamine on membrane separation performance 72
3.2.5 Effect of ABA-to-PIP ratio on membrane properties and performance 73
3.2.8 Effect of operating conditions on membrane separation performance 77
3.2.9 Evaluation of membrane stability and antifouling properties 81
3.3 Conclusions 82
Chapter 4:
Correlating PSf Support Physicochemical Properties with Formation of Piperazine-Based Polyamide and Evaluating Resultant Nanofiltration Membrane Performance 84
4.1 Introduction 84
4.2 Results and discussion 86
4.2.1 Chemical structure of PSf support and TFC membranes 86
4.2.2 Effect of PEG 200 loading on nanofiltration membrane performance 88
4.2.3 Effect of PEG molecular weight on nanofiltration membrane performance 96
4.2.4 Molecular weight cutoff; salt and dye separation 103
4.2.5 Effect of operating condition on nanofiltration membrane performance 105
4.2.6 Mechanism 109
4.3 Conclusions 109
Chapter 5:
Performance and Antifouling Behavior of Thin-Film Nanocomposite Nanofiltration Membranes with Embedded Silica Spheres 110
5.1 Introduction 110
5.2 Results and discussion 111
5.2.1 Particle characterization 111
5.2.2 Effect of dispersing agent for silica particle on nanofiltration membrane property and performance 113
5.2.3 Effect of silica particle size on membrane property and performance 119
5.3.4 Molecular weight cutoff measurement 133
5.3.5 Effect of operating conditions on nanofiltration membrane performance 134
5.3 Conclusions 137
Chapter 6:
A Facile and Versatile Strategy for Fabricating Thin-film Nanocomposite Membranes with Polydopamine-Piperazine Nanoparticles Generated In Situ 138
6.1 Introduction 138
6.2 Results and discussion 139
6.2.1 Chemical properties of particles 139
6.2.2 Effect of self-polymerization time on solution property and nanofiltration membrane performance 142
6.2.3 Effect of preparation conditions on particle morphology and size 144
6.2.4 Characterization of chemical structure of polyamide membranes 149
6.2.5 Membrane morphology and surface roughness 151
6.2.6 Membrane hydrophilicity and surface charge 153
6.2.7 Comparison of membrane performance 153
6.2.8 Effect of preparation conditions on membrane property and performance 154
6.2.9 Antifouling test 163
6.2.10 Effect of operating conditions on nanofiltration membrane performance 164
6.3 Conclusions 167
Chapter 7:
Upgrading Performance of Thin-Film Nanocomposite Nanofiltration Membranes by Embedding them with Polydopamine-Coated Silica Nanoparticles 169
7.1 Introduction 169
7.2 Results and discussion 170
7.2.1 Particle characterization 170
7.2.2 Membrane characterization and performance evaluation 173
7.2.3 Effect of polydopamine-coated silica concentration on membrane performance 178
7.2.4 Antifouling property and membrane stability 179
7.2.5 Effect of operating conditions on membrane performance 182
7.2.6 Comparison between this work and other studies 185
7.3 Conclusions 187
Chapter 8: Conclusions and future work 188
8.1 Conclusions 188
8.2 Future work 190
References 191
About the author 210
Publications 211

List of figures

Chapter 1
Figure 1-1. Schematic representation of two-phase membrane separation system. 4
Figure 1-2. Schematic illustration of different symmetrical and assymetrical membranes. 6
Figure 1-3. Schematic illustration of fluid flow in plate-and-frame module. 7
Figure 1-4. Path flow in spirally wound membrane filtration module. 8
Figure 1-5. Path flow in tubular membrane filtration module. 9
Figure 1-6. Path flow in hollow fiber membrane filtration module. 10
Figure 1-7.
Schematic representations of microfiltration, ultrafiltration, nanofiltration, and reverse osmosis. 11
Figure 1-8. Schematic illustration of dead-end and cross-flow filtration modes. 13
Figure 1-9. Illustration of size sieving. 14
Figure 1-10.
Illustration of Donnan exclusion in negatively and positively charged nanofiltration membranes. 15
Figure 1-11. Illustration of dielectric exclusion. 16
Figure 1-12. Solution–diffusion mechanism. 17
Figure 1-13. Different methods of preparing nanofiltration membrane. 23
Figure 1-14. Different types of non-solvent induced phase separation. 24
Figure 1-15. Illustration of different coating process. 25
Figure 1-16. Illustration of graft polymerization on the membrane surface. 26
Figure 1-17.
Schematic illustration of preparing polyelectrolytes membranes by self-assembly of polycations and polyanions. 26
Figure 1-18. Diagram of polymer film growth at liquid interface [41]. 27
Figure 1-19.
Typical fabrication systems used in interfacial polymerization. Categories are liquid/monomer-solid (Lm-S), liquid/monomer-liquid (Lm-L), liquid/monomer-liquid/monomer (Lm-Lm), liquid/monomer-in-liquid (Lm-in-L), and liquid/monomer-in-liquid/monomer (Lm-in-Lm), where Lm represents liquid phase containing monomer. (Adapted from Song et al. [43] ) 29
Figure 1-20. Schematic illustration of interfacial polymerization process. 29
Figure 1-21. Illustration of thin-film composite membrane. 30
Figure 1-22. Six categories of fouling mechanisms. 35
Figure 1-23. (a) Photograph of PSf pellets; (b) molecular structure of PSf. 36
Figure 1-24. Interfacial polymerization reaction of piperazine and trimesoyl chloride. 37
Figure 1-25. Schematic representation of different stages and routes of sol–gel technology. 38
Figure 1-26.
Synthesis of polydopamine by two pathways (adapted from Hong et al. [145] ). 40

Chapter 2
Figure 2-1. Structure of N-methyl-2-pyrrolidone. 42
Figure 2-2. Structure of ethanol. 42
Figure 2-3. Structure of polyethylene glycol. 42
Figure 2-4. Structure of piperazine. 43
Figure 2-5. Structure of 4-aminobenzoic acid. 43
Figure 2-6. Structure of 6-aminocaproic acid. 43
Figure 2-7. Structure of 3-aminopropanoic acid. 43
Figure 2-8. Structure of trimesoyl chloride. 43
Figure 2-9. Structure of n-hexane. 44
Figure 2-10. Structure of dopamine hydrochloride. 44
Figure 2-11. Structure of tetraethyl orthosilicate. 44
Figure 2-12. Structure of tris-(hydroxymethyl)aminomethane. 44
Figure 2-13. Structure of raffinose pentahydrate. 45
Figure 2-14. Structure of α-Cyclodextrin. 45
Figure 2-15. Structure of D(+)-Glucose. 45
Figure 2-16. Structure of sucrose. 46
Figure 2-17. Structure of brilliant blue R. 46
Figure 2-18. Structure of amido black 10B. 47
Figure 2-19. Structure of methylene blue. 47
Figure 2-20. Structure of rose bengal. 47
Figure 2-21. Experimental flowchart. 50
Figure 2-22. Illustration of in situ generation of polydopamine-piperazine particles. 51
Figure 2-23. Schematic illustration of preparing PSf support. 52
Figure 2-24. Schematic illustration of preparing thin-film composite membranes. 54
Figure 2-25.
Schematic illustration of cross-flow filtration (a) setup and (b) process flow diagram. 60

Chapter 3
Figure 3-1.
Schematic illustration of interfacial polymerization between piperazine, carboxylic monoamines, and trimesoyl chloride. 64
Figure 3-2.
ATR-FTIR spectra of (a) PSf50PEG200, (b) TFC50PEG200, (c) TFC50PEG200-ABA, (d) TFC50PEG200-ACA, and (e) TFC50PEG200-APA. 64
Figure 3-3.
N1s X-ray photoelectron spectra of polyamide membranes: (a) TFC50PEG200, (b) TFC50PEG200-ABA, (c) TFC50PEG200-ACA, and (d) TFC50PEG200-APA. 65
Figure 3-4.
N1s X-ray photoelectron spectra of polyamide membranes: (a) TFC50PEG200, (b) TFC50PEG200-ABA, (c) TFC50PEG200-ACA, and (d) TFC50PEG200-APA. 66
Figure 3-5.
Surface FESEM images of (a) PSf50PEG200, (b) TFC50PEG200, (c) TFC50PEG200-ABA, (d) TFC50PEG200-ACA, and (e) TFC50PEG200-APA. Additive to PIP weight ratio = 4:6. 69
Figure 3-6.
Cross-sectional FESEM images of (a) PS50PEG200, (b) TFC50PEG200, (c) TFC50PEG200-ABA, (d) TFC50PEG200-ACA, and (e) TFC50PEG200-APA. Additive to PIP weight ratio = 4:6. 70
Figure 3-7.
Three-dimensional AFM images of (a) PSf50PEG200, (b) TFC50PEG200, (c) TFC50PEG200-ABA, (d) TFC50PEG200-ACA, and (e) TFC50PEG200-APA. Lateral scale = 5 µm. Vertical scale = −80 to 80 nm. 70
Figure 3-8. Dynamic water contact angles of PSf50PEG200 and polyamide membranes. 71
Figure 3-9.
Surface zeta potential of TFC50PEG200, TFC50PEG200-ABA, TFC50PEG200-ACA, and TFC50PEG200-APA at pH = 3–11 and 25 ºC. 72
Figure 3-10.
Nanofiltration performance of thin-film composite membranes with different carboxylic monoamine additives (weight ratio of carboxylic monoamine to PIP is 4:6). Operating pressure at 0.6 MPa. Feed: 1000 ppm aqueous Na2SO4 solution; pH = 7. 73
Figure 3-11.
Surface FESEM images of TFC50PEG200-ABA produced from using varying ABA-to-PIP weight ratios: (a) 2:8; (b) 3:7; (c) 4:6; (d) 5:5; and (e) 6:4. Defects are marked in image with red enclosures. 74
Figure 3-12.
Cross-sectional FESEM images of TFC50PEG200-ABA produced from using varying ABA-to-PIP weight ratios: (a) 2:8; (b) 3:7; (c) 4:6; (d) 5:5; and (e) 6:4. Defects are marked in image with red enclosures. 75
Figure 3-13.
Three-dimensional AFM images of TFC50PEG200-ABA produced from using varying ABA-to-PIP weight ratios: (a) 2:8; (b) 3:7; (c) 4:6; (d) 5:5; and (e) 6:4. Lateral scale = 5 µm. Vertical scale = −80 to 80 nm. 75
Figure 3-14.
Water contact angle of TFC50PEG200-ABA produced from using varying ABA-to-PIP weight ratios. Dynamic water contact angle measured at time = 1 min. 76
Figure 3-15.
Performance of TFC50PEG200-ABA membrane produced from using varying ABA-to-PIP weight ratios. Operating pressure at 0.6 MPa. Feed: 1000 ppm aqueous Na2SO4 solution; pH = 7. 77
Figure 3-16.
Performance of TFC50PEG200 and TFC50PEG200-ABA membranes at different feed salt solutions. Operating pressure at 0.6 MPa. Feed: 1000 ppm aqueous salt solutions; pH = 7. Operating temperature = 25 ºC. 78
Figure 3-17.
Performance of TFC50PEG200 and TFC50PEG200-ABA membranes tested at different operating pressures. Feed: 1000 ppm aqueous Na2SO4 solution; pH = 7; operating temperature = 25 ºC. 79
Figure 3-18.
Performance of TFC50PEG200 and TFC50PEG200-ABA membranes at different feed concentrations. Operating pressure at 0.6 MPa; feed pH = 7; operating temperature = 25 ºC. 79
Figure 3-19.
Performance of TFC50PEG200 and TFC50PEG200-ABA membranes tested at different feed pH. Feed: 1000 ppm aqueous Na2SO4 solution; operating pressure at 0.6 MPa; operating temperature = 25 ºC. 80
Figure 3-20.
Performance of TFC50PEG200 and TFC50PEG200-ABA membranes tested at different operating temperatures. Feed: 1000 ppm aqueous Na2SO4 solution; pH = 7; operating pressure at 0.6 MPa. 81
Figure 3-21.
(a) Stability of TFC50PEG200 and TFC50PEG200-ABA membranes. Feed: 1000 ppm aqueous Na2SO4 solution; pH = 7; operating pressure at 0.6 MPa; operating temperature = 25 ºC. 82
Figure 3-22.
Antifouling properties of TFC50PEG200 and TFC50PEG200-ABA membranes at 0.6 MPa. (Bovine serum albumin solution = 100 ppm) 82

