跳到主要內容

臺灣博碩士論文加值系統

(3.237.38.244) 您好!臺灣時間:2021/07/24 15:43
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉力豪
研究生(外文):Li-Hao Liu
論文名稱:多孔性材料於生物質催化之應用
論文名稱(外文):Applications of Hierarchical Porous Materials inBiomass Catalysis
指導教授:林嘉和劉婉舲
指導教授(外文):Chia-Her LinWan-Ling Liu
學位類別:博士
校院名稱:中原大學
系所名稱:化學研究所
學門:自然科學學門
學類:化學學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:153
中文關鍵詞:多孔性材料生質精煉
外文關鍵詞:Hierarchical porous materialsbiorefinery
相關次數:
  • 被引用被引用:0
  • 點閱點閱:60
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文主要以開發新穎的多孔性材料並將其應用於生物質催化領域,研究可分為兩部份分別陳述研究內容與成果。
第一部分將金屬有機骨架材料 (metal-organic frameworks, MOFs)作為模板,製備多孔性碳材並作為脂解酶固定化之載體,進行生物性催化反應合成生質柴油。研究結果指出,透過控制碳化溫度可調整材料之羧酸根含量與孔洞尺寸,由於此碳材摻雜金屬氧化物,故更利於酵素固定化之成效。最佳化條件下,以MIL-100(Al)經600 oC煅燒所得之碳材,作為脂解酶固定化微反應器,可展現最佳的酵素負載量以及生質柴油催化能力。此外,本研究所開發之新穎性多孔性碳材,不需經任何修飾便可將酵素進行固定化並穩定進行九次催化反應,其產率仍可維持在66%,足以顯示此材料在生物性催化和生質能源製備應用相當具有潛力。
第二部分則利用金屬有機凝膠 (metal-organic gels, MOGs)作為固態酸催化劑,催化果糖進行轉化合成5-羥甲基糠醛 (5-hydroxymethyl-2-furaldehyde, HMF)。研究結果顯示,MOGs製備簡單且快速,因結構造成的缺陷可締造中孔利於質傳,以及材料金屬中心具有催化活性,以金屬中心為鋯之MOG (Zr-BDC)催化可生成HMF,展現最佳催化效果,至少可連續五次催化反應,產率仍可達6成以上。最後,本實驗為首次以MOGs作為固態酸催化劑,並成功應用於果糖轉化HMF之反應,其催化效能可與傳統固態酸催化劑相互媲美外,此材料具重複使用之優勢。
In this two-part study, the applications of novel hierarchical porous materials as catalysts for biomass conversion were explored.
For the first part, metal-organic frameworks (MOFs) were used as templates to prepare hierarchical porous carbon materials (PCMs) for lipase immobilization and applied as biocatalyst in biodiesel synthesis. The PCM derived from direct carbonization of MOFs presented tunable carboxylate functionalities, porosities, and metallic properties at different calcination temperature, which is more beneficial for enzyme immobilization. Under the optimized conditions, the PCM was obtained via pyrolysis of MIL-100(Al) at 600 oC and applied as the support for lipase immobilization, which performed the highest enzyme loading and catalytic efficiencies for biodiesel synthesis. In addition, the developed novel hierarchical PCMs as support for enzyme immobilization do not require any post-synthetic modification with maintained catalytic efficiency of 66% even after 9th catalytic cycles. These results indicate that PCM derived from MOFs has potential for biocatalysis and bioenergy application.
The second part of the study is focused on metal-organic gels (MOGs) as solid acid catalysts towards the conversion of fructose to 5-hydroxymethyl-2-furaldehyde (HMF). The simple and rapid preparation of MOGs showed its mesoporous structure is due to structural defects leading to rapid mass transfer and good catalytic activity bestowed by open metal site. Under the optimized conditions, the zirconium based MOGs (Zr-BDC) afforded the highest catalytic activity in the conversion of fructose to HMF with more than 60% yield even after 5th catalytic cycles. This study demonstrates for the first time the application of MOGs as solid acid catalyst for fructose to HMF conversion. The catalytic performance was found comparable with literatures so far.
目錄
摘要 I
Abstact III
謝誌 V
目錄 VII
圖目錄 X
表目錄 XV
第1章 前言 1
第2章 藥品與儀器 4
2-1 藥品名稱及廠牌介紹 4
2-2 實驗儀器與設備 9
第3章 金屬有機骨架材料製備多孔性碳材於酵素固定化與生質柴油製備之應用 11
3-1 孔洞性碳材簡介 11
3-1-1 常見孔洞性碳材製備方法 13
3-1-2 以金屬有機骨架材料為模板進行製備孔洞性碳材 17
3-2 生質柴油簡介 22
3-2-1 常見生質柴油製備技術 22
3-2-2 轉酯化反應之催化劑種類 23
3-2-3 酵素固定化之方法 25
3-2-4 固定化酵素製備生質柴油發展現況 28
3-3 研究動機 35
3-4 實驗簡介 36
3-4-1 金屬有機骨架材料之合成 36
3-4-2 碳化金屬有機骨架材料製備 36
3-4-3 cMIL-100(Al)-800-HF材料之製備 37
3-4-4 製備脂解酶生物微反應器步驟 38
3-4-5 脂解酶生物微反應器催化生成生質柴油步驟 39
3-4-6 GC-FID分析生質柴油之實驗條件 40
3-4-7 酵素負載量之測定 42
3-4-8 酵素活性之檢測 43
3-4-9 碳材上羧酸含量之測定 44
3-5 結果與討論 45
3-5-1 cMIL-100(Al)材料性質鑑定 46
3-5-2 催化合成生質柴油效能比較 57
3-6 結論 73
第4章 金屬有機凝膠為催化劑於羥甲基糠醛產物合成 74
4-1 金屬有機凝膠簡介 74
4-1-1 金屬有機凝膠之特性 74
4-1-2 金屬有機凝膠之應用 76
4-2 纖維素水解與轉化簡介 80
4-2-1 羥甲基糠醛化合物 83
4-2-2 果糖脫水反應機制 85
4-2-3 固態酸催化劑應用在果糖脫水反應 86
4-3 研究動機 93
4-4 實驗簡介 94
4-4-1 金屬有機凝膠製備 94
4-4-2 金屬有機骨架材料製備 95
4-4-3 酸鹼滴定分析材料上酸部位和含量步驟 97
4-4-4 催化果糖合成羥甲基糠醛步驟 98
4-4-5 HPLC-RID分析羥甲基糠醛產物之實驗條件 99
4-5 結果與討論 101
4-5-1 Zr-BDC材料性質鑑定 101
4-5-2 催化效果 106
4-6 結論與未來展望 119
參考文獻 120


圖目錄
圖1-1 預估全球化石燃料可開採年限示意圖[1] 1
圖1-2全球生物精煉市場產值[4] 2
圖3-1 碳元素的同素異形體[5] 11
圖3-2 孔洞性碳材的應用之示意圖[9] 12
圖3-3 a) 硬模板法與b) 軟模板法製備孔洞性碳材之示意圖[33] 13
圖3-4 以各式無機材料作為模板製備合成孔洞性碳材之示意圖 14
圖3-5 以蒸氣誘導自組裝法製備各式孔洞性碳材之示意圖[35] 16
圖3-6 近年來MOFs文獻發表量(統計來自Scifinder) 17
圖3-7 典型配位高分子(coordination polymers)與MOFs建構示意圖[49] 18
圖3-8 使用MOF-5作為模板製備多孔性碳材之示意圖[50] 19
圖3-9 MOF-5在800 oC碳化後之(a) PXRD (b) 氮氣吸脫附等溫曲線結果 20
圖3-10 比較活性碳和以不同溫度碳化Al-PCP的a) 氮氣吸脫附等溫曲線與b) 比表面積和孔體積結果[53] 21
圖3-11 轉酯化反應示意圖 23
圖3-12 水解和皂化反應示意圖 24
圖3-13 酯化反應示意圖 25
圖3-14 常見酵素固定化方法之示意圖 26
圖3-15 MIL-100(Al)結構示意圖[103] 45
圖3-16 碳化前後MIL-100(Al)之水中懸浮性測試 47
圖3-17 a) 理論MIL-100(Al)與b) 初合成MIL-100(Al)之PXRD圖 48
圖3-18 a) 理論γ-氧化鋁、b) cMIL-100(Al)-600、c) -800與d) -900之PXRD圖 48
圖3-19 a) MIL-100(Al)、b) cMIL-100(Al)-600、c) -800與(d) -900之SEM圖 (掃描倍率: 100,000倍) 49
圖3-20 a) MIL-100(Al)-600、b) -800與c) -900之SEM-EDS圖 50
圖3-21 a) cMIL-100(Al)-600、b) -800、c) -900之TEM圖(左圖)與SAED分析結果(右圖) 51
圖3-22 a-b) MIL-100(Al)與c-d) 不同碳化溫度的cMIL-100(Al)之氮氣等溫吸脫附曲線圖與孔徑分佈圖以e) cMIL-100(Al)-900之微孔孔徑分佈圖 53
圖3-23 a) 理論γ-氧化鋁、b) cMIL-100(Al)-800與c) cMIL-100(Al)-800-HF之PXRD圖 54
圖3-24 cMIL-100(Al)-800-HF之SEM-EDS圖 55
圖3-25 cMIL-100(Al)-800-HF之a) 氮氣等溫吸脫附曲線圖與b) 孔徑分佈圖 56
圖3-26 生物性催化劑製備與生質柴油合成之流程示意圖 57
圖3-27 BCL@MIL-100(Al)、BCL@cMIL-100(Al)-800催化合成生質柴油之氣相層析圖 59
圖3-28 BCL@cMIL-100(Al)進行p-NPP水解活性測試UV-Vis光譜圖 60
圖3-29 BCL@MIL-100(Al)、BCL@cMIL-100(Al)-800催化合成生質柴油之氣相層析圖 61
圖3-30 不同碳化溫度cMIL-100(Al)固定化BCL進行催化合成生質柴油之結果 63
圖3-31 a) BCL@cMIL-100(Al)-600、b) -800、與c) -900進行九次催化合成生質柴油之氣相層析圖 64
圖3-32 不同種類碳材固定化BCL後進行催化合成生質柴油之結果 65
圖3-33 a) BCL@SWCNT與b) BCL@AC進行催化合成生質柴油之氣相層析圖 66
圖3-34 a) 不同種類碳材在反應介質中的分散性結果與b) 經12小時後分散性的示意圖 68
圖3-35 a) cMIL-100(Al)-600、b) SWCNT、c) AC固定化BCL前後的氮氣等溫吸脫附曲線圖(左圖)與孔徑分佈圖(右圖) 70
圖3-36 a) 活性碳AC與b) 單壁奈米碳管束的孔洞型態示意圖(側視圖和橫截面圖) 71
圖4-1 以鋁和對苯二甲酸所製備MOFs和MOGs之合成結構示意圖[113] 75
圖4-2 a) Al-BDC之染料吸附動力曲線圖b) 以MOA所製備纖維對揮發性分析物進行SPME分析之示意圖 c) 比較Al-BTC和市售商品PDMS fibre對非極性分析物進行SPME之結果d) 比較Al-BTC和市售商品PA fibre對酚類化合物進行SPME之結果[113] 77
圖4-3 木質纖維素組成之示意圖 82
圖4-4 羥甲基糠醛製備各種化學品和燃料反應之示意圖 83
圖4-5 纖維素轉化成羥甲基糠醛反應之示意圖 84
圖4-6 果糖脫水反應途徑之示意圖[147] 85
圖4-7 比較不同種類沸石經鹼液處理前後進行果糖轉化成HMF之結果 87
圖4-8 沸石經鹼液處理前後之氮氣等溫吸脫附曲線圖(左圖)與孔徑分佈圖(右圖) [152] 87
圖4-9 (a)中孔洞磷酸鈮材料進行果糖脫水反應之示意圖與(b)其進行六次催化結果 [156] 89
圖4-10 初合成Zr-BDC與UiO-66(Zr)之外觀 102
圖4-11 a) 理論UiO-66(Zr)、b) UiO-66(Zr)與c) Zr-BDC之PXRD圖 102
圖4-12 a) UiO-66(Zr)與b) Zr-BDC之SEM圖 (掃描倍率: 150,000倍) 102
圖4-13 UiO-66(Zr)和Zr-BDC之氮氣等溫吸脫附曲線圖 104
圖4-14 UiO-66(Zr)和Zr-BDC之a) 中孔徑分佈圖(根據BJH推算)與b) 微孔徑分佈圖(根據DFT推算) 105
圖4-15 Zr-BDC與其組成以及UiO-66催化合成HMF之液相層析圖 107
圖4-16 a) UiO-66(Zr)的結構中b) 理想配位12個BDC之金屬團簇Zr6(μ3-O)4(μ3-OH)4與c) 具有鍵連缺陷之金屬團簇[180] 109
圖4-17 a) 不同批次的UiO-66(Zr)與b) Zr-BDC酸鹼滴定曲線與一次微分曲線以及經由Lorentzian模式擬合分析之曲線結果 110
圖4-18 Zr-BDC與UiO-66(Zr)材料上各類質子酸之含量(N=3) 111
圖4-19 a) 初合成Cr-BDC之外觀b) Cr-BDC與H2BDC之PXRD圖c) Cr-BDC之氮氣等溫吸脫附曲線圖d) Cr-BDC之微孔徑分佈圖 (內圖則為中孔徑分佈圖) 114
圖4-20 a) 初合成Al-BDC之外觀b) Al-BDC與理論MIL-53(Al)之PXRD圖 c) Al-BDC之氮氣等溫吸脫附曲線圖d) Al-BDC之微孔徑分佈圖(內圖則為中孔徑分佈圖) 115
圖4-21 Cr與Al金屬中心之MOG和MOF催化合成HMF之液相層析圖 116
圖4-22 Zr-BDC進行五次催化合成HMF之a) 液相層析圖與b) HMF產率結果 118


表目錄
表2-1 藥品名稱及廠牌 4
表2-2 生質柴油標準品及內部標準品 8
表2-3 儀器設備及廠牌 9
表3-1 樹脂材料應用在脂解酶固定化與生質柴油製備之文獻整理(2013-2018年) 30
表3-2 中孔洞矽材應用在脂解酶固定化與生質柴油製備之文獻整理(2013-2018年) 31