Chapter 4
Figure 4-1.
ATR-FTIR spectra of PSf membranes: (a) varying PEG 200 loadings and (b) varying PEG molecular weights. 86
Figure 4-2.
ATR-FTIR spectra of thin-film composite membranes: (a) varying PEG 200 loadings and (b) varying PEG molecular weights. 88
Figure 4-3.
Surface images of PSf supports modified with various PEG200 loadings: (a) 0 wt%, (b) 10 wt%, (c) 30 wt%, (d) 50 wt%, and (e) 70 wt%. Insets are ImageJ photos for quantifying surface porosity. 89
Figure 4-4.
Cross-sectional images of PSf supports modified with various PEG 200 loadings: (a) 0 wt%, (b) 10 wt%, (c) 30 wt%, (d) 50 wt%, and (e) 70 wt%. 90
Figure 4-5.
Surface images of thin-film composite membranes prepared from using PSf supports containing varying amounts of PEG 200: (a) TFC0-ABA, (b) TFC10PEG200-ABA, (c) TFC30PEG200-ABA, (d) TFC50PEG200-ABA, and (e) TFC70PEG200-ABA. 92
Figure 4-6.
Cross-sectional images of thin-film composite membranes prepared from using PSf supports containing varying amounts of PEG 200: (a) TFC0-ABA, (b) TFC10PEG200-ABA, (c) TFC30PEG200-ABA, (d) TFC50PEG200-ABA, and (e) TFC70PEG200-ABA. 93
Figure 4-7.
Zeta potential of thin-film composite membranes prepared from using PSf supports containing varying amounts of PEG 200; pH = 7.0. 94
Figure 4-8.
Performance of thin-film composite membranes prepared from using PSf supports containing varying amounts of PEG 200. Feed = 1000 ppm aqueous Na2SO4 solution. pH = 7, operating conditions = 0.60 MPa and 25 oC. 95
Figure 4-9.
Surface images of PSf supports modified using PEG with varying molecular weights: (a) 0, (b) 200, (c) 1k, (d) 10k, (e) 20k and (f) 35k. Insets are ImageJ photos for quantifying surface porosity. 97
Figure 4-10.
Cross-sectional images of PSf supports modified using PEG with varying molecular weights: (a) 0, (b) 200, (c) 1k, (d) 10k, (e) 20k and (f) 35k. 97
Figure 4-11.
Surface images of thin-film composite membranes prepared from using PEG with varying molecular weights: (a) TFC0-ABA, (b) TFC50PEG200-ABA, (c) TFC50PEG1k-ABA, (d) TFC50PEG10k-ABA, (e) TFC50PEG20k-ABA, and (f) TFC50PEG35k-ABA. 100
Figure 4-12.
Cross-sectional images of thin-film composite membranes prepared from using PEG with varying molecular weights: (a) TFC0-ABA, (b) TFC50PEG200-ABA, (c) TFC50PEG1k-ABA, (d) TFC50PEG10k-ABA, (e) TFC50PEG20k-ABA, and (f) TFC50PEG35k-ABA. 100
Figure 4-13.
Zeta potential of thin-film composite membranes prepared from using polyethylene glycol with varying molecular weights; pH = 7.0. 102
Figure 4-14.
Performance of thin-film composite membranes prepared from using PEG with varying molecular weights. Feed = 1000 ppm aqueous Na2SO4 solution. Operating conditions = 0.60 MPa and 25 oC. 103
Figure 4-15.
Determination of molecular weight cutoff of TFC50PEG20k-ABA. Feed: 1000 ppm aqueous sugar solution. Operating conditions: 0.60 MPa and 25 °C. 104
Figure 4-16.
Performance of TFC50PEG20k-ABA membrane on different salt solutions. Operating pressure= 0.6 MPa; feed: 1000 ppm aqueous salt solutions; pH = 7; operating temperature = 25 ºC. 104
Figure 4-17.
Dye separation performance of TFC50PEG20k-ABA membrane. Feed: 50 ppm aqueous dye solution; operating conditions: 0.6 MPa and 25 ºC. 105
Figure 4-18.
Performance of TFC50PEG20k-ABA membrane tested at different operating pressures. Feed: 1000 ppm aqueous Na2SO4 solution; pH = 7; operating temperature = 25 ºC. 106
Figure 4-19.
Performance of TFC50PEG20k-ABA membrane at different feed concentrations. Operating pressure = 0.6 MPa; feed pH = 7; operating temperature = 25 ºC. 106
Figure 4-20.
Performance of TFC50PEG20k-ABA membrane tested at different feed pH. Feed: 1000 ppm aqueous Na2SO4 solution; operating pressure = 0.6 MPa; operating temperature = 25 ºC. 107
Figure 4-21.
Performance of TFC50PEG20k-ABA membrane tested at different operating temperatures. Feed: 1000 ppm aqueous Na2SO4 solution; pH = 7; operating pressure = 0.6 MPa. 108
Figure 4-22.
Schematic representation of polyamide formation on two kinds of PSf supports. 108

Chapter 5
Figure 5-1.
TEM and FESEM images of silica particles with varying sizes: (a,d) 50 nm, (b,e) 200 nm, and (c,f) 500 nm. 112
Figure 5-2.
Distribution of hydrodynamic diameter of silica particles. Particle concentration = 100 ppm, measured at 25 °C. 112
Figure 5-3.
ATR-FTIR spectra of (a) PSf support, (b) TFC50PEG20k, (c) TFN50PEG20k-silica50a, (d) TFN50PEG20k-silica50o, and (e) silica50. Silica/monomer = 0.35 g/g. 114
Figure 5-4.
Surface FESEM images of (a) PSf50PEG20k, (b) TFC50PEG20k, (c) TFN50PEG20k-silica50a, and (d) TFN50PEG20k-silica50o. Silica/monomer = 0.35 g/g. 114
Figure 5-5.
Cross-sectional FESEM images of (a) PSf50PEG20k, (b) TFC50PEG20k, (c) TFN50PEG20k-silica50a, and (d) TFN50PEG20k-silica50o. Silica/monomer = 0.35 g/g. 115
Figure 5-6.
EDX surface mapping of (a) TFN50PEG20k-silica50a, and (b) TFN50PEG20k-silica50o. Silica/monomer = 0.35 g/g. 116
Figure 5-7.
Three-dimensional AFM images of (a) PSf50PEG20k, (b) TFC50PEG20k, (c) TFN50PEG20k-silica50a, and (d) TFN50PEG20k-silica50o. Silica/monomer = 0.35 g/g. Scan size = 10 µm; z-axis = −150 to 150 nm. 117
Figure 5-8.
Water contact angle of TFC, TFN50PEG20k-Silica50a and TFN50PEG20k-Silica50o. Silica/monomer = 0.35 g/g. 117
Figure 5-9.
Surface zeta-potential of TFC50PEG20k, TFN50PEG20k-silica50a, and TFN50PEG20k-silica50o. Silica/monomer = 0.35 g/g. 118
Figure 5-10.
Performance of TFC50PEG20k, TFN50PEG20k-silica50a, and TFN50PEG20k-silica50o membranes. Silica/monomer = 0.35 g/g. 118
Figure 5-11.
ATR-FTIR spectra of (a) TFN50PEG20k-silica50o, (b) TFN50PEG20k-silica200o, and (c) TFN50PEG20k-silica500o. Silica/TMC = 0.35 g/g. 119
Figure 5-12.
Surface FESEM images of the following thin-film nanocomposite membranes:(a) TFN50PEG20k-silica50; (b) TFN50PEG20k-silica200o; (c) TFN50PEG20k-silica500o. Ratio of silica to trimesoyl chloride = 0.35 g/g. 120
Figure 5-13.
Cross-sectional FESEM images of the following nanofiltration membranes: (a,b) TFN50PEG20k-silica50o; (c,d) TFN50PEG20k-silica200o; (e,f) TFN50PEG20k-silica500o. Image magnification: left column: ×5k; right column: = ×50k. Ratio of silica to monomer = 0.35 g/g. 121
Figure 5-14.
Three-dimensional AFM images of the following thin-film nanofiltration membranes: (a) TFN50PEG20k-silica50o; (b) TFN50PEG20k-silica200o; (c) TFN50PEG20k-silica500o. Lateral scale = 10 μm; vertical scale = −600 to 600 nm. 122
Figure 5-15. Dynamic water contact angles of membranes (time = 1 min). 122
Figure 5-16.
Surface zeta-potential of membranes measured at pH = 7. 123
Figure 5-17.
Effect of silica50 concentrations on nanofiltration membrane performance. Feed: 1000 ppm Na2SO4; operating pressure and temperature: 0.6 MPa, 25 °C; pH = 7.0. 124
Figure 5-18.
Effect of silica200 concentrations on nanofiltration membrane performance. Feed: 1000 ppm Na2SO4; operating pressure and temperature: 0.6 MPa, 25 °C; pH = 7.0. 125
Figure 5-19.
Effect of silica500 concentrations on nanofiltration membrane performance. Feed: 1000 ppm Na2SO4; operating pressure and temperature: 0.6 MPa, 25 °C; pH = 7.0. 126
Figure 5-20.
Comparison of nanofiltration membrane performance at (a) low and (b) high concentrations of silica particles of varying sizes. Feed: 1000 ppm Na2SO4; operating pressure and temperature: 0.6 MPa, 25 °C; pH = 7.0. 127
Figure 5-21.
Analysis of salt rejections for TFC and TFN50PEG20k-silica50o membranes. Feed: 1000 ppm salt solutions; operating pressure and temperature: 0.6 MPa, 25 °C; pH = 7.0. 128
Figure 5-22.
Antifouling behavior of thin-film composite membrane (TFC50PEG20k) and the following thin-film nanocomposite membranes: TFN50PEG20k-silica50o; TFN50PEG20k-silica200o; TFN50PEG20k-silica500o. Feed: 100 ppm bovine serum albumin at pH 7.4; operating pressure and temperature: 0.6 MPa, 25 °C. 129
Figure 5-23.
EDX analysis of the following thin-film nanofiltration membranes: (I) before nanofiltration: (a) TFN50PEG20k-silica50o; (b) TFN50PEG20k-silica200o; (c) TFN50PEG20k-silica500o; (II) after nanofiltration: (d) TFN50PEG20k-silica50o; (e) TFN50PEG20k-silica200o; (f) TFN50PEG20k-silica500o. 130
Figure 5-24.
Surface FESEM images of the following thin-film nanofiltration membranes: (I) before nanofiltration: (a) TFN50PEG20k-silica50o; (b) TFN50PEG20k-silica200o; (c) TFN50PEG20k-silica500o; (II) after nanofiltration: (d) TFN50PEG20k-silica50o; (e) TFN50PEG20k-silica200o; (f) TFN50PEG20k-silica500o. 132
Figure 5-25.
Cross-sectional FESEM images of the following thin-film nanofiltration membranes: (I) before nanofiltration: (a) TFN50PEG20k-silica50o; (b) TFN50PEG20k-silica200o; (c) TFN50PEG20k-silica500o; (II) after nanofiltration: (d) TFN50PEG20k-silica50o; (e) TFN50PEG20k-silica200o; (f) TFN50PEG20k-silica500o. 133
Figure 5 26.
Molecular weight cutoff of TFC50PEG20k and TFN50PEG20k-silica50o membranes. 134
Figure 5-27.
Performance of TFC50PEG20k and TFN50PEG20k-silica50o membranes tested at different operating pressures. Feed: 1000 ppm aqueous Na2SO4 solution; pH = 7; operating temperature = 25 ºC. 135
Figure 5-28.
Performance of TFC50PEG20k and TFN50PEG20k-silica50o membranes at different feed concentrations. Operating pressure = 0.6 MPa; feed pH = 7; operating temperature = 25 ºC. 135
Figure 5-29.
Performance of TFC50PEG20k and TFN50PEG20k-silica50o membranes tested at different feed pH. Feed: 1000 ppm aqueous Na2SO4 solution; operating pressure = 0.6 MPa; operating temperature = 25 ºC. 136
Figure 5-30.
Performance of TFC50PEG20k and TFN50PEG20k-silica50o.membranes tested at different operating temperatures. Feed: 1000 ppm aqueous Na2SO4 solution; pH = 7; operating pressure = 0.6 MPa. 137