表3-3 孔洞性碳材應用在脂解酶固定化與生質柴油製備之文獻整理(2013-2018年) 33
表3-4 利用不同碳化溫度所製備cMIL-100(Al)之羧酸根含量比例 47
表3-5 不同碳化溫度的cMIL-100(Al)之元素含量比例 50
表3-6 MIL-100(Al)碳化前後之比表面積與孔徑 52
表3-7 cMIL-100(Al)-800-HF之元素含量比例 55
表3-8 不同碳化溫度的cMIL-100(Al)對酵素負載效率與生質柴油產率 63
表3-9 不同種類碳材的酵素負載效率與生質柴油產率 65
表3-10 不同種類碳材固定化酵素前後之比表面積與孔徑 69
表4-1 ZrBDC-NH2凝膠將二氧化碳固定化在苯基環氧乙烷之催化活性[119] 79
表4-2 固態酸催化劑應用在果糖脫水反應製備HMF之文獻整理 (2015-2018年) 90
表4-3 需後修飾處理之固態酸催化劑應用在果糖脫水反應製備HMF之文獻整理 (2015-2018年) 91
表4-4 UiO-66(Zr)與Zr-BDC之比表面積與孔體積 104
表4-5 Zr-BDC與其組成物之果糖轉換率與HMF產率 108
表4-6 Zr-BDC與UiO-66(Zr)的酸鹼滴定分析結果(N=3) 111
表4-7 Cr-BDC與Al-BDC之比表面積與孔體積 115
表4-8 Cr與Al金屬中心之MOG和MOF的果糖轉換率與HMF產率 116
[1] B. Petroleum. (2016). "BP Statistical Review of World Energy ", 2016.
[2] F. Cherubini, The biorefinery concept: Using biomass instead of oil for producing energy and chemicals, Energy Conversion and Management, 51 (2010) 1412.
[3] K. M. Nicholas (2014). Selective Catalysis for Renewable Feedstocks and Chemicals, Springer International Publishing.
[4] B. Research. (2017). "Biorefinery Products Global markets."
[5] S. H. Dhawane, T. Kumar and G. Halder, Recent advancement and prospective of heterogeneous carbonaceous catalysts in chemical and enzymatic transformation of biodiesel, Energy Conversion and Management, 167 (2018) 176.
[6] H. W. Kroto, J. R. Heath, S. C. O''Brien, R. F. Curl and R. E. Smalley, C60: Buckminsterfullerene, Nature, 318 (1985) 162.
[7] S. Iijima, Helical microtubules of graphitic carbon, Nature, 354 (1991) 56.
[8] K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, I. V. Grigorieva and A. A. Firsov, Electric Field Effect in Atomically Thin Carbon Films, Science, 306 (2004) 666.
[9] R. J. White, V. Budarin, R. Luque, J. H. Clark and D. J. Macquarrie, Tuneable porous carbonaceous materials from renewable resources, Chemical Society Reviews, 38 (2009) 3401.
[10] X.-Y. Yang, L.-H. Chen, Y. Li, J. C. Rooke, C. Sanchez and B.-L. Su, Hierarchically porous materials: synthesis strategies and structure design, Chemical Society Reviews, 46 (2017) 481.
[11] T. Macko and H. Pasch, Separation of Linear Polyethylene from Isotactic, Atactic, and Syndiotactic Polypropylene by High-Temperature Adsorption Liquid Chromatography, Macromolecules, 42 (2009) 6063.
[12] K. Scida, P. W. Stege, G. Haby, G. A. Messina and C. D. Garcia, Recent applications of carbon-based nanomaterials in analytical chemistry: critical review, Analytica Chimica Acta, 691 (2011) 6.
[13] C. Wang, R. Ma, Q. Wu, M. Sun and Z. Wang, Magnetic porous carbon as an adsorbent for the enrichment of chlorophenols from water and peach juice samples, Journal of Chromatography A, 1361 (2014) 60.
[14] L. Li, M. Wu, Y. Feng, F. Zhao and B. Zeng, Doping of three-dimensional porous carbon nanotube-graphene-ionic liquid composite into polyaniline for the headspace solid-phase microextraction and gas chromatography determination of alcohols, Analytica Chimica Acta, 948 (2016) 48.
[15] S. Biloé, V. Goetz and A. Guillot, Optimal design of an activated carbon for an adsorbed natural gas storage system, Carbon, 40 (2002) 1295.
[16] B. Adeniran and R. Mokaya, Low temperature synthesized carbon nanotube superstructures with superior CO2 and hydrogen storage capacity, Journal of Materials Chemistry A, 3 (2015) 5148.
[17] W. Zhao, S. Wang, C. Wang, S. Wu, W. Xu, M. Zou, A. Ouyang, A. Cao and Y. Li, Double polymer sheathed carbon nanotube supercapacitors show enhanced cycling stability, Nanoscale, 8 (2016) 626.
[18] X. Li, J. Rong and B. Wei, Electrochemical Behavior of Single-Walled Carbon Nanotube Supercapacitors under Compressive Stress, ACS Nano, 4 (2010) 6039.
[19] Y.-L. Liu, X.-Y. Xu, P.-C. Sun and T.-H. Chen, N-doped porous carbon nanosheets with embedded iron carbide nanoparticles for oxygen reduction reaction in acidic media, International Journal of Hydrogen Energy, 40 (2015) 4531.
[20] K. Chen, X. Huang, C. Wan and H. Liu, Efficient oxygen reduction catalysts formed of cobalt phosphide nanoparticle decorated heteroatom-doped mesoporous carbon nanotubes, Chemical Communications, 51 (2015) 7891.
[21] W. Tang, Y. Liu, C. Peng, M. Y. Hu, X. Deng, M. Lin, J. Z. Hu and K. P. Loh, Probing lithium germanide phase evolution and structural change in a germanium-in-carbon nanotube energy storage system, J Am Chem Soc, 137 (2015) 2600.
[22] Z. Yang, J. Ren, Z. Zhang, X. Chen, G. Guan, L. Qiu, Y. Zhang and H. Peng, Recent Advancement of Nanostructured Carbon for Energy Applications, Chemical Reviews, 115 (2015) 5159.
[23] J. Lee, J. Kim and T. Hyeon, Recent Progress in the Synthesis of Porous Carbon Materials, Advanced Materials, 18 (2006) 2073.
[24] H. Jiang, P. S. Lee and C. Li, 3D carbon based nanostructures for advanced supercapacitors, Energy & Environmental Science, 6 (2013) 41.
[25] Y. Zou and B.-X. Han, High-Surface-Area Activated Carbon from Chinese Coal, Energy & Fuels, 15 (2001) 1383.
[26] T. Zhang, W. Walawender, L. Fan, M. Fan, D. Daugaard and R. Brown, Preparation of activated carbon from forest and agricultural residues through CO activation, Chemical Engineering Journal, 105 (2004) 53.
[27] A. Oya, S. Yoshida, J. Alcaniz-Monge and A. Linares-Solano, Formation of mesopores in phenolic resin-derived carbon fiber by catalytic activation using cobalt, Carbon, 33 (1995) 1085.
[28] H. Tamai, T. Kakii, Y. Hirota, T. Kumamoto and H. Yasuda, Synthesis of Extremely Large Mesoporous Activated Carbon and Its Unique Adsorption for Giant Molecules, Chemistry of Materials, 8 (1996) 454.
[29] J. Ozaki, N. Endo, W. Ohizumi, K. Igarashi, M. Nakahara, A. Oya, S. Yoshida and T. Iizuka, Novel preparation method for the production of mesoporous carbon fiber from a polymer blend, Carbon, 35 (1997) 1031.
[30] N. Patel, K. Okabe and A. Oya, Designing carbon materials with unique shapes using polymer blending and coating techniques, Carbon, 40 (2002) 315.
[31] R. W. Pekala, Organic aerogels from the polycondensation of resorcinol with formaldehyde, Journal of Materials Science, 24 (1989) 3221.
[32] R. W. Pekala and D. W. Schaefer, Structure of organic aerogels. 1. Morphology and scaling, Macromolecules, 26 (1993) 5487.
[33] A. Eftekhari and Z. Fan, Ordered mesoporous carbon and its applications for electrochemical energy storage and conversion, Materials Chemistry Frontiers, 1 (2017) 1001.
[34] T.-Y. Ma, L. Liu and Z.-Y. Yuan, Direct synthesis of ordered mesoporous carbons, Chemical Society Reviews, 42 (2013) 3977.
[35] Y. Meng, D. Gu, F. Zhang, Y. Shi, L. Cheng, D. Feng, Z. Wu, Z. Chen, Y. Wan, A. Stein and D. Zhao, A Family of Highly Ordered Mesoporous Polymer Resin and Carbon Structures from Organic−Organic Self-Assembly, Chemistry of Materials, 18 (2006) 4447.
[36] O. M. Yaghi and H. Li, Hydrothermal Synthesis of a Metal-Organic Framework Containing Large Rectangular Channels, Journal of the American Chemical Society, 117 (1995) 10401.
[37] H.-C. Zhou, J. R. Long and O. M. Yaghi, Introduction to Metal–Organic Frameworks, Chemical Reviews, 112 (2012) 673.
[38] B. Li, H. M. Wen, W. Zhou and B. Chen, Porous Metal-Organic Frameworks for Gas Storage and Separation: What, How, and Why?, J Phys Chem Lett, 5 (2014) 3468.
[39] K. Adil, Y. Belmabkhout, R. S. Pillai, A. Cadiau, P. M. Bhatt, A. H. Assen, G. Maurin and M. Eddaoudi, Gas/vapour separation using ultra-microporous metal-organic frameworks: insights into the structure/separation relationship, Chem Soc Rev, 46 (2017) 3402.
[40] J. Zhang and Z. Chen, Metal-organic frameworks as stationary phase for application in chromatographic separation, Journal of Chromatography A, 1530 (2017) 1.
[41] P. Rocio-Bautista, I. Pacheco-Fernandez, J. Pasan and V. Pino, Are metal-organic frameworks able to provide a new generation of solid-phase microextraction coatings? - A review, Analytica Chimica Acta, 939 (2016) 26.
[42] L. Wang, M. Zheng and Z. Xie, Nanoscale metal–organic frameworks for drug delivery: a conventional platform with new promise, Journal of Materials Chemistry B, 6 (2018) 707.
[43] F.-Y. Yi, D. Chen, M.-K. Wu, L. Han and H.-L. Jiang, Chemical Sensors Based on Metal-Organic Frameworks, ChemPlusChem, 81 (2016) 675.
[44] J. Chen, K. Shen and Y. Li, Greening the Processes of Metal-Organic Framework Synthesis and their Use in Sustainable Catalysis, ChemSusChem, 10 (2017) 3165.
[45] J. Cui, S. Ren, B. Sun and S. Jia, Optimization protocols and improved strategies for metal-organic frameworks for immobilizing enzymes: Current development and future challenges, Coordination Chemistry Reviews, 370 (2018) 22.
[46] S. R. Batten, N. R. Champness, X.-M. Chen, J. Garcia-Martinez, S. Kitagawa, L. Öhrström, M. O''Keeffe, M. P. Suh and J. Reedijk, Coordination polymers, metal–organic frameworks and the need for terminology guidelines, CrystEngComm, 14 (2012) 3001.
[47] H. R. Moon, D. W. Lim and M. P. Suh, Fabrication of metal nanoparticles in metal-organic frameworks, Chem Soc Rev, 42 (2013) 1807.