Chapter 6
Figure 6-1. FTIR spectra of (a) DA, (b) PDA-PIP, and (c) PDA nanoparticles. 140
Figure 6-2.
O1s and N1s spectra from XPS analysis for (a,b) PDA and (c,d) PDA-PIP nanoparticles. 141
Figure 6-3.
Photographs of polydopamine-piperazine solutions as function of polymerization time. 143
Figure 6-4.
Ultraviolet-visible absorbance of solutions at different periods of polymerization time. 143
Figure 6-5. Performance of TFN50PEG20k-PDA-PIPa membrane vs. polymerization time. 144
Figure 6-6.
FESEM images of particles prepared at different water-ethanol ratios: (a) pure water, (b) 6:1, (c) 5:2, (d) 4:3, and (e) 3:4. Dopamine concentration = 0.15 wt%; polymerization reaction time = 30 h; pH of piperazine solution = 11.2. 144
Figure 6-7.
Size distribution of particles prepared at different water-ethanol ratios: (a) 5:2, (b) 4:3, and (c) 3:4. Dopamine concentration = 0.15 wt%; polymerization reaction time = 30 h; pH of piperazine solution = 11.2. 145
Figure 6-8.
Field emission scanning electron microscopic images of particles prepared at different PIP solution pH: (a) 7.5, (b) 8.5, (c) 9.5, (d) 10.5, and (e) 11.2. Dopamine concentration = 0.15 wt%; polymerization reaction time = 30 h; water-ethanol ratio = 5:2. 146
Figure 6-9.
Size distribution of particles prepared at different PIP solution pH: (a) 7.5, (b) 8.5, (c) 9.5, (d) 10.5, and (e) 11.2. Dopamine concentration = 0.15 wt%; polymerization reaction time = 30 h; water-ethanol ratio = 5:2. 147
Figure 6-10.
Field emission scanning microscopic images of particles prepared at different dopamine concentrations: (a) 0.05 wt%, (b) 0.15 wt%, (c) 0.25 wt%, and (d) 0.35 wt%. Polymerization reaction time = 30 h; water-ethanol ratio = 5:2; pH of piperazine solution = 11.2. 148
Figure 6-11.
Size distribution of particles prepared at different dopamine concentrations: (a) 0.05 wt%, (b) 0.15 wt%, (c) 0.25 wt%, and (d) 0.35 wt%. Polymerization reaction time = 30 h; water-ethanol ratio = 5:2; pH of piperazine solution = 11.2. 149
Figure 6-12.
ATR-FTIR spectra of (a) PSf50PEG20k, (b) TFC50PEG20k, (c) TFC50PEG20k-WE, and (d) TFN50PEG20k-PDA-PIPa. 150
Figure 6-13.
Surface field emission scanning electron microscopic images the following membranes : (a) PSf50PEG20k, (b) TFC50PEG20k, (c) TFC50PEG20k-WE, and (d) TFN50PEG20k-PDA-PIPa. 151
Figure 6-14.
Cross-sectional field emission scanning electron microscopic images of the following membranes: (a) PSf50PEG20k, (b) TFC50PEG20k, (c) TFC50PEG20k-WE, and (d) TFN50PEG20k-PDA-PIPa. 152
Figure 6-15.
Performance of TFC50PEG20k, TFC50PEG20k-WE, and TFN50PEG20k-PDA-PIPa membranes. Feed: =1000 ppm aqueous Na2SO4 solution at pH = 7.0; Operating conditions: 0.60 MPa and 25 °C. 154
Figure 6-16.
Surface field emission scanning electron microscopic images of TFN50PEG20k-PDA-PIPa at different water-ethanol ratios: (a) pure water, (b) 6:1, (c) 5:2, (d) 4:3, and (e) 3:4. Dopamine concentration = 0.15 wt%; polymerization reaction time = 30 h; pH of piperazine solution = 11.2. 155
Figure 6-17.
Cross-sectional field emission scanning electron microscopic images of TFN50PEG20k-PDA-PIPa at different water-ethanol ratios: (a) pure water, (b) 6:1, (c) 5:2, (d) 4:3, and (e) 3:4. Dopamine concentration = 0.15 wt%; polymerization reaction time = 30 h; pH of piperazine solution = 11.2. 156
Figure 6-18.
Performance of TFN50PEG20k-PDA-PIPa at different water-to-ethanol volumetric ratios. Feed: 1000 ppm aqueous Na2SO4 solution at pH = 7.0; operating conditions: 0.6 MPa and 25 °C. 157
Figure 6-19.
Surface field emission scanning electron microscopic images of TFN50PEG20k-PDA-PIPa at different PIP solution pH: (a) 7.5, (b) 8.5, (c) 9.5, (d) 10.5, and (e) 11.2; Dopamine concentration = 0.15 wt%; polymerization reaction time = 30 h; water-ethanol ratio = 5:2. 158
Figure 6-20.
Cross-sectional field emission scanning electron microscopic images of TFN50PEG20k-PDA-PIPa at different PIP solution pH: (a) 7.5, (b) 8.5, (c) 9.5, (d) 10.5, and (e) 11.2. Dopamine concentration = 0.15 wt%; polymerization reaction time = 30 h; water-ethanol ratio = 5:2. 158
Figure 6-21.
Performance of TFN50PEG20k-PDA-PIPa membrane at different PIP solution pH. Feed: 1000 ppm Na2SO4 solution at pH = 7.0; operating conditions: 0.6 MPa and 25 °C. 160
Figure 6-22.
Surface field emission scanning electron microscopic images of TFN50PEG20k-PDA-PIPa at different dopamine concentrations: (a) 0.05, (b) 0.15, (c) 0.25, and (d) 0.35 wt%. PIP solution pH = 11.2; Polymerization reaction time = 30 h; water-ethanol ratio = 5:2. 160
Figure 6-23.
Cross-sectional field emission scanning electron microscopic images of TFN50PEG20k-PDA-PIPa at different dopamine concentrations: (a) 0.05, (b) 0.15, (c) 0.25, and (d) 0.35 wt%. PIP solution pH = 11.2; Polymerization reaction time = 30 h; water-ethanol ratio = 5:2. 161
Figure 6-24.
Performance of TFN50PEG20k-PDA-PIPa at different dopamine concentrations. Feed: 1000 ppm Na2SO4 solution at pH = 7.0; operating conditions: 0.6 MPa and 25 °C. 163
Figure 6-25.
Antifouling tests for TFC50PEG20k, TFC50PEG20k-WE, and TFN50PEG20k-PDA-PIPa at 0.6 MPa; for each cycle, pure water and 100 ppm aqueous BSA solution were fed one alternately at intervals of 5 h; membrane was washed with deionized water after each cycle. pH = 7.4; operating temperature = 25 °C. 164
Figure 6-26.
Performance of TFC50PEG20k and TFN50PEG20k-PDA-PIPa membranes at different operating pressures. Feed: 1000 ppm Na2SO4 solution; pH = 7; operating temperature = 25 ºC. 165
Figure 6-27.
Performance of TFC50PEG20k and TFN50PEG20k-PDA-PIPa at different feed salt concentrations. Operating pressure = 0.6 MPa; pH = 7; operating temperature = 25 ºC. 166
Figure 6-28.
Performance of TFC50PEG20k and TFN50PEG20k-PDA-PIPa at different feed pH. Feed: 1000 ppm Na2SO4 solution; operating pressure = 0.6 MPa; operating temperature = 25 ºC. 166
Figure 6-29.
Performance of TFC50PEG20k and TFN50PEG20k-PDA-PIPa membranes at different operating temperatures. Feed: 1000 ppm Na2SO4 solution; operating pressure = 0.6 MPa; pH = 7. 167

Chapter 7
Figure 7-1.
Attenuated total reflectance–Fourier transform infrared spectra of (a) silica50 and (b) polydopamine-coated silica50. 171
Figure 7-2.
Field emission scanning electron microscopic and transmission electron microscopic images of (a,b) silica50 and (c,d) polydopamine-coated silica50. 171
Figure 7-3.
Hydrodynamic diameter distribution of silica50 and polydopamine-coated silica50. 172
Figure 7-4.
Thermal gravimetric analysis of silica nanoparticles and polydopamine-coated silica (under atmospheric air conditions). 173
Figure 7-5.
Attenuated total reflectance–Fourier transform infrared spectra of (A) PSf50PEG20k, (B) TFC50PEG20k, (C) TFN50PEG20k-silica50o, and (D) TFN50PEG20k-PDA-silica50o. 174
Figure 7-6.
Energy dispersive X-ray elemental mapping of Si distribution in atomic weight percent: (a) TFN50PEG20k-silica50o; (b) TFN50PEG20k-PDA-silica50o. 174
Figure 7-7.
Surface and cross-sectional scanning electron microscopic images of (a,e) PSf50PEG20k, (b,f) TFC50PEG20k, (c,g) TFN50PEG20k-silica50o, and (d,h) TFN50PEG20k-PDA-silica50o. 175
Figure 7-8.
Water contact angle analysis for TFC50PEG20k, TFN50PEG20k-silica50o, and TFN50PEG20k-PDA-silica50o. 176
Figure 7-9.
Surface zeta-potential of TFC50PEG20k, TFN50PEG20k-silica50o, and TFN50PEG20k-PDA-silica50o. 176
Figure 7-10.
Comparison of TFC50PEG20k, TFN50PEG20k-silica50o, and TFN50PEG20k-PDA-silica50o membrane performance. Feed: 1000 ppm salt solution; operating pressure = 0.6 MPa; pH = 7; operating temperature = 25 ºC. 177
Figure 7-11.
Determination of molecular weight cutoff for TFC50PEG20k, TFN50PEG20k-silica50o, and TFN50PEG20k-PDA-silica50o. 178
Figure 7-12.
Performance of TFN50PEG20k-PDA-silica50o membrane at different concentrations of PDA-silica50. Feed: 1000 ppm Na2SO4 solution; operating pressure = 0.6 MPa; pH = 7; operating temperature = 25 ºC. 179
Figure 7-13.
Antifouling property of TFC50PEG20k, TFN50PEG20k-silica50o, and TFN50PEG20k-PDA-silica50o. Feed: 100 ppm BSA solution; pH = 7.4; operating pressure = 0.6 MPa; operating temperature = 25 ºC. 180
Figure 7-14.
Long-term stability analysis of TFN50PEG20k-PDA-silica50o. Feed: 1000 ppm Na2SO4 solution; operating pressure = 0.6 MPa; pH = 7; operating temperature = 25 ºC. 181
Figure 7-15.
Performance of TFC50PEG20k, TFN50PEG20k-silica50o, and TFN50PEG20k-PDA-silica50o membranes at different operating pressures. Feed: 1000 ppm Na2SO4 solution; pH = 7; operating temperature = 25 ºC. 182
Figure 7-16.
Performance of TFC50PEG20k, TFN50PEG20k-silica50o, and TFN50PEG20k-PDA-silica50o at different salt concentrations. Operating pressure = 0.6 MPa; pH = 7; operating temperature = 25 ºC. 183
Figure 7-17.
Performance of TFC50PEG20k, TFN50PEG20k-silica50o, and TFN50PEG20k-PDA-silica50o at different feed pH. Operating pressure = 0.6 MPa; feed: 1000 ppm Na2SO4 solution; operating temperature = 25 ºC. 184
Figure 7-18.
Performance of TFC50PEG20k, TFN50PEG20k-silica50o, and TFN50PEG20k-PDA-silica50o at different operating temperatures. Operating pressure = 0.6 MPa; pH = 7; 185
Figure 7-19.
Comparison between Na2SO4 salt rejections reported by this work and those reported by other studies. (★) This work (Chapter 7): piperazine–(trimesoyl chloride + polydopamine-coated silica50) (TFN50PEG20k-PDA-silica50o); (★) This work (Chapter 6): piperazine–(trimesoyl chloride + polydopamine-piperazine particle) (TFN50PEG20k-PDA-PIPa); (★) This work (Chapter 5): piperazine–(trimesoyl chloride + silica50) (TFN50PEG20k-silica50o); (★) This work (Chapter 4): piperazine–(trimesoyl chloride + silica50) (TFN50PEG20k-ABA); (★) This work: control membrane piperazine–trimesoyl chloride (TFN50PEG20k); (●) [152]: piperazine–(trimesoyl chloride + cationic cetyltrimethylammonium bromide); (▲) [152]: piperazine–(trimesoyl chloride + anionic sodium dodecyl sulfate); (▼) [59]: (piperazine + silica sol)–trimesoyl chloride; (◆) [259]: piperazine–trimesoyl chloride-grafted biogenic silver nanoparticles; (◀) [260]: (piperazine + zeolitic imidazolate framework-8)–trimesoyl chloride [260]; (▶) [160]: piperazine–3,3’,5,5’-biphenyl tetraacyl chloride; (⬢) [261]: piperazine–trimesoyl chloride-grafted N-aminoethyl piperazine propane sulfonate; (■) [262]: (piperazine + chitosan)–trimesoyl chloride; (⬟) [263]: (piperazine + reduced graphene oxide/titanium oxide)–trimesoyl chloride; (△) [264]: piperazine–(trimesoyl chloride + poly(methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes); (▷) [265]: (piperazine + silica sol + poly(styrene sulfonic acid) sodium salt)–trimesoyl chloride; (◁) [266] piperazine–(trimesoyl chloride + titanate nanotubes); (⬡) [267]: potassium 2,5-bis(4-aminophenoxy)benzenesulfonate–trimesoyl chloride; (◇) [268]: (piperazine + 2,20-benzidinedisulfonic acid)–trimesoyl chloride; (▽) [269]: (piperazine + poly(amidoamine)–trimesoyl chloride; (□) [270]: commercial membrane, NF-270 (polyamide); (○) [24]: commercial membrane, Nitto-Denko NTR-7450; (⬠) [24]: commercial membrane, Toray UTC20. 186




List of tables
Chapter 1
Table 1-1. Membrane processes and corresponding driving forces 5
Table 1-2. Characteristics of pressure-driven membrane processes [8]. 12
Table 1-3.
Summary of commonly used transport models for nanofiltration membranes [23]. 18

Chapter 2
Table 2-1. Requirements for synthesizing different sizes of silica spheres. 51
Table 2-2. Compositions and viscosities of casting solution. 53
Table 2-3. Representations of thin-film composite membranes in Chapters 3–7. 55

Chapter 3
Table 3-1.
Relative bond assignments from N1s X-ray photoelectron spectra of polyamide membranes. 65
Table 3-2.
Relative bond assignments from C1s X-ray photoelectron spectra of polyamide membranes. 66
Table 3-3.
Chemical structures and physical properties of carboxylic monoamines and solvents. 68

Chapter 4
Table 4-1.
Physical characteristics of PSf supports prepared from using different PEG 200 loadings. 91
Table 4-2.
Water contact angle, surface roughness and water permeability of PSf support prepared from using different PEG 200 loadings. 91
Table 4-3.
Water contact angle and surface roughness of TFC membranes prepared from using PSf supports containing varying amounts of PEG 200. 93
Table 4-4.
Physical characteristics of polysulfone support prepared from using polyethylene glycol with varying molecular weights. 98
Table 4-5.
Water contact angle, surface roughness, and water permeability of polysulfone support prepared from using polyethylene glycol with varying molecular weights. 99
Table 4-6.
Data on water contact angle and surface roughness of thin-film composite membranes prepared from using polyethylene glycol with varying molecular weights. 101

Chapter 5
Table 5-1.
Average diameter from TEM or FESEM, hydrodynamic diameter, and zeta potential of particles 113
Table 5-2. Surface elemental analysis of membranes before and after nanofiltration 131

Chapter 6
Table 6-1.
Relative bond assignments from O1s and N1s X-ray photoelectron spectra of PDA and PDA-PIP nanoparticles. 141
Table 6-2. XPS atomic survey for PDA and PDA-PIP nanoparticles. 142
Table 6-3. Membrane surface atomic survey from XPS. 150
Table 6-4. Relative bond assignments from C1s X-ray photoelectron spectra. 151
Table 6-5. Comparison of surface roughness of membranes. 152
Table 6-6. Comparison of membrane hydrophilicity and surface charge. 153
Table 6-7.
Water contact angle and membrane surface roughness of TFN50PEG20k-PDA-PIPa prepared at different water-ethanol ratios. 156
Table 6-8.
Water contact angle and membrane surface roughness of TFN50PEG20k-PDA-PIPa prepared at different PIP solution pH. 159
Table 6-9.
Water contact angle, surface roughness, and zeta-potential as function of dopamine concentration. 162

Chapter 7
Table 7-1. Particle size and surface charge of silica50 and polydopamine-coated silica50. 172
Table 7-2. Surface elemental analysis of membrane before and after nanofiltration 181

List of abbreviations
Chemicals
ABA 4-Aminobenzoic acid
ACA 6-Aminocaproic acid
APA 3-Aminopropanoic acid
BSA Bovine serum albumin
DHI 5,6-dihydroxindole
MPD m-phenylenediamine
NMP N-Methyl-2-pyrrolidone
OMIC 1-octyl-3-methylimidazolium chloride
PDA Polydopamine
PEG Polyethylene glycol
PIP Piperazine
PSf Polysulfone
TEOS Tetraethyl orthosilicate
TEPA Tetraethylenepentamine
TMC Trimesoyl chloride

Instruments
AFM Atomic force microscopy
ATR-FTIR Attenuated total reflectance-Fourier transform infrared
DLS Dynamic light scattering
FESEM Field emission scanning electron microscopy
SEM/EDX Scanning electron microscopy with energy dispersive X-ray spectroscopy
TOC Total organic carbon analyzer
XPS X-ray photoelectron spectrometry

Others
SHP Steric Hindrance Pore
TFC Thin-film composite
TFN Thin-film nanocomposite
TMS Teorell-Meyer Sievers