[48] C. Janiak and J. K. Vieth, MOFs, MILs and more: concepts, properties and applications for porous coordination networks (PCNs), New Journal of Chemistry, 34 (2010) 2366.
[49] W. Lu, Z. Wei, Z.-Y. Gu, T.-F. Liu, J. Park, J. Park, J. Tian, M. Zhang, Q. Zhang, T. Gentle Iii, M. Bosch and H.-C. Zhou, Tuning the structure and function of metal–organic frameworks via linker design, Chemical Society Reviews, 43 (2014) 5561.
[50] B. Liu, H. Shioyama, T. Akita and Q. Xu, Metal-Organic Framework as a Template for Porous Carbon Synthesis, Journal of the American Chemical Society, 130 (2008) 5390.
[51] J. Hu, H. Wang, Q. Gao and H. Guo, Porous carbons prepared by using metal–organic framework as the precursor for supercapacitors, Carbon, 48 (2010) 3599.
[52] D. Yuan, J. Chen, S. Tan, N. Xia and Y. Liu, Worm-like mesoporous carbon synthesized from metal–organic coordination polymers for supercapacitors, Electrochemistry Communications, 11 (2009) 1191.
[53] M. Hu, J. Reboul, S. Furukawa, N. L. Torad, Q. Ji, P. Srinivasu, K. Ariga, S. Kitagawa and Y. Yamauchi, Direct carbonization of Al-based porous coordination polymer for synthesis of nanoporous carbon, J Am Chem Soc, 134 (2012) 2864.
[54] W. N. M. Wan Ghazali, R. Mamat, H. H. Masjuki and G. Najafi, Effects of biodiesel from different feedstocks on engine performance and emissions: A review, Renewable and Sustainable Energy Reviews, 51 (2015) 585.
[55] I. Kralova and J. Sjöblom, Biofuels–Renewable Energy Sources: A Review, Journal of Dispersion Science and Technology, 31 (2010) 409.
[56] M. Gürü and A. Keskïn, Evaluation of Biodiesel Production, Engine Performance, and Emissions, Journal of Electronic Materials, 45 (2016) 3882.
[57] M. Balat and H. Balat, Progress in biodiesel processing, Applied Energy, 87 (2010) 1815.
[58] J. M. Encinar, J. F. González, J. J. Rodríguez and A. Tejedor, Biodiesel Fuels from Vegetable Oils:  Transesterification of Cynara cardunculus L. Oils with Ethanol, Energy & Fuels, 16 (2002) 443.
[59] D. Y. C. Leung, X. Wu and M. K. H. Leung, A review on biodiesel production using catalyzed transesterification, Applied Energy, 87 (2010) 1083.
[60] M. Canakci and J. Van Gerpen (1999). Biodiesel production via acid catalysis.
[61] X. Liu, H. He, Y. Wang, S. Zhu and X. Piao, Transesterification of soybean oil to biodiesel using CaO as a solid base catalyst, Fuel, 87 (2008) 216.
[62] E. C. G. Aguieiras, E. D. Cavalcanti-Oliveira, A. M. de Castro, M. A. P. Langone and D. M. G. Freire, Simultaneous Enzymatic Transesterification and Esterification of an Acid Oil Using Fermented Solid as Biocatalyst, Journal of the American Oil Chemists'' Society, 94 (2017) 551.
[63] J. M. Nelson and E. G. Griffin, ADSORPTION OF INVERTASE, Journal of the American Chemical Society, 38 (1916) 1109.
[64] I. Chibata, T. Tosa, T. Sato and T. Mori (1976). [51] Production of l-amino acids by aminoacylase adsorbed on DEAE-sephadex. Methods in Enzymology, Academic Press. 44: 746.
[65] C. Mateo, J. M. Palomo, G. Fernandez-Lorente, J. M. Guisan and R. Fernandez-Lafuente, Improvement of enzyme activity, stability and selectivity via immobilization techniques, Enzyme and Microbial Technology, 40 (2007) 1451.
[66] J. Gao, Y. Jiang, J. Lu, Z. Han, J. Deng and Y. Chen, Dopamine-functionalized mesoporous onion-like silica as a new matrix for immobilization of lipase Candida sp. 99-125, Scientific Reports, 7 (2017) 40395.
[67] Z. Knezevic, N. Milosavic, D. Bezbradica, Z. Jakovljevic and R. Prodanovic, Immobilization of lipase from Candida rugosa on Eupergit® C supports by covalent attachment, Biochemical Engineering Journal, 30 (2006) 269.
[68] A. Ursoiu, C. Paul, T. Kurtan and F. Peter, Sol-gel entrapped Candida antarctica lipase B--a biocatalyst with excellent stability for kinetic resolution of secondary alcohols, Molecules, 17 (2012) 13045.
[69] J. Cui, T. Lin, Y. Feng, Z. Tan and S. Jia, Preparation of spherical cross-linked lipase aggregates with improved activity, stability and reusability characteristic in water-in-ionic liquid microemulsion, Journal of Chemical Technology and Biotechnology, 92 (2017) 1785.
[70] Y. Jiang, L. Shi, Y. Huang, J. Gao, X. Zhang and L. Zhou, Preparation of robust biocatalyst based on cross-linked enzyme aggregates entrapped in three-dimensionally ordered macroporous silica, ACS Appl Mater Interfaces, 6 (2014) 2622.
[71] E. A. Manoel, J. C. Dos Santos, D. M. Freire, N. Rueda and R. Fernandez-Lafuente, Immobilization of lipases on hydrophobic supports involves the open form of the enzyme, Enzyme and Microbial Technology, 71 (2015) 53.
[72] S. H. Kim, S.-j. Kim, S. Park and H. K. Kim, Biodiesel production using cross-linked Staphylococcus haemolyticus lipase immobilized on solid polymeric carriers, Journal of Molecular Catalysis B: Enzymatic, 85-86 (2013) 10.
[73] F. Su, G.-L. Li, Y.-L. Fan and Y.-J. Yan, Enhancing biodiesel production via a synergic effect between immobilized Rhizopus oryzae lipase and Novozym 435, Fuel Processing Technology, 137 (2015) 298.
[74] J. Rodrigues, A. Canet, I. Rivera, N. M. Osorio, G. Sandoval, F. Valero and S. Ferreira-Dias, Biodiesel production from crude Jatropha oil catalyzed by non-commercial immobilized heterologous Rhizopus oryzae and Carica papaya lipases, Bioresource Technology, 213 (2016) 88.
[75] J. Rodrigues, V. Perrier, J. Lecomte, E. Dubreucq and S. Ferreira-Dias, Biodiesel production from crude jatropha oil catalyzed by immobilized lipase/acyltransferase from Candida parapsilosis in aqueous medium, Bioresource Technology, 218 (2016) 1224.
[76] G. Alamsyah, V. A. Albels, M. Sahlan and H. Hermansyah, Effect of chitosan’s amino group in adsorption-crosslinking immobilization of lipase enzyme on resin to catalyze biodiesel synthesis, Energy Procedia, 136 (2017) 47.
[77] M. Kalantari, M. Kazemeini and A. Arpanaei, Evaluation of biodiesel production using lipase immobilized on magnetic silica nanocomposite particles of various structures, Biochemical Engineering Journal, 79 (2013) 267.
[78] J. Lin, B. Zhao, Y. Cao, H. Xu, S. Ma, M. Guo, D. Qiao and Y. Cao, Rationally designed Fe-MCM-41 by protein size to enhance lipase immobilization, catalytic efficiency and performance, Applied Catalysis A: General, 478 (2014) 175.
[79] L. F. Bautista, G. Vicente, Á. Mendoza, S. González and V. Morales, Enzymatic Production of Biodiesel from Nannochloropsis gaditana Microalgae Using Immobilized Lipases in Mesoporous Materials, Energy & Fuels, 29 (2015) 4981.
[80] J. Pang, G. Zhou, R. Liu and T. Li, Esterification of oleic acid with methanol by immobilized lipase on wrinkled silica nanoparticles with highly ordered, radially oriented mesochannels, Mater Sci Eng C Mater Biol Appl, 59 (2016) 35.
[81] Y. Jiang, W. Sun, L. Zhou, L. Ma, Y. He and J. Gao, Improved Performance of Lipase Immobilized on Tannic Acid-Templated Mesoporous Silica Nanoparticles, Applied Biochemistry and Biotechnology, 179 (2016) 1155.
[82] G. O. Ferrero, H. J. Rojas, C. E. Argaraña and G. A. Eimer, Towards sustainable biofuel production: Design of a new biocatalyst to biodiesel synthesis from waste oil and commercial ethanol, Journal of Cleaner Production, 139 (2016) 495.
[83] M. Babaki, M. Yousefi, Z. Habibi, M. Mohammadi, P. Yousefi, J. Mohammadi and J. Brask, Enzymatic production of biodiesel using lipases immobilized on silica nanoparticles as highly reusable biocatalysts: effect of water, t -butanol and blue silica gel contents, Renewable Energy, 91 (2016) 196.
[84] C. Carteret, J. Jacoby and J. L. Blin, Using factorial experimental design to optimize biocatalytic biodiesel production from Mucor Miehei Lipase immobilized onto ordered mesoporous materials, Microporous and Mesoporous Materials, 268 (2018) 39.
[85] L. C. Bencze, J. H. Bartha-Vari, G. Katona, M. I. Tosa, C. Paizs and F. D. Irimie, Nanobioconjugates of Candida antarctica lipase B and single-walled carbon nanotubes in biodiesel production, Bioresource Technology, 200 (2016) 853.
[86] Y. Fan, G. Wu, F. Su, K. Li, L. Xu, X. Han and Y. Yan, Lipase oriented-immobilized on dendrimer-coated magnetic multi-walled carbon nanotubes toward catalyzing biodiesel production from waste vegetable oil, Fuel, 178 (2016) 172.
[87] Z. Rastian, A. A. Khodadadi, Z. Guo, F. Vahabzadeh and Y. Mortazavi, Plasma Functionalized Multiwalled Carbon Nanotubes for Immobilization of Candida antarctica Lipase B: Production of Biodiesel from Methanolysis of Rapeseed Oil, Applied Biochemistry and Biotechnology, 178 (2016) 974.
[88] A. Arumugam and V. Ponnusami, Production of biodiesel by enzymatic transesterification of waste sardine oil and evaluation of its engine performance, Heliyon, 3 (2017) e00486.
[89] Y. Fan, F. Su, K. Li, C. Ke and Y. Yan, Carbon nanotube filled with magnetic iron oxide and modified with polyamidoamine dendrimers for immobilizing lipase toward application in biodiesel production, Sci Rep, 7 (2017) 45643.
[90] Y. Mei, L. Miller, W. Gao and R. A. Gross, Imaging the Distribution and Secondary Structure of Immobilized Enzymes Using Infrared Microspectroscopy, Biomacromolecules, 4 (2003) 70.
[91] Z. Cabrera, G. Fernandez-Lorente, R. Fernandez-Lafuente, J. M. Palomo and J. M. Guisan, Novozym 435 displays very different selectivity compared to lipase from Candida antarctica B adsorbed on other hydrophobic supports, Journal of Molecular Catalysis B: Enzymatic, 57 (2009) 171.
[92] M. M. R. Talukder, J. C. Wu, T. B. Van Nguyen, N. M. Fen and Y. L. S. Melissa, Novozym 435 for production of biodiesel from unrefined palm oil: Comparison of methanolysis methods, Journal of Molecular Catalysis B: Enzymatic, 60 (2009) 106.
[93] K. S. Bisht, Y. Y. Svirkin, L. A. Henderson, R. A. Gross, D. L. Kaplan and G. Swift, Lipase-Catalyzed Ring-Opening Polymerization of Trimethylene Carbonate, Macromolecules, 30 (1997) 7735.
[94] N. G. Graebin, A. B. Martins, A. S. Lorenzoni, C. Garcia-Galan, R. Fernandez-Lafuente, M. A. Ayub and R. C. Rodrigues, Immobilization of lipase B from Candida antarctica on porous styrene-divinylbenzene beads improves butyl acetate synthesis, Biotechnology Progress, 28 (2012) 406.
[95] Y. Wan and Zhao, On the Controllable Soft-Templating Approach to Mesoporous Silicates, Chemical Reviews, 107 (2007) 2821.
[96] I. V. Pavlidis, T. Vorhaben, D. Gournis, G. K. Papadopoulos, U. T. Bornscheuer and H. Stamatis, Regulation of catalytic behaviour of hydrolases through interactions with functionalized carbon-based nanomaterials, Journal of Nanoparticle Research, 14 (2012)
[97] A. García Márquez, A. Demessence, A. E. Platero-Prats, D. Heurtaux, P. Horcajada, C. Serre, J.-S. Chang, G. Férey, V. A. de la Peña-O''Shea, C. Boissière, D. Grosso and C. Sanchez, Green Microwave Synthesis of MIL-100(Al, Cr, Fe) Nanoparticles for Thin-Film Elaboration, European Journal of Inorganic Chemistry, 2012 (2012) 5165.