List of symbols
∆C concentration difference
∆E electrical potential difference
∆P pressure difference
∆p permeation pressure
∆T temperature difference
∆π osmotic pressure difference
µj or µ viscosity of solvent
A empirical coefficients or effective membrane surface area
Ak or ε porosity
B empirical coefficients
c̅i average solute concentration in the membrane
ci,l solute concentration in the membrane at the permeate interface
ci,o solute concentration in the membrane at the feed
Cf salt concentrations of feed
Cp salt concentrations of permeate
Danion diffusivity of anion
Dcation diffusivity of cation
Di solute diffusivity
dΨ/dx electric potential gradient
F Faraday constant
HD wall correction factors of diffusion coefficients
HF wall correction factors of convection coefficient
J total flux
Ji solute flux
Jj solvent flux
Ki,c hindrance factor for convection
Ki,d hindrance factor for diffusion
l membrane thickness
Lp solvent permeability coefficient
Mj molecular weight of solvent
P’ local solute permeability
Pi solute permeability coefficient
R gas constant (8.314 J∙mol-1∙K-1) or salt rejection
Q permeability
ri solute radius or Stokes radius
rp membrane pore radius
SD distribution coefficients of solute under diffusion
SF distribution coefficients of solute under convection
T temperature
Vi molar volume of solute at boiling point
X fixed charged density
zi ion valence
α transport numbers of cation in free solution
ε porosity
λ ratio of solute to radius to the membrane pore radius
ξ electrostatic parameter
σi reflection coefficient
ρ density
τ tortuosity
ω1 weight of wet membrane
ω2 weight of dry membrane
φj associate parameter or solvent
ϕX effective fixed charged density
Ψ electric potential gradient
References
[1] World Health Organization: Drinking-water, (2018), http://www.who.int/news-room/fact-sheets/detail/drinking-water accessed October 15, 2018.
[2] Metcalf, B. Eddy, G. Tchobanoglous, Wastewater Engineering: Treatment Disposal Reuse, Central Book Company, (1980).
[3] R.W. Baker, Membrane Technology and Applications, John Wiley & Sons, Ltd, (2004).
[4] N.N. Li, A.G. Fane, W.W. Ho, T. Matsuura, Advanced membrane technology and applications, John Wiley & Sons, (2011).
[5] J.H. Tsai, F. Macedonio, E. Drioli, L. Giorno, C.Y. Chou, F.C. Hu, C.L. Li, C.J. Chuang, K.L. Tung, Membrane-based zero liquid discharge: Myth or reality?, J. Taiwan Inst. Chem. Eng., 80 (2017) 192-202.
[6] S. Loeb, S. Sourirajan, Sea water demineralization by means of an osmotic membrane, in: R.F. Gould (Ed.) Saline Water Conversion—II, ACS Publications, Washington, (1962).
[7] J.M. Henis, M.K. Tripodi, A novel approach to gas separations using composite hollow fiber membranes, Sep. Sci. Technol., 15 (1980) 1059-1068.
[8] B. Van der Bruggen, C. Vandecasteele, T. Van Gestel, W. Doyen, R. Leysen, A review of pressure‐driven membrane processes in wastewater treatment and drinking water production, Environ. Prog., 22 (2003) 46-56.
[9] D.L. Oatley-Radcliffe, M. Walters, T.J. Ainscough, P.M. Williams, A.W. Mohammad, N. Hilal, Nanofiltration membranes and processes: A review of research trends over the past decade, J. Water Process Eng., 19 (2017) 164-171.
[10] S. Tul Muntha, A. Kausar, M. Siddiq, Advances in Polymeric Nanofiltration Membrane: A Review, Polym.-Plast. Technol. Eng., 56 (2016) 841-856.
[11] A.I. Schäfer, A.G. Fane, T.D. Waite, Nanofiltration: principles and applications, Elsevier, (2005).
[12] G.M. Urper, R. Sengur-Tasdemir, T. Turken, E. Ates Genceli, V.V. Tarabara, I. Koyuncu, Hollow fiber nanofiltration membranes: A comparative review of interfacial polymerization and phase inversion fabrication methods, Sep. Sci. Technol., 52 (2017) 2120-2136.
[13] W.J. Koros, Y.H. Ma, T. Shimidzu, Terminology for membranes and membrane processes (IUPAC Recommendations 1996), Pure Appl. Chem., 68 (1996) 1479-1489.
[14] W.R. Bowen, H. Mukhtar, Characterisation and prediction of separation performance of nanofiltration membranes, J. Membr. Sci., 112 (1996) 263-274.
[15] W.R. Bowen, A.W. Mohammad, N. Hilal, Characterisation of nanofiltration membranes for predictive purposes — use of salts, uncharged solutes and atomic force microscopy, J. Membr. Sci., 126 (1997) 91-105.
[16] X.-L. Wang, T. Tsuru, M. Togoh, S.-i. Nakao, S. Kimura, Evaluation of pore structure and electrical properties of nanofiltration membranes, J. Chem. Eng. Jpn., 28 (1995) 186-192.
[17] B. Van der Bruggen, J. Schaep, D. Wilms, C. Vandecasteele, A Comparison of Models to Describe the Maximal Retention of Organic Molecules in Nanofiltration, Sep. Sci. Technol., 35 (2000) 169-182.
[18] A. Seidel, J.J. Waypa, M. Elimelech, Role of Charge (Donnan) Exclusion in Removal of Arsenic from Water by a Negatively Charged Porous Nanofiltration Membrane, Environ. Eng. Sci., 18 (2001) 105-113.
[19] R.R. Sharma, R. Agrawal, S. Chellam, Temperature effects on sieving characteristics of thin-film composite nanofiltration membranes: pore size distributions and transport parameters, J. Membr. Sci., 223 (2003) 69-87.
[20] L. Pérez, I. Escudero, M.J. Arcos-Martínez, J.M. Benito, Application of the solution-diffusion-film model for the transfer of electrolytes and uncharged compounds in a nanofiltration membrane, J. Ind. Eng. Chem., 47 (2017) 368-374.
[21] Y. Zhao, J. Taylor, S. Chellam, Predicting RO/NF water quality by modified solution diffusion model and artificial neural networks, J. Membr. Sci., 263 (2005) 38-46.
[22] A. Yaroshchuk, X. Martínez-Lladó, L. Llenas, M. Rovira, J. de Pablo, Solution-diffusion-film model for the description of pressure-driven trans-membrane transfer of electrolyte mixtures: One dominant salt and trace ions, J. Membr. Sci., 368 (2011) 192-201.
[23] L.W. Jye, A.F. Ismail, Nanofiltration Membranes: Synthesis, Characterization, and Applications, CRC Press, New York, (2016).
[24] J. Schaep, B. Van der Bruggen, C. Vandecasteele, D. Wilms, Influence of ion size and charge in nanofiltration, Sep. Purif. Technol., 14 (1998) 155-162.
[25] T.J.P.o.t.S.f.E.B. Teorell, Medicine, An attempt to formulate a quantitative theory of membrane permeability, Proc. Soc. Exp. Biol. Med., 33 (1935) 282-285.
[26] K.H. Meyer, J.F.J.H.C.A. Sievers, La perméabilité des membranes I. Théorie de la perméabilité ionique (Membrane permeability. I. Theory of ion permeability), Helv. Chim. Acta, 19 (1936) 649-664.
[27] O. Kedem, A.J.B.e.b.A. Katchalsky, Thermodynamic analysis of the permeability of biological membranes to non-electrolytes, Biochim. Biophys. Acta, 27 (1958) 229-246.
[28] K. Spiegler, O.J.D. Kedem, Thermodynamics of hyperfiltration (reverse osmosis): criteria for efficient membranes, Desalination, 1 (1966) 311-326.
[29] S.-I. NAKAO, S.J.J.o.C.E.o.J. KIMURA, Models of membrane transport phenomena and their applications for ultrafiltration data, J. Chem. Eng. Jpn., 15 (1982) 200-205.
[30] C. Wilke, P. Chang, Correlation of diffusion coefficients in dilute solutions, AIChE J., 1 (1955) 264-270.
[31] P. Marchetti, M.F. Jimenez Solomon, G. Szekely, A.G.J.C.r. Livingston, Molecular separation with organic solvent nanofiltration: a critical review, Chem. Rev., 114 (2014) 10735-10806.
[32] X.-L. Wang, T. Tsuru, M. Togoh, S.-i. Nakao, S.J.J.o.c.e.o.J. Kimura, Transport of organic electrolytes with electrostatic and steric-hindrance effects through nanofiltration membranes, J. Chem. Eng. Jpn., 28 (1995) 372-380.
[33] C. Labbez, P. Fievet, A. Szymczyk, A. Vidonne, A. Foissy, J.J.J.o.M.S. Pagetti, Analysis of the salt retention of a titania membrane using the “DSPM” model: effect of pH, salt concentration and nature, J. Membr. Sci., 208 (2002) 315-329.
[34] S. Benfer, U. Popp, H. Richter, C. Siewart, G. Tomandl, Development and characterization of ceramic nanofiltration membranes, Sep. Purif. Technol., 22-23 (2001) 231-237.
[35] M. Paul, S.D. Jons, Chemistry and fabrication of polymeric nanofiltration membranes: A review, Polymer, 103 (2016) 417-456.
[36] R. Huang, G. Chen, M. Sun, C. Gao, Preparation and characterization of quaterinized chitosan/poly(acrylonitrile) composite nanofiltration membrane from anhydride mixture cross-linking, Sep. Purif. Technol., 58 (2008) 393-399.
[37] Y.L. Ji, Q.F. An, F.Y. Zaho, C.J. Gao, Fabrication of chitosan/PDMCHEA blend positively charged membranes with improved mechanical properties and high nanofiltration performances, Desalination, 357 (2015) 8-15.
[38] J. Gohil, P.J.J.o.c. Ray, i. science, Polyvinyl alcohol as the barrier layer in thin film composite nanofiltration membranes: Preparation, characterization, and performance evaluation, J. Colloid Interface Sci., 338 (2009) 121-127.
[39] F. Peng, X. Huang, A. Jawor, E.M.J.J.o.M.S. Hoek, Transport, structural, and interfacial properties of poly (vinyl alcohol)–polysulfone composite nanofiltration membranes, J. Membr. Sci., 353 (2010) 169-176.
[40] E.L. Wittbecker, P.W. Morgan, Interfacial polycondensation. I, J. Polym. Sci., 40 (1959) 289-297.
[41] P.W. Morgan, S.L. Kwolek, Interfacial polycondensation. II. Fundamentals of polymer formation at liquid interfaces, J. Polym. Sci., 40 (1959) 299-327.
[42] P.W. Morgan, Condensation polymers: by interfacial and solution methods, Interscience Publishers, New York, (1965).
[43] Y. Song, J.-B. Fan, S. Wang, Recent progress in interfacial polymerization, Mater. Chem. Front., 1 (2017) 1028-1040.
[44] J.E. Cadotte, M.J. Steuck, R.J. Petersen, Research on in situ-formed condensation polymer for reverse osmosis membranes, in, Midwest Research Institute, Washington, (1978).
[45] S. Veríssimo, K.V. Peinemann, J. Bordado, Influence of the diamine structure on the nanofiltration performance, surface morphology and surface charge of the composite polyamide membranes, J. Membr. Sci., 279 (2006) 266-275.
[46] A.L. Ahmad, B.S. Ooi, A. Wahab Mohammad, J.P. Choudhury, Effect of constricted polymerization time on nanofiltration membrane characteristic and performance: A study using the Donnan Steric Pore Flow Model, J. Appl. Polym. Sci., 94 (2004) 394-399.
[47] A. Akbari, S.M. Mojallali Rostami, Development of permeability properties of polyamide thin film composite nanofiltration membrane by using the dimethyl sulfoxide additive, J. Water Reuse Desal., 4 (2014) 174-181.
[48] Y.-J. Tang, Z.-L. Xu, S.-M. Xue, Y.-M. Wei, H. Yang, A chlorine-tolerant nanofiltration membrane prepared by the mixed diamine monomers of PIP and BHTTM, J. Membr. Sci., 498 (2016) 374-384.
[49] M.J. Raaijmakers, N.E. Benes, Current trends in interfacial polymerization chemistry, Prog. Polym. Sci., (2016) 86-142.
[50] Z. Liu, W. Kuang, G. Kang, H. Yu, Y. Jin, M. Zhou, D. Liu, Y. Cao, Preparation and characterization of a composite nanofiltration membrane interfacially polymerized fromcis,cis-1,3,5-triaminocyclohexane and trimesoyl chloride, J. Appl. Polym. Sci., 133 (2016) 1-8.
[51] B. Khorshidi, T. Thundat, B.A. Fleck, M. Sadrzadeh, A Novel Approach Toward Fabrication of High Performance Thin Film Composite Polyamide Membranes, Sci. Rep., 6 (2016) 1-8.
[52] M.B.M.Y. Ang, Y.-L. Ji, S.-H. Huang, H.-A. Tsai, W.-S. Hung, C.-C. Hu, K.-R. Lee, J.-Y. Lai, Incorporation of carboxylic monoamines into thin-film composite polyamide membranes to enhance nanofiltration performance, J. Membr. Sci., 539 (2017) 52-64.
[53] J. Jegal, S.G. Min, K.-H. Lee, Factors affecting the interfacial polymerization of polyamide active layers for the formation of polyamide composite membranes, J. Appl. Polym. Sci., 86 (2002) 2781-2787.
[54] L. Yung, H. Ma, X. Wang, K. Yoon, R. Wang, B.S. Hsiao, B. Chu, Fabrication of thin-film nanofibrous composite membranes by interfacial polymerization using ionic liquids as additives, J. Membr. Sci., 365 (2010) 52-58.
[55] T. Kamada, T. Ohara, T. Shintani, T. Tsuru, Optimizing the preparation of multi-layered polyamide membrane via the addition of a co-solvent, J. Membr. Sci., 453 (2014) 489-497.
[56] C. Kong, T. Shintani, T. Kamada, V. Freger, T. Tsuru, Co-solvent-mediated synthesis of thin polyamide membranes, J. Membr. Sci., 384 (2011) 10-16.
[57] J.A.D. Marquez, M.B.M.Y. Ang, B.T. Doma, S.-H. Huang, H.-A. Tsai, K.-R. Lee, J.-Y. Lai, Application of cosolvent-assisted interfacial polymerization technique to fabricate thin-film composite polyamide pervaporation membranes with PVDF hollow fiber as support, J. Membr. Sci., 564 (2018) 722-731.
[58] Y.L. Ji, Q.F. An, Y.S. Guo, W.S. Hung, K.R. Lee, C.J. Gao, Bio-inspired fabrication of high perm-selectivity and anti-fouling membranes based on zwitterionic polyelectrolyte nanoparticles, J. Mater. Chem. A, 4 (2016) 4224-4231.
[59] D. Hu, Z.-L. Xu, C. Chen, Polypiperazine-amide nanofiltration membrane containing silica nanoparticles prepared by interfacial polymerization, Desalination, 301 (2012) 75-81.
[60] G.S. Lai, W.J. Lau, P.S. Goh, A.F. Ismail, N. Yusof, Y.H. Tan, Graphene oxide incorporated thin film nanocomposite nanofiltration membrane for enhanced salt removal performance, Desalination, 387 (2016) 14-24.
[61] W.-S. Hung, M. De Guzman, S.-H. Huang, K.-R. Lee, Y. Jean, J.-Y. Lai, Characterizing free volumes and layer structures in asymmetric thin-film polymeric membranes in the wet condition using the variable monoenergy slow positron beam, Macromolecules, 43 (2010) 6127-6134.
[62] K.-S. Chang, Y.-H. Huang, K.-R. Lee, K.-L. Tung, Free volume and polymeric structure analyses of aromatic polyamide membranes: A molecular simulation and experimental study, J. Membr. Sci., 354 (2010) 93-100.
[63] S.-H. Huang, W.-S. Hung, D.-J. Liaw, C.-L. Li, S.-T. Kao, D.-M. Wang, M.D. Guzman, C.-C. Hu, Y. Jean, K.-R. Lee, Investigation of multilayer pervaporation membrane by positron annihilation spectroscopy, Macromolecules, 41 (2008) 6438-6443.
[64] M. Wu, D.D. Sun, Characterization and reduction of membrane fouling during nanofiltration of semiconductor indium phosphide (InP) wastewater, J. Membr. Sci., 259 (2005) 135-144.
[65] Y.S. Zimmermann, C. Niewersch, M. Lenz, Z.Z. Kul, P.F. Corvini, A. Schaffer, T. Wintgens, Recycling of indium from CIGS photovoltaic cells: potential of combining acid-resistant nanofiltration with liquid-liquid extraction, Environ. Sci. Technol., 48 (2014) 13412-13418.
[66] M. Wu, D.D. Sun, J.H. Tay, Effect of operating variables on rejection of indium using nanofiltration membranes, J. Membr. Sci., 240 (2004) 105-111.
[67] D.B. Sarney, C. Hale, G. Frankel, E.N. Vulfson, A novel approach to the recovery of biologically active oligosaccharides from milk using a combination of enzymatic treatment and nanofiltration, Biotechnol. Bioeng., 69 (2000) 461-467.
[68] E. Suárez, A. Lobo, S. Álvarez, F.A. Riera, R. Álvarez, Partial demineralization of whey and milk ultrafiltration permeate by nanofiltration at pilot-plant scale, Desalination, 198 (2006) 274-281.
[69] R. Atra, G. Vatai, E. Bekassy-Molnar, A. Balint, Investigation of ultra- and nanofiltration for utilization of whey protein and lactose, J. Food Eng., 67 (2005) 325-332.
[70] K. Nath, H.K. Dave, T.M. Patel, Revisiting the recent applications of nanofiltration in food processing industries: Progress and prognosis, Trends Food Sci. Technol., 73 (2018) 12-24.
[71] F. Salehi, Current and future applications for nanofiltration technology in the food processing, Food Bioprod. Process., 92 (2014) 161-177.
[72] S. Chakraborty, M.K. Purkait, S. DasGupta, S. De, J.K. Basu, Nanofiltration of textile plant effluent for color removal and reduction in COD, Sep. Purif. Technol., 31 (2003) 141-151.
[73] B. Dash, A. Kumar, Nanofiltration for textile dye–water treatment: Experimental and parameter estimation studies using a spiral wound module and validation of the Spiegler–Kedem-based model, Sep. Sci. Technol., 52 (2017) 1216-1224.
[74] G. Han, T.S. Chung, M. Weber, C. Maletzko, Low-Pressure Nanofiltration Hollow Fiber Membranes for Effective Fractionation of Dyes and Inorganic Salts in Textile Wastewater, Environ. Sci. Technol., 52 (2018) 3676-3684.
[75] C.-Z. Liang, S.-P. Sun, F.-Y. Li, Y.-K. Ong, T.-S. Chung, Treatment of highly concentrated wastewater containing multiple synthetic dyes by a combined process of coagulation/flocculation and nanofiltration, J. Membr. Sci., 469 (2014) 306-315.
[76] I. Koyuncu, D. Topacik, E. Yuksel, Reuse of reactive dyehouse wastewater by nanofiltration: process water quality and economical implications, Sep. Purif. Technol., 36 (2004) 77-85.
[77] M. Nyström, J. Tanninen, M. Mänttäri, Separation of metal sulfates and nitrates from their acids using nanofiltration, Membr. Technol., 2000 (2000) 5-9.
[78] B.C. Ricci, C.D. Ferreira, A.O. Aguiar, M.C.S. Amaral, Integration of nanofiltration and reverse osmosis for metal separation and sulfuric acid recovery from gold mining effluent, Sep. Purif. Technol., 154 (2015) 11-21.
[79] K. Meschke, K. Gumnior, B. Daus, R. Haseneder, J.-U. Repke, Nanofiltration–A new separation pathway in secondary mining, in: Mining meets water-conflicts and solutions: Proceedings IMWA 2016 in Leipzig, Germany, july 11-15, 2016, Technische Universität Bergakademie Freiberg, (2016), 1356-1363.
[80] K. Shams Ashaghi, M. Ebrahimi, P.J.O.E.S. Czermak, Ceramic ultra-and nanofiltration membranes for oilfield produced water treatment: a mini review, Open Environ. Sci., 1 (2007) 1-8.
[81] M.J.D. Gamal Khedr, W. Treatment, Nanofiltration of oil field-produced water for reinjection and optimum protection of oil formation, Desalin. Water Treat., 55 (2015) 3460-3468.
[82] M.J.D. Bader, Sulfate scale problems in oil fields water injection operations, Desalination, 201 (2006) 100-105.
[83] S. Venna, GE introduces new nanofiltration membrane for offshore oil production, in, Verdict Media Limited, (2015).
[84] Y.A. Le Gouellec, M. Elimelech, Calcium sulfate (gypsum) scaling in nanofiltration of agricultural drainage water, J. Membr. Sci., 205 (2002) 279-291.
[85] C. Didaskalou, S. Buyuktiryaki, R. Kecili, C.P. Fonte, G. Szekely, Valorisation of agricultural waste with an adsorption/nanofiltration hybrid process: from materials to sustainable process design, Green Chem., 19 (2017) 3116-3125.
[86] M.-P. Zacharof, S.J. Mandale, P.M. Williams, R.W. Lovitt, Nanofiltration of treated digested agricultural wastewater for recovery of carboxylic acids, J. Cleaner Prod., 112 (2016) 4749-4761.
[87] R. Molinari, F. Pirillo, V. Loddo, L. Palmisano, Heterogeneous photocatalytic degradation of pharmaceuticals in water by using polycrystalline TiO2 and a nanofiltration membrane reactor, Catal. Today, 118 (2006) 205-213.
[88] J. Radjenovic, M. Petrovic, F. Ventura, D. Barcelo, Rejection of pharmaceuticals in nanofiltration and reverse osmosis membrane drinking water treatment, Water Res., 42 (2008) 3601-3610.
[89] L.D. Nghiem, A.I. Schafer, M. Elimelech, Pharmaceutical retention mechanisms by nanofiltration membranes, Environ. Sci. Technol., 39 (2005) 7698-7705.
[90] J. Garcia-Ivars, L. Martella, M. Massella, C. Carbonell-Alcaina, M.I. Alcaina-Miranda, M.I. Iborra-Clar, Nanofiltration as tertiary treatment method for removing trace pharmaceutically active compounds in wastewater from wastewater treatment plants, Water Res., 125 (2017) 360-373.
[91] D.I. de Souza, E.M. Dottein, A. Giacobbo, M.A. Siqueira Rodrigues, M.N. de Pinho, A.M. Bernardes, Nanofiltration for the removal of norfloxacin from pharmaceutical effluent, J. Environ. Chem. Eng., 6 (2018) 6147-6153.
[92] Y.C. Xu, Z.X. Wang, X.Q. Cheng, Y.C. Xiao, L. Shao, Positively charged nanofiltration membranes via economically mussel-substance-simulated co-deposition for textile wastewater treatment, Chem. Eng. J., 303 (2016) 555-564.
[93] C. Kaya, G. Sert, N. Kabay, M. Arda, M. Yüksel, Ö. Egemen, Pre-treatment with nanofiltration (NF) in seawater desalination—Preliminary integrated membrane tests in Urla, Turkey, Desalination, 369 (2015) 10-17.
[94] B. Tomaszewska, M. Rajca, E. Kmiecik, M. Bodzek, W. Bujakowski, K. Wątor, M. Tyszer, The influence of selected factors on the effectiveness of pre-treatment of geothermal water during the nanofiltration process, Desalination, 406 (2017) 74-82.
[95] L.-C. Juang, D.-H. Tseng, H.-Y. Lin, Membrane processes for water reuse from the effluent of industrial park wastewater treatment plant: a study on flux and fouling of membrane, Desalination, 202 (2007) 302-309.
[96] A. Ghaee, M. Shariaty-Niassar, J. Barzin, T. Matsuura, A. Fauzi Ismail, Preparation of chitosan/cellulose acetate composite nanofiltration membrane for wastewater treatment, Desalin. Water Treat., 57 (2016) 14453-14460.
[97] V. Kale, S. Katikaneni, M. Cheryan, Deacidifying rice bran oil by solvent extraction and membrane technology, J. Am. Oil Chem. Soc., 76 (1999) 723-727.
[98] A.G. Livingston, C.G. Osborne, A process for deacidifying crude oil, Wild Ones, 2 (2002).
[99] G. Szekely, M.F. Jimenez-Solomon, P. Marchetti, J.F. Kim, A.G. Livingston, Sustainability assessment of organic solvent nanofiltration: from fabrication to application, Green Chem., 16 (2014) 4440-4473.
[100] I.B. Valtcheva, S.C. Kumbharkar, J.F. Kim, Y. Bhole, A.G. Livingston, Beyond polyimide: Crosslinked polybenzimidazole membranes for organic solvent nanofiltration (OSN) in harsh environments, J. Membr. Sci., 457 (2014) 62-72.
[101] A. Tanaka, M. Hirata, M. Omura, N. Inoue, T. Ueno, T. Homma, K. Sekizawa, Pulmonary Toxicity of Indium-Tin Oxide and Indium Phosphide after Intratracheal Instillations into the Lung of Hamsters, J. Occup. Health, 44 (2002) 99-102.
[102] I. Kabe, K. Omae, H. Nakashima, T. Nomiyama, T. Uemura, K. Hosoda, C. Ishizuka, K. Yamazaki, H. Sakurai, In vitro solubility and in vivo toxicity of indium phosphide, J. Occup. Health, 38 (1996) 6-12.
[103] J. Warczok, M. Ferrando, F. Lopez, C. Güell, Concentration of apple and pear juices by nanofiltration at low pressures, J. Food Eng., 63 (2004) 63-70.
[104] L.F. Sotoft, K.V. Christensen, R. Andrésen, B. Norddahl, Full scale plant with membrane based concentration of blackcurrant juice on the basis of laboratory and pilot scale tests, Chem. Eng. Process., 54 (2012) 12-21.
[105] C.M. Salgado, E. Fernández-Fernández, L. Palacio, F.J. Carmona, A. Hernández, P. Prádanos, Application of pervaporation and nanofiltration membrane processes for the elaboration of full flavored low alcohol white wines, Food Bioprod. Process., 101 (2017) 11-21.
[106] R. Ferrarini, A. Versari, S. Galassi, A preliminary comparison between nanofiltration and reverse osmosis membranes for grape juice treatment, J. Food Eng., 50 (2001) 113-116.
[107] A. Versari, R. Ferrarini, G.P. Parpinello, S. Galassi, Concentration of Grape Must by Nanofiltration Membranes, Food Bioprod. Process., 81 (2003) 275-278.
[108] S. Banvolgyi, I. Kiss, E. Bekassy-Molnar, G. Vatai, Concentration of red wine by nanofiltration, Desalination, 198 (2006) 8-15.
[109] M.I. González, S. Alvarez, F.A. Riera, R. Álvarez, Lactic acid recovery from whey ultrafiltrate fermentation broths and artificial solutions by nanofiltration, Desalination, 228 (2008) 84-96.
[110] Z. Chen, J. Luo, X. Chen, X. Hang, F. Shen, Y. Wan, Fully recycling dairy wastewater by an integrated isoelectric precipitation–nanofiltration–anaerobic fermentation process, Chem. Eng. J., 283 (2016) 476-485.
[111] M. Rosenberg, Current and future applications for membrane processes in the dairy industry, Trends Food Sci. Technol., 6 (1995) 12-19.
[112] F. Salehi, S.M.A. Razavi, M. Elahi, Purifying anion exchange resin regeneration effluent using polyamide nanofiltration membrane, Desalination, 278 (2011) 31-35.
[113] J. Gyura, Z. Šereš, M. Eszterle, Influence of operating parameters on separation of green syrup colored matter from sugar beet by ultra- and nanofiltration, J. Food Eng., 66 (2005) 89-96.
[114] S.U. Hong, M.D. Miller, M.L.J.I. Bruening, e.c. research, Removal of dyes, sugars, and amino acids from NaCl solutions using multilayer polyelectrolyte nanofiltration membranes, Ind. Eng. Chem. Res., 45 (2006) 6284-6288.
[115] S. Cartier, M.A. Theoleyre, M. Decloux, Treatment of sugar decolorizing resin regeneration waste using nanofiltration, Desalination, 113 (1997) 7-17.
[116] K. Ebert, F.P. Cuperus, Solvent resistant nanofiltration membranes in edible oil processing, Membr. Technol., 107 (1999) 5-10.
[117] L.P. Rama, M. Cheryan, N.J.L.f. Rajagopalan, Solvent recovery and partial deacidification of vegetable oils by membrane technology, Eur. J. Lipid Sci. Technol., 98 (1996) 10-14.
[118] I. Sereewatthanawut, I.I.R. Baptista, A.T. Boam, A. Hodgson, A.G. Livingston, Nanofiltration process for the nutritional enrichment and refining of rice bran oil, J. Food Eng., 102 (2011) 16-24.
[119] B. Van der Bruggen, B. Daems D. Wilms, C. Vandecasteele, Mechanisms of retention and flux decline for the nanofiltration of dye baths from the textile industry, Sep. Purif. Technol., 22-23 (2001) 519-528.
[120] B. Van der Bruggen, J. Schaep, D. Wilms, C. Vandecasteele, M. Van den Bosch, Nanofiltration for removal of organic substances from waste water: application in the textile industry, Chemistry for the Protection of the Environment 3. Environmental Science Research, 55 (1998) 127-134.
[121] Y.K. Kharaka, G. Ambats, T.S. Presser, R.A. Davis, Removal of selenium from contaminated agricultural drainage water by nanofiltration membranes, Appl. Geochem., 11 (1996) 797-802.
[122] S. Shanmuganathan, P. Loganathan, C. Kazner, M.A.H. Johir, S. Vigneswaran, Submerged membrane filtration adsorption hybrid system for the removal of organic micropollutants from a water reclamation plant reverse osmosis concentrate, Desalination, 401 (2017) 134-141.
[123] M. Taheran, S.K. Brar, M. Verma, R.Y. Surampalli, T.C. Zhang, J.R. Valero, Membrane processes for removal of pharmaceutically active compounds (PhACs) from water and wastewaters, Sci. Total Environ., 547 (2016) 60-77.
[124] K.P.M. Licona, L.R.d.O. Geaquinto, J.V. Nicolini, N.G. Figueiredo, S.C. Chiapetta, A.C. Habert, L. Yokoyama, Assessing potential of nanofiltration and reverse osmosis for removal of toxic pharmaceuticals from water, J. Water Process Eng., 25 (2018) 195-204.
[125] I. Soroko, M.P. Lopes, A. Livingston, The effect of membrane formation parameters on performance of polyimide membranes for organic solvent nanofiltration (OSN): Part A. Effect of polymer/solvent/non-solvent system choice, J. Membr. Sci., 381 (2011) 152-162.
[126] W. Guo, H.H. Ngo, J. Li, A mini-review on membrane fouling, Bioresour. Technol., 122 (2012) 27-34.
[127] S. Wu, Polymer interface and adhesion, Routledge, New York, (1982).
[128] M.J. El‐Hibri, S.A. Weinberg, Polysulfones, Encycl. Polym. Sci. Technol., 4 (2002) 1-26.
[129] I.A. Rahman, V. Padavettan, Synthesis of silica nanoparticles by sol-gel: size-dependent properties, surface modification, and applications in silica-polymer nanocomposites—a review, J. Nanomater., 2012 (2012) 1-15.
[130] E.F. Vansant, P. Van Der Voort, K.C. Vrancken, Characterization and chemical modification of the silica surface, Elsevier, Amsterdam, Netherlands, (1995).
[131] M. Seneviratne, K. Shankar, P. Cantrell, A. Nand, 428 Respirable crystalline silica (rcs) exposure monitoring, health surveillance and hazard communication in preventing silicosis among stone workers, Occup. Environ. Med., 75 (2018) A441-A441.
[132] K. Chanvirat, N. Chaiear, T. Choosong, Determinants of Respirable Crystalline Silica Exposure among Sand-stone Workers, Am. J. Public Health, 6 (2018) 44-50.
[133] N.C. Ricardi, E.W. de Menezes, E. Valmir Benvenutti, J. da Natividade Schoffer, C.R. Hackenhaar, P.F. Hertz, T.M.H. Costa, Highly stable novel silica/chitosan support for beta-galactosidase immobilization for application in dairy technology, Food Chem., 246 (2018) 343-350.
[134] E. Reverchon, R. Adami, Nanomaterials and supercritical fluids, J. Supercrit. Fluids, 37 (2006) 1-22.
[135] W. Stöber, A. Fink, E. Bohn, Controlled growth of monodisperse silica spheres in the micron size range, J. Colloid Interface Sci., 26 (1968) 62-69.