[98] P. K. Smith, R. I. Krohn, G. T. Hermanson, A. K. Mallia, F. H. Gartner, M. D. Provenzano, E. K. Fujimoto, N. M. Goeke, B. J. Olson and D. C. Klenk, Measurement of protein using bicinchoninic acid, Analytical Biochemistry, 150 (1985) 76.
[99] K. J. Wiechelman, R. D. Braun and J. D. Fitzpatrick, Investigation of the bicinchoninic acid protein assay: Identification of the groups responsible for color formation, Analytical Biochemistry, 175 (1988) 231.
[100] P. Ye, Z.-K. Xu, A.-F. Che, J. Wu and P. Seta, Chitosan-tethered poly(acrylonitrile-co-maleic acid) hollow fiber membrane for lipase immobilization, Biomaterials, 26 (2005) 6394.
[101] H. Hu, P. Bhowmik, B. Zhao, M. A. Hamon, M. E. Itkis and R. C. Haddon, Determination of the acidic sites of purified single-walled carbon nanotubes by acid–base titration, Chemical Physics Letters, 345 (2001) 25.
[102] Y. H. Shih, C. P. Fu, W. L. Liu, C. H. Lin, H. Y. Huang and S. Ma, Nanoporous Carbons Derived from Metal-Organic Frameworks as Novel Matrices for Surface-Assisted Laser Desorption/Ionization Mass Spectrometry, Small, 12 (2016) 2057.
[103] C. Volkringer, D. Popov, T. Loiseau, G. Férey, M. Burghammer, C. Riekel, M. Haouas and F. Taulelle, Synthesis, Single-Crystal X-ray Microdiffraction, and NMR Characterizations of the Giant Pore Metal-Organic Framework Aluminum Trimesate MIL-100, Chemistry of Materials, 21 (2009) 5695.
[104] H. L. Jiang, B. Liu, Y. Q. Lan, K. Kuratani, T. Akita, H. Shioyama, F. Zong and Q. Xu, From metal-organic framework to nanoporous carbon: toward a very high surface area and hydrogen uptake, J Am Chem Soc, 133 (2011) 11854.
[105] P. K. Kiyohara, H. S. Santos, A. C. V. Coelho and P. D. S. Santos, Structure, Surface Area and Morphology of Aluminas from thermal decomposition of Al(OH)(CH3COO)2 Crystals, Anais da Academia Brasileira de Ciencias, 72 (2000) 471.
[106] H. Zhao, H. Song, L. Xu and L. Chou, Isobutane dehydrogenation over the mesoporous Cr2O3/Al2O3 catalysts synthesized from a metal-organic framework MIL-101, Applied Catalysis A: General, 456 (2013) 188.
[107] M. Gamba, A. A. M. Lapis and J. Dupont, Supported Ionic Liquid Enzymatic Catalysis for the Production of Biodiesel, Advanced Synthesis & Catalysis, 350 (2008) 160.
[108] C.-Z. Liu, F. Wang, A. R. Stiles and C. Guo, Ionic liquids for biofuel production: Opportunities and challenges, Applied Energy, 92 (2012) 406.
[109] K. K. Kim, H. K. Song, D. H. Shin, K. Y. Hwang and S. W. Suh, The crystal structure of a triacylglycerol lipase from Pseudomonas cepacia reveals a highly open conformation in the absence of a bound inhibitor, Structure (London, England : 1993), 5 (1997) 173.
[110] P. Zucca and E. Sanjust, Inorganic materials as supports for covalent enzyme immobilization: methods and mechanisms, Molecules, 19 (2014) 14139.
[111] S. H. Shuit, K. F. Yee, K. T. Lee, B. Subhash and S. H. Tan, Evolution towards the utilisation of functionalised carbon nanotubes as a new generation catalyst support in biodiesel production: an overview, RSC Advances, 3 (2013) 9070.
[112] F. Li, Y. Wang, D. Wang and F. Wei, Characterization of single-wall carbon nanotubes by N2 adsorption, Carbon, 42 (2004) 2375.
[113] L. Li, S. Xiang, S. Cao, J. Zhang, G. Ouyang, L. Chen and C.-Y. Su, A synthetic route to ultralight hierarchically micro/mesoporous Al(III)-carboxylate metal-organic aerogels, Nature Communications, 4 (2013) 1774.
[114] L. Wang, F. Ke and J. Zhu, Metal–organic gel templated synthesis of magnetic porous carbon for highly efficient removal of organic dyes, Dalton Transactions, 45 (2016) 4541.
[115] Y. H. Shih, J. H. Chen, Y. Lin, H. T. Chen, C. H. Lin and H. Y. Huang, Nitrogen-doped porous carbon material derived from metal-organic gel for small biomolecular sensing, Chem Commun (Camb), 53 (2017) 5725.
[116] Q. Wei and S. L. James, A metal-organic gel used as a template for a porous organic polymer, Chemical Communications, 0 (2005) 1555.
[117] Y. Hu, Y. Fan, Z. Huang, C. Song and G. Li, In situ fabrication of metal-organic hybrid gels in a capillary for online enrichment of trace analytes in aqueous samples, Chem Commun (Camb), 48 (2012) 3966.
[118] H. Hosseini-Monfared, C. Näther, H. Winkler and C. Janiak, Highly selective and “green” alcohol oxidations in water using aqueous 10% H2O2 and iron-benzenetricarboxylate metal–organic gel, Inorganica Chimica Acta, 391 (2012) 75.
[119] L. Liu, J. Zhang, H. Fang, L. Chen and C. Y. Su, Metal–Organic Gel Material Based on UiO‐66‐NH2 Nanoparticles for Improved Adsorption and Conversion of Carbon Dioxide, Chemistry – An Asian Journal, 11 (2016) 2278.
[120] Y. Feng, C. Wang, F. Ke, J. Zang and J. Zhu, MIL-100(Al) Gels as an Excellent Platform Loaded with Doxorubicin Hydrochloride for pH-Triggered Drug Release and Anticancer Effect, Nanomaterials, 8 (2018)
[121] X.-J. Sun, X. Zhang, H. Dong, D.-D. Yang, H.-L. Tang, Y.-C. Zhai, J.-Z. Wei and F.-M. Zhang, Porous metal–organic gel assisted by l-tartaric acid ligand for efficient and controllable drug delivery, New Journal of Chemistry, 42 (2018) 14789.