[136] C. Brinker, K. Keefer, D. Schaefer, C.J.J.o.N.-C.S. Ashley, Sol-gel transition in simple silicates, J. Non-Cryst. Solids, 48 (1982) 47-64.
[137] L.L. Hench, J.K. West, The sol-gel process, Chem. Rev., 90 (1990) 33-72.
[138] H. Lee, S.M. Dellatore, W.M. Miller, P.B.J.s. Messersmith, Mussel-inspired surface chemistry for multifunctional coatings, Science, 318 (2007) 426-430.
[139] Y. Liu, K. Ai, L. Lu, Polydopamine and its derivative materials: synthesis and promising applications in energy, environmental, and biomedical fields, Chem. Rev., 114 (2014) 5057-5115.
[140] F. Bernsmann, V. Ball, F. Addiego, A. Ponche, M. Michel, J.J.d.A. Gracio, V. Toniazzo, D.J.L. Ruch, Dopamine− melanin film deposition depends on the used oxidant and buffer solution, Langmuir, 27 (2011) 2819-2825.
[141] V. Ball, D. Del Frari, V. Toniazzo, D. Ruch, Kinetics of polydopamine film deposition as a function of pH and dopamine concentration: insights in the polydopamine deposition mechanism, J. Colloid Interface Sci., 386 (2012) 366-372.
[142] Q. Wei, F. Zhang, J. Li, B. Li, C. Zhao, Oxidant-induced dopamine polymerization for multifunctional coatings, Polym. Chem., 1 (2010) 1430-1433.
[143] J.L. Dalsin, P.B.J.M.T. Messersmith, Bioinspired antifouling polymers, Mater. Today, 8 (2005) 38-46.
[144] M.C.J.L. Van der Leeden, Are conformational changes, induced by osmotic pressure variations, the underlying mechanism of controlling the adhesive activity of mussel adhesive proteins?, Langmuir, 21 (2005) 11373-11379.
[145] S. Hong, Y.S. Na, S. Choi, I.T. Song, W.Y. Kim, H. Lee, Non‐covalent self‐assembly and covalent polymerization co‐contribute to polydopamine formation, Adv. Funct. Mater., 22 (2012) 4711-4717.
[146] K. Ai, Y. Liu, C. Ruan, L. Lu, G. Lu, Sp2 C‐dominant N‐doped carbon sub‐micrometer spheres with a tunable size: a versatile platform for highly efficient oxygen‐reduction catalysts, Adv. Mater., 25 (2013) 998-1003.
[147] X. Jiang, Y. Wang, M. Li, Selecting water-alcohol mixed solvent for synthesis of polydopamine nano-spheres using solubility parameter, Sci. Rep., 4 (2014) 6070.
[148] J. Yan, L. Yang, M.F. Lin, J. Ma, X. Lu, P.S. Lee, Polydopamine spheres as active templates for convenient synthesis of various nanostructures, Small, 9 (2013) 596-603.
[149] J.C.W. Corbett, F. McNeil-Watson, R.O. Jack, M. Howarth, Measuring surface zeta potential using phase analysis light scattering in a simple dip cell arrangement, Colloids Surf., A, 396 (2012) 169-176.
[150] Y.-J. Tang, L.-J. Wang, Z.-L. Xu, Y.-M. Wei, H. Yang, Novel high-flux thin film composite nanofiltration membranes fabricated by the NaClO pre-oxidation of the mixed diamine monomers of PIP and BHTTM in the aqueous phase solution, J. Membr. Sci., 502 (2016) 106-115.
[151] X. Fan, Y. Dong, Y. Su, X. Zhao, Y. Li, J. Liu, Z. Jiang, Improved performance of composite nanofiltration membranes by adding calcium chloride in aqueous phase during interfacial polymerization process, J. Membr. Sci., 452 (2014) 90-96.
[152] Y. Mansourpanah, S.S. Madaeni, A. Rahimpour, Fabrication and development of interfacial polymerized thin-film composite nanofiltration membrane using different surfactants in organic phase; study of morphology and performance, J. Membr. Sci., 343 (2009) 219-228.
[153] J. Xiang, Z. Xie, M. Hoang, K. Zhang, Effect of amine salt surfactants on the performance of thin film composite poly(piperazine-amide) nanofiltration membranes, Desalination, 315 (2013) 156-163.
[154] J. Xiang, Z.L. Xie, M. Hoang, D. Ng, K.S. Zhang, Effect of ammonium salts on the properties of poly(piperazineamide) thin film composite nanofiltration membrane, J. Membr. Sci., 465 (2014) 34-40.
[155] L. Zhao, P.C.-Y. Chang, W.W. Ho, High-flux reverse osmosis membranes incorporated with hydrophilic additives for brackish water desalination, Desalination, 308 (2013) 225-232.
[156] J.B. Jin, D.Q. Liu, D.D. Zhang, Y.H. Yin, X.Y. Zhao, Y.F. Zhang, Taurine as an additive for improving the fouling resistance of nanofiltration composite membranes, J. Appl. Polym. Sci., 132 (2015) 1-7.
[157] Y.N. Kwon, J.O. Leckie, Hypochlorite degradation of crosslinked polyamide membranes - II. Changes in hydrogen bonding behavior and performance, J. Membr. Sci., 282 (2006) 456-464.
[158] Q. Li, Y. Wang, J. Song, Y. Guan, H. Yu, X. Pan, F. Wu, M. Zhang, Influence of silica nanospheres on the separation performance of thin film composite poly(piperazine-amide) nanofiltration membranes, Appl. Surf. Sci., 324 (2015) 757-764.
[159] C.Y. Tang, Y.N. Kwon, J.O. Leckie, Effect of membrane chemistry and coating layer on physiochemical properties of thin film composite polyamide RO and NF membranes I. FTIR and XPS characterization of polyamide and coating layer chemistry, Desalination, 242 (2009) 149-167.
[160] L. Li, S. Zhang, X. Zhang, Preparation and characterization of poly(piperazineamide) composite nanofiltration membrane by interfacial polymerization of 3,3′,5,5′-biphenyl tetraacyl chloride and piperazine, J. Membr. Sci., 335 (2009) 133-139.
[161] L. Meihong, Y. Sanchuan, Z. Yong, G. Congjie, Study on the thin-film composite nanofiltration membrane for the removal of sulfate from concentrated salt aqueous: Preparation and performance, J. Membr. Sci., 310 (2008) 289-295.
[162] J. Peng, Y. Su, W. Chen, X. Zhao, Z. Jiang, Y. Dong, Y. Zhang, J. Liu, C. Xingzhong, Polyamide nanofiltration membrane with high separation performance prepared by EDC/NHS mediated interfacial polymerization, J. Membr. Sci., 427 (2013) 92-100.
[163] A.F. Barton, CRC handbook of solubility parameters and other cohesion parameters, CRC press, New York, (1991).
[164] Y. Li, Y. Su, Y. Dong, X. Zhao, Z. Jiang, R. Zhang, J. Zhao, Separation performance of thin-film composite nanofiltration membrane through interfacial polymerization using different amine monomers, Desalination, 333 (2014) 59-65.
[165] J.G. Smith, Organic Chemistry, McGraw-Hill, New York, (2011).
[166] S.H. Yalkowsky, Y. He, P. Jain, Handbook of aqueous solubility data, CRC press, NY, (2016).
[167] Q. An, F. Li, Y. Ji, H. Chen, Influence of polyvinyl alcohol on the surface morphology, separation and anti-fouling performance of the composite polyamide nanofiltration membranes, J. Membr. Sci., 367 (2011) 158-165.
[168] S.Y. Kwak, S.G. Jung, Y.S. Yoon, D.W. Ihm, Details of surface features in aromatic polyamide reverse osmosis membranes characterized by scanning electron and atomic force microscopy, J. Polym. Sci., Part B: Polym. Phys., 37 (1999) 1429-1440.
[169] N.K. Saha, S.V. Joshi, Performance evaluation of thin film composite polyamide nanofiltration membrane with variation in monomer type, J. Membr. Sci., 342 (2009) 60-69.
[170] J. Hu, Z. Lv, Y. Xu, X. Zhang, L. Wang, Fabrication of a high-flux sulfonated polyamide nanofiltration membrane: Experimental and dissipative particle dynamics studies, J. Membr. Sci., 505 (2016) 119-129.
[171] S.S. Dhumal, S.J. Wagh, A.J.J.o.M.S. Suresh, Interfacial polycondensation—Modeling of kinetics and film properties, J. Membr. Sci., 325 (2008) 758-771.
[172] R. Ploeger, S. Musso, O. Chiantore, Contact angle measurements to determine the rate of surface oxidation of artists’ alkyd paints during accelerated photo-ageing, Prog. Org. Coat., 65 (2009) 77-83.
[173] R.J. Petersen, Composite reverse osmosis and nanofiltration membranes, J. Membr. Sci., 83 (1993) 81-150.
[174] Y.-H. La, R. Sooriyakumaran, D.C. Miller, M. Fujiwara, Y. Terui, K. Yamanaka, B.D. McCloskey, B.D. Freeman, R.D. Allen, Novel thin film composite membrane containing ionizable hydrophobes: pH-dependent reverse osmosis behavior and improved chlorine resistance, J Mater. Chem., 20 (2010) 4615-4620.
[175] Y.L. Ji, Q. Zhao, Q.F. An, L.L. Shao, K.R. Lee, Z.K. Xu, C.J. Gao, Novel separation membranes based on zwitterionic colloid particles: tunable selectivity and enhanced antifouling property, J. Mater. Chem. A, 1 (2013) 12213-12220.
[176] S. Yu, M. Ma, J. Liu, J. Tao, M. Liu, C. Gao, Study on polyamide thin-film composite nanofiltration membrane by interfacial polymerization of polyvinylamine (PVAm) and isophthaloyl chloride (IPC), J. Membr. Sci., 379 (2011) 164-173.
[177] P.S. Singh, S.V. Joshi, J.J. Trivedi, C.V. Devmurari, A.P. Rao, P.K. Ghosh, Probing the structural variations of thin film composite RO membranes obtained by coating polyamide over polysulfone membranes of different pore dimensions, J. Membr. Sci., 278 (2006) 19-25.
[178] A.K. Ghosh, E.M.V. Hoek, Impacts of support membrane structure and chemistry on polyamide–polysulfone interfacial composite membranes, J. Membr. Sci., 336 (2009) 140-148.
[179] N.W. Oh, J. Jegal, K.H. Lee, Preparation and characterization of nanofiltration composite membranes using polyacrylonitrile (PAN). II. Preparation and characterization of polyamide composite membranes, J. Appl. Polym. Sci., 80 (2001) 2729-2736.
[180] N. Misdan, W.J. Lau, A.F. Ismail, T. Matsuura, Formation of thin film composite nanofiltration membrane: Effect of polysulfone substrate characteristics, Desalination, 329 (2013) 9-18.
[181] N. Misdan, W.J. Lau, A.F. Ismail, T. Matsuura, D. Rana, Study on the thin film composite poly(piperazine-amide) nanofiltration membrane: Impacts of physicochemical properties of substrate on interfacial polymerization formation, Desalination, 344 (2014) 198-205.
[182] J. Wijmans, J. Kant, M. Mulder, C. Smolders, Phase separation phenomena in solutions of polysulfone in mixtures of a solvent and a nonsolvent: relationship with membrane formation, Polymer, 26 (1985) 1539-1545.
[183] H. Tsai, L. Li, K. Lee, Y. Wang, C. Li, J. Huang, J. Lai, Effect of surfactant addition on the morphology and pervaporation performance of asymmetric polysulfone membranes, J. Membr. Sci., 176 (2000) 97-103.
[184] Q.-Z. Zheng, P. Wang, Y.-N. Yang, D.-J. Cui, The relationship between porosity and kinetics parameter of membrane formation in PSF ultrafiltration membrane, J. Membr. Sci., 286 (2006) 7-11.
[185] Q.-Z. Zheng, P. Wang, Y.-N. Yang, Rheological and thermodynamic variation in polysulfone solution by PEG introduction and its effect on kinetics of membrane formation via phase-inversion process, J. Membr. Sci., 279 (2006) 230-237.
[186] J.-H. Kim, K.-H. Lee, Effect of PEG additive on membrane formation by phase inversion, J. Membr. Sci., 138 (1998) 153-163.
[187] B. Chakrabarty, A.K. Ghoshal, M.K. Purkait, SEM analysis and gas permeability test to characterize polysulfone membrane prepared with polyethylene glycol as additive, J. Colloid Interface Sci., 320 (2008) 245-253.
[188] Y. Ma, F. Shi, J. Ma, M. Wu, J. Zhang, C. Gao, Effect of PEG additive on the morphology and performance of polysulfone ultrafiltration membranes, Desalination, 272 (2011) 51-58.
[189] B. Schrader, Infrared and Raman spectroscopy: methods and applications, John Wiley & Sons, New York, (2008).
[190] A. Ahmad, B. Ooi, Properties–performance of thin film composites membrane: study on trimesoyl chloride content and polymerization time, J. Membr. Sci., 255 (2005) 67-77.
[191] A. Yaroshchuk, Non-steric mechanisms of nanofiltration: superposition of Donnan and dielectric exclusion, Sep. Purif. Technol., 22-23 (2001) 143-158.
[192] X. Song, L. Wang, C.Y. Tang, Z. Wang, C. Gao, Fabrication of carbon nanotubes incorporated double-skinned thin film nanocomposite membranes for enhanced separation performance and antifouling capability in forward osmosis process, Desalination, 369 (2015) 1-9.
[193] H. Wang, P. Xu, S. Meng, W. Zhong, W. Du, Q. Du, Poly(methyl methacrylate)/silica/titania ternary nanocomposites with greatly improved thermal and ultraviolet-shielding properties, Polym. Degrad. Stab., 91 (2006) 1455-1461.
[194] Y. Hu, S. Zhou, L. Wu, Surface mechanical properties of transparent poly(methyl methacrylate)/zirconia nanocomposites prepared by in situ bulk polymerization, Polymer, 50 (2009) 3609-3616.
[195] G. Kickelbick, Concepts for the incorporation of inorganic building blocks into organic polymers on a nanoscale, Prog. Polym. Sci., 28 (2003) 83-114.
[196] G.L. Jadav, P.S. Singh, Synthesis of novel silica-polyamide nanocomposite membrane with enhanced properties, J. Membr. Sci., 328 (2009) 257-267.
[197] H. Fissan, S. Ristig, H. Kaminski, C. Asbach, M. Epple, Comparison of different characterization methods for nanoparticle dispersions before and after aerosolization, Anal. Methods, 6 (2014) 7324-7334.
[198] S. Liu, C. Wu, W.-S. Hung, X. Lu, K.-R. Lee, One-step constructed ultrathin Janus polyamide nanofilms with opposite charges for highly efficient nanofiltration, J. Mater. Chem. A, 5 (2017) 22988-22996.
[199] H.B. Park, J. Kamcev, L.M. Robeson, M. Elimelech, B.D. Freeman, Maximizing the right stuff: The trade-off between membrane permeability and selectivity, Science, 356 (2017) eaab0530.
[200] Y.L. Ji, W.J. Qian, Y.W. Yu, Q.F. An, L.F. Liu, Y. Zhou, C.J. Gao, Recent developments in nanofiltration membranes based on nanomaterials, Chin. J. Chem. Eng., 25 (2017) 1639-1652.
[201] Y. Wu, M. Yan, J. Cui, Y. Yan, C. Li, A Multiple‐Functional Ag/SiO2/Organic Based Biomimetic Nanocomposite Membrane for High‐Stability Protein Recognition and Cell Adhesion/Detachment, Adv. Funct. Mater., 25 (2015) 5823-5832.
[202] C. Wang, Y. Wu, J. Lu, J. Zhao, J. Cui, X. Wu, Y. Yan, P. Huo, Bioinspired Synthesis of Photocatalytic Nanocomposite Membranes Based on Synergy of Au-TiO2 and Polydopamine for Degradation of Tetracycline under Visible Light, ACS Appl. Mater. Interfaces, 9 (2017) 23687-23697.
[203] H. Kim, A.A. Abdala, C.W. Macosko, Graphene/polymer nanocomposites, Macromolecules, 43 (2010) 6515-6530.
[204] M. Khan, M.N. Tahir, S.F. Adil, H.U. Khan, M.R.H. Siddiqui, A.A. Al-warthan, W. Tremel, Graphene based metal and metal oxide nanocomposites: synthesis, properties and their applications, J. Mater. Chem. A, 3 (2015) 18753-18808.
[205] M. Sun, H. Liu, Y. Liu, J. Qu, J. Li, Graphene-based transition metal oxide nanocomposites for the oxygen reduction reaction, Nanoscale, 7 (2015) 1250-1269.
[206] B.F. Li, Y. Cui, S. Japip, Z.W. Thong, T.S. Chung, Graphene oxide (GO) laminar membranes for concentrating pharmaceuticals and food additives in organic solvents, Carbon, 130 (2018) 503-514.
[207] S.M. Xue, Z.L. Xu, Y.J. Tang, C.H. Ji, Polypiperazine-amide Nanofiltration Membrane Modified by Different Functionalized Multiwalled Carbon Nanotubes (MWCNTs), ACS Appl. Mater. Interfaces, 8 (2016) 19135-19144.
[208] W. Ma, Y. Zhao, Y. Li, P. Zhang, Z. Cao, H. Yang, C. Liu, G. Tao, F. Gong, H. Matsuyama, Synthesis of hydrophilic carbon nanotubes by grafting poly (methyl methacrylate) via click reaction and its effect on poly (vinylidene fluoride)-carbon nanotube composite membrane properties, Appl. Surf. Sci., 435 (2018) 79-90.
[209] N. Ma, J. Wei, R. Liao, C.Y. Tang, Zeolite-polyamide thin film nanocomposite membranes: towards enhanced performance for forward osmosis, J. Mater. Sci., 405 (2012) 149-157.
[210] H. Dong, L. Wu, L. Zhang, H. Chen, C. Gao, Clay nanosheets as charged filler materials for high-performance and fouling-resistant thin film nanocomposite membranes, J. Membr. Sci., 494 (2015) 92-103.
[211] Y.L. Ji, Q.F. An, X.D. Weng, W.S. Hung, K.R. Lee, C.J. Gao, Microstructure and performance of zwitterionic polymeric nanoparticle/polyamide thin-film nanocomposite membranes for salts/organics separation, J. Membr. Sci., 548 (2018) 559-571.
[212] Y.-L. Ji, B.-X. Gu, Q.-F. An, C.-J. Gao, Recent Advances in the Fabrication of Membranes Containing “Ion Pairs” for Nanofiltration Processes, Polymers, 9 (2017) 1-49.
[213] J. Qin, S. Lin, S. Song, L. Zhang, H. Chen, 4-Dimethylaminopyridine promoted interfacial polymerization between hyperbranched polyesteramide and trimesoyl chloride for preparing ultralow-pressure reverse osmosis composite membrane, ACS Appl. Mater. Interfaces, 5 (2013) 6649-6656.
[214] M.R. Kotte, M. Cho, M.S. Diallo, A facile route to the preparation of mixed matrix polyvinylidene fluoride membranes with in-situ generated polyethyleneimine particles, J. Membr. Sci., 450 (2014) 93-102.
[215] N. Farnad, K. Farhadi, N.H. Voelcker, Polydopamine Nanoparticles as a New and Highly Selective Biosorbent for the Removal of Copper (II) Ions from Aqueous Solutions, Water, Air, Soil Pollut., 223 (2012) 3535-3544.
[216] N. Nishizawa, A. Kawamura, M. Kohri, Y. Nakamura, S. Fujii, Polydopamine particle as a particulate emulsifier, Polymers, 8 (2016) 1-15.
[217] S.Q. Xiong, Y. Wang, J. Zhu, Z.M. Hu, J.R. Yu, Polydopamine Nanoparticle for Poly (N-Isopropylacrylamide)-Based Nanocomposite Hydrogel with Good Free-Radical-Scavenging Property, in: Mater. Sci. Forum, Trans Tech Publications Ltd., (2016), 94-94.
[218] H. Kasai, H.S. Nalwa, H. Oikawa, S. Okada, H. Matsuda, N. Minami, A. Kakuta, K. Ono, A. Mukoh, H. Nakanishi, A novel preparation method of organic microcrystals, Jpn. J. Appl. Phys., 31 (1992) L1132-L1134.
[219] H. Toyotama, Water dispersion containing ultrafine particles of organic compounds, in: U.S.P.a.T. Office (Ed.) Untied States Patent and Trademark Office, (1994).
[220] T. Seko, K. Ogura, Y. Kawakami, H. Sugino, H. Toyotama, J. Tanaka, Excimer emission of anthracene, perylene, coronene and pyrene microcrystals dispersed in water, Chem. Phys. Lett., 291 (1998) 438-444.
[221] Y. Tamaki, T. Asahi, H. Masuhara, Nanoparticle formation of vanadyl phthalocyanine by laser ablation of its crystalline powder in a poor solvent, J. Phys. Chem. A, 106 (2002) 2135-2139.
[222] M.E. Lynge, R. van der Westen, A. Postma, B. Stadler, Polydopamine--a nature-inspired polymer coating for biomedical science, Nanoscale, 3 (2011) 4916-4928.
[223] W.-Z. Qiu, G.-P. Wu, Z.-K. Xu, Robust Coatings via Catechol–Amine Codeposition: Mechanism, Kinetics, and Application, ACS Appl. Mater. Interfaces, 10 (2018) 5902-5908.
[224] K.-Y. Ju, Y. Lee, S. Lee, S.B. Park, J.-K. Lee, Bioinspired polymerization of dopamine to generate melanin-like nanoparticles having an excellent free-radical-scavenging property, Biomacromolecules, 12 (2011) 625-632.
[225] S. Xiong, Y. Wang, J. Yu, L. Chen, J. Zhu, Z. Hu, Polydopamine particles for next-generation multifunctional biocomposites, J. Mater. Chem. A, 2 (2014) 7578-7587.
[226] M.C. Van der Leeden, Are conformational changes, induced by osmotic pressure variations, the underlying mechanism of controlling the adhesive activity of mussel adhesive proteins?, Langmuir, 21 (2005) 11373-11379.
[227] C.C. Ho, S.J. Ding, The pH-controlled nanoparticles size of polydopamine for anti-cancer drug delivery, J. Mater. Sci.: Mater. Med., 24 (2013) 2381-2390.
[228] M. Bisaglia, S. Mammi, L. Bubacco, Kinetic and structural analysis of the early oxidation products of dopamine: analysis of the interactions with alpha-synuclein, J. Biol. Chem., 282 (2007) 15597-15605.
[229] W.W. Simons, Sadtler handbook of infrared spectra, Bio-Rad Laboratories, Inc., California, (1978).
[230] F. Esfandian, M. Peyravi, A.A. Ghoreyshi, M. Jahanshahi, A.S. Rad, Fabrication of TFC nanofiltration membranes via co-solvent assisted interfacial polymerization for lactose recovery, Arabian J. Chem., (2017) 1-14.
[231] L. Shen, S. Feng, J. Li, J. Chen, F. Li, H. Lin, G. Yu, Surface modification of polyvinylidene fluoride (PVDF) membrane via radiation grafting: novel mechanisms underlying the interesting enhanced membrane performance, Sci. Rep., 7 (2017) 1-13.
[232] L.-P. Zhu, J.-H. Jiang, B.-K. Zhu, Y.-Y. Xu, Immobilization of bovine serum albumin onto porous polyethylene membranes using strongly attached polydopamine as a spacer, Colloids Surf., B, 86 (2011) 111-118.
[233] W.J. Lau, S. Gray, T. Matsuura, D. Emadzadeh, J.P. Chen, A.F. Ismail, A review on polyamide thin film nanocomposite (TFN) membranes: History, applications, challenges and approaches, Water Res., 80 (2015) 306-324.
[234] S. Bano, A. Mahmood, S.-J. Kim, K.-H. Lee, Graphene oxide modified polyamide nanofiltration membrane with improved flux and antifouling properties, J. Mater. Chem. A, 3 (2015) 2065-2071.
[235] J. Yin, G. Zhu, B. Deng, Graphene oxide (GO) enhanced polyamide (PA) thin-film nanocomposite (TFN) membrane for water purification, Desalination, 379 (2016) 93-101.
[236] H.S. Lee, S.J. Im, J.H. Kim, H.J. Kim, J.P. Kim, B.R. Min, Polyamide thin-film nanofiltration membranes containing TiO2 nanoparticles, Desalination, 219 (2008) 48-56.
[237] M. Peyravi, M. Jahanshahi, A. Rahimpour, A. Javadi, S. Hajavi, Novel thin film nanocomposite membranes incorporated with functionalized TiO2 nanoparticles for organic solvent nanofiltration, Chem. Eng. J., 241 (2014) 155-166.
[238] B. Rajaeian, A. Rahimpour, M.O. Tade, S. Liu, Fabrication and characterization of polyamide thin film nanocomposite (TFN) nanofiltration membrane impregnated with TiO2 nanoparticles, Desalination, 313 (2013) 176-188.
[239] M.B.M.Y. Ang, J.M. Pereira, C.A. Trilles, R.R. Aquino, S.-H. Huang, K.-R. Lee, J.-Y. Lai, Performance and antifouling behavior of thin-film nanocomposite nanofiltration membranes with embedded silica spheres, Sep. Purif. Technol., 210 (2019) 521-529.
[240] L.M. Jin, S.L. Yu, W.X. Shi, X.S. Yi, N. Sun, Y.L. Ge, C. Ma, Synthesis of a novel composite nanofiltration membrane incorporated SiO2 nanoparticles for oily wastewater desalination, Polymer, 53 (2012) 5295-5303.
[241] J. Yin, E.-S. Kim, J. Yang, B. Deng, Fabrication of a novel thin-film nanocomposite (TFN) membrane containing MCM-41 silica nanoparticles (NPs) for water purification, J. Membr. Sci., 423-424 (2012) 238-246.
[242] L. Jin, W. Shi, S. Yu, X. Yi, N. Sun, C. Ma, Y. Liu, Preparation and characterization of a novel PA-SiO 2 nanofiltration membrane for raw water treatment, Desalination, 298 (2012) 34-41.
[243] P.F. Andrade, A.F. de Faria, S.R. Oliveira, M.A. Arruda, C. Goncalves Mdo, Improved antibacterial activity of nanofiltration polysulfone membranes modified with silver nanoparticles, Water Res., 81 (2015) 333-342.
[244] S.Y. Lee, H.J. Kim, R. Patel, S.J. Im, J.H. Kim, B.R. Min, Silver nanoparticles immobilized on thin film composite polyamide membrane: characterization, nanofiltration, antifouling properties, Polym. Adv. Technol., 18 (2007) 562-568.
[245] L.-x. Dong, X.-c. Huang, Z. Wang, Z. Yang, X.-m. Wang, C.Y. Tang, A thin-film nanocomposite nanofiltration membrane prepared on a support with in situ embedded zeolite nanoparticles, Sep. Purif. Technol., 166 (2016) 230-239.
[246] J. Duan, Y. Pan, F. Pacheco, E. Litwiller, Z. Lai, I. Pinnau, High-performance polyamide thin-film-nanocomposite reverse osmosis membranes containing hydrophobic zeolitic imidazolate framework-8, J. Membr. Sci., 476 (2015) 303-310.
[247] M.L. Lind, A.K. Ghosh, A. Jawor, X. Huang, W. Hou, Y. Yang, E.M. Hoek, Influence of zeolite crystal size on zeolite-polyamide thin film nanocomposite membranes, Langmuir, 25 (2009) 10139-10145.
[248] H. Zarrabi, M.E. Yekavalangi, V. Vatanpour, A. Shockravi, M. Safarpour, Improvement in desalination performance of thin film nanocomposite nanofiltration membrane using amine-functionalized multiwalled carbon nanotube, Desalination, 394 (2016) 83-90.
[249] J. Zheng, M. Li, K. Yu, J. Hu, X. Zhang, L. Wang, Sulfonated multiwall carbon nanotubes assisted thin-film nanocomposite membrane with enhanced water flux and anti-fouling property, J. Membr. Sci., 524 (2017) 344-353.
[250] M. Rong, M. Zhang, W. Ruan, Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review, Mater. Sci. Technol., 22 (2006) 787-796.
[251] A. Tiraferri, Y. Kang, E.P. Giannelis, M. Elimelech, Highly hydrophilic thin-film composite forward osmosis membranes functionalized with surface-tailored nanoparticles, ACS Appl. Mater. Interfaces, 4 (2012) 5044-5053.
[252] S. Liang, Y. Kang, A. Tiraferri, E.P. Giannelis, X. Huang, M. Elimelech, Highly hydrophilic polyvinylidene fluoride (PVDF) ultrafiltration membranes via postfabrication grafting of surface-tailored silica nanoparticles, ACS Appl. Mater. Interfaces, 5 (2013) 6694-6703.
[253] Z.-Y. Xi, Y.-Y. Xu, L.-P. Zhu, Y. Wang, B.-K. Zhu, A facile method of surface modification for hydrophobic polymer membranes based on the adhesive behavior of poly(DOPA) and poly(dopamine), J. Membr. Sci., 327 (2009) 244-253.
[254] A. Beganskienė, V. Sirutkaitis, M. Kurtinaitienė, R. Juškėnas, A. Kareiva, FTIR, TEM and NMR investigations of Stöber silica nanoparticles, Material Science (Medžiagotyra), 10 (2004) 287-290.
[255] J. Jiang, L. Zhu, L. Zhu, B. Zhu, Y. Xu, Surface characteristics of a self-polymerized dopamine coating deposited on hydrophobic polymer films, Langmuir, 27 (2011) 14180-14187.
[256] C. Dai, S. Wang, Y. Li, M. Gao, Y. Liu, Y. Sun, M. Zhao, The first study of surface modified silica nanoparticles in pressure-decreasing application, RSC Adv., 5 (2015) 61838-61845.
[257] J. Luo, Y. Wan, Effects of pH and salt on nanofiltration—a critical review, J. Membr. Sci., 438 (2013) 18-28.
[258] S. Szoke, G. Patzay, L. Weiser, Characteristics of thin-film nanofiltration membranes at various pH-values, Desalination, 151 (2003) 123-129.
[259] S. Liu, F. Fang, J. Wu, K. Zhang, The anti-biofouling properties of thin-film composite nanofiltration membranes grafted with biogenic silver nanoparticles, Desalination, 375 (2015) 121-128.
[260] F. Xiao, B. Wang, X. Hu, S. Nair, Y. Chen, Thin film nanocomposite membrane containing zeolitic imidazolate framework-8 via interfacial polymerization for highly permeable nanofiltration, J. Taiwan Inst. Chem. Eng., (2017) 159–167.
[261] Y.-F. Mi, Q. Zhao, Y.-L. Ji, Q.-F. An, C.-J. Gao, A novel route for surface zwitterionic functionalization of polyamide nanofiltration membranes with improved performance, J. Membr. Sci., 490 (2015) 311-320.
[262] Y.-J. Tang, L.-J. Wang, Z.-L. Xu, H.-Z. Zhang, Novel chitosan-piperazine composite nanofiltration membranes for the desalination of brackish water and seawater, J. Polym. Res., 25 (2018) 1-12.
[263] M. Safarpour, V. Vatanpour, A. Khataee, M. Esmaeili, Development of a novel high flux and fouling-resistant thin film composite nanofiltration membrane by embedding reduced graphene oxide/TiO2, Sep. Purif. Technol., 154 (2015) 96-107.
[264] J. nan Shen, C. chao Yu, H. min Ruan, C. jie Gao, B. Van der Bruggen, Preparation and characterization of thin-film nanocomposite membranes embedded with poly (methyl methacrylate) hydrophobic modified multiwalled carbon nanotubes by interfacial polymerization, J. Membr. Sci., 442 (2013) 18-26.
[265] D. Hu, Z.-L. Xu, Y.-M. Wei, Y.-F. Liu, Poly(styrene sulfonic acid) sodium modified nanofiltration membranes with improved permeability for the softening of highly concentrated seawater, Desalination, 336 (2014) 179-186.
[266] G.S. Lai, W.J. Lau, S.R. Gray, T. Matsuura, R.J. Gohari, M.N. Subramanian, S.O. Lai, C.S. Ong, A.F. Ismail, D. Emazadah, M. Ghanbari, A practical approach to synthesize polyamide thin film nanocomposite (TFN) membranes with improved separation properties for water/wastewater treatment, J. Mater. Chem. A, 4 (2016) 4134-4144.
[267] Z. Lv, J. Hu, J. Zheng, X. Zhang, L. Wang, Antifouling and High Flux Sulfonated Polyamide Thin-Film Composite Membrane for Nanofiltration, Ind. Eng. Chem. Res., 55 (2016) 4726-4733.
[268] B.-Q. Huang, Z.-L. Xu, H. Ding, M.-C. Miao, Y.-J. Tang, Antifouling sulfonated polyamide nanofiltration hollow fiber membrane prepared with mixed diamine monomers of BDSA and PIP, RSC Adv., 7 (2017) 56629-56637.
[269] J.Y. Sum, A.L. Ahmad, B.S. Ooi, Synthesis of thin film composite membrane using mixed dendritic poly(amidoamine) and void filling piperazine monomers, J. Membr. Sci., 466 (2014) 183-191.
[270] F. Peng, X. Huang, A. Jawor, E.M.V. Hoek, Transport, structural, and interfacial properties of poly(vinyl alcohol)–polysulfone composite nanofiltration membranes, J. Membr. Sci., 353 (2010) 169-176.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top