[122] V. Urbanová, K. Jayaramulu, A. Schneemann, Š. Kment, R. A. Fischer and R. Zbořil, Hierarchical Porous Fluorinated Graphene Oxide@Metal–Organic Gel Composite: Label-Free Electrochemical Aptasensor for Selective Detection of Thrombin, ACS Applied Materials & Interfaces, 10 (2018) 41089.
[123] T. T. Zhao, Z. W. Peng, D. Yuan, S. J. Zhen, C. Z. Huang and Y. F. Li, Metal-organic gel enhanced fluorescence anisotropy for sensitive detection of prostate specific antigen, Spectrochimica Acta Part A: Molecular and Biomolecular Spectroscopy, 192 (2018) 328.
[124] Z. Wang, T. Yan, G. Chen, L. Shi and D. Zhang, High Salt Removal Capacity of Metal–Organic Gel Derived Porous Carbon for Capacitive Deionization, ACS Sustainable Chemistry & Engineering, 5 (2017) 11637.
[125] H. Kobayashi and A. Fukuoka, Synthesis and utilisation of sugar compounds derived from lignocellulosic biomass, Green Chemistry, 15 (2013) 1740.
[126] O. Ibraheem and B. K. Ndimba, Molecular adaptation mechanisms employed by ethanologenic bacteria in response to lignocellulose-derived inhibitory compounds, Int J Biol Sci, 9 (2013) 598.
[127] F. H. Isikgor and C. R. Becer, Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers, Polymer Chemistry, 6 (2015) 4497.
[128] D. M. Alonso, S. G. Wettstein and J. A. Dumesic, Bimetallic catalysts for upgrading of biomass to fuels and chemicals, Chem Soc Rev, 41 (2012) 8075.
[129] M. Norgren and H. Edlund, Lignin: Recent advances and emerging applications, Current Opinion in Colloid & Interface Science, 19 (2014) 409.
[130] J. Pang, A. Wang, M. Zheng, Y. Zhang, Y. Huang, X. Chen and T. Zhang, Catalytic conversion of cellulose to hexitols with mesoporous carbon supported Ni-based bimetallic catalysts, Green Chemistry, 14 (2012) 614.
[131] G. Liang, L. He, H. Cheng, C. Zhang, X. Li, S.-i. Fujita, B. Zhang, M. Arai and F. Zhao, ZSM-5-supported multiply-twinned nickel particles: Formation, surface properties, and high catalytic performance in hydrolytic hydrogenation of cellulose, Journal of Catalysis, 325 (2015) 79.
[132] Y. Wang, W. Deng, B. Wang, Q. Zhang, X. Wan, Z. Tang, Y. Wang, C. Zhu, Z. Cao, G. Wang and H. Wan, Chemical synthesis of lactic acid from cellulose catalysed by lead(II) ions in water, Nat Commun, 4 (2013) 2141.
[133] S. M. Coman, M. Verziu, A. Tirsoaga, B. Jurca, C. Teodorescu, V. Kuncser, V. I. Parvulescu, G. Scholz and E. Kemnitz, NbF5–AlF3 Catalysts: Design, Synthesis, and Application in Lactic Acid Synthesis from Cellulose, ACS Catalysis, 5 (2015) 3013.
[134] N. V. Gromov, O. P. Taran, I. V. Delidovich, A. V. Pestunov, Y. A. Rodikova, D. A. Yatsenko, E. G. Zhizhina and V. N. Parmon, Hydrolytic oxidation of cellulose to formic acid in the presence of Mo-V-P heteropoly acid catalysts, Catalysis Today, 278 (2016) 74.
[135] H. Zhang, N. Li, X. Pan, S. Wu and J. Xie, Direct Transformation of Cellulose to Gluconic Acid in a Concentrated Iron(III) Chloride Solution under Mild Conditions, ACS Sustainable Chemistry & Engineering, 5 (2017) 4066.
[136] F. Shen, R. L. Smith, L. Li, L. Yan and X. Qi, Eco-friendly Method for Efficient Conversion of Cellulose into Levulinic Acid in Pure Water with Cellulase-Mimetic Solid Acid Catalyst, ACS Sustainable Chemistry & Engineering, 5 (2017) 2421.
[137] J. Zhou, Z. Xia, T. Huang, P. Yan, W. Xu, Z. Xu, J. Wang and Z. C. Zhang, An ionic liquid–organics–water ternary biphasic system enhances the 5-hydroxymethylfurfural yield in catalytic conversion of glucose at high concentrations, Green Chemistry, 17 (2015) 4206.
[138] N. Sweygers, N. Alewaters, R. Dewil and L. Appels, Microwave effects in the dilute acid hydrolysis of cellulose to 5-hydroxymethylfurfural, Sci Rep, 8 (2018) 7719.
[139] T. Werpy and G. Petersen, Top Value Added Chemicals from Biomass: Volume I—Results of Screening for Potential Candidates from Sugars and Synthesis Gas., Pacific Northwest National Laboratory (PNNL) and the National Renewable Energy Laboratory (NREL), (2004)
[140] J. J. Bozell and G. R. Petersen, Technology development for the production of biobased products from biorefinery carbohydrates—the US Department of Energy’s “Top 10” revisited, Green Chemistry, 12 (2010) 539.
[141] B. R. Caes, R. E. Teixeira, K. G. Knapp and R. T. Raines, Biomass to Furanics: Renewable Routes to Chemicals and Fuels, ACS Sustainable Chemistry & Engineering, 3 (2015) 2591.
[142] Y. Roman-Leshkov, C. J. Barrett, Z. Y. Liu and J. A. Dumesic, Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates, Nature, 447 (2007) 982.
[143] A. H. Motagamwala, W. Won, C. Sener, D. M. Alonso, C. T. Maravelias and J. A. Dumesic, Toward biomass-derived renewable plastics: Production of 2,5-furandicarboxylic acid from fructose, Science Advances, 4 (2018) eaap9722.
[144] M. J. Antal, W. S. L. Mok and G. N. Richards, Mechanism of formation of 5-(hydroxymethyl)-2-furaldehyde from d-fructose and sucrose, Carbohydrate Research, 199 (1990) 91.
[145] C. Moreau, R. Durand, S. Razigade, J. Duhamet, P. Faugeras, P. Rivalier, P. Ros and G. Avignon, Dehydration of fructose to 5-hydroxymethylfurfural over H-mordenites, Applied Catalysis A: General, 145 (1996) 211.
[146] R. S. Assary, P. C. Redfern, J. R. Hammond, J. Greeley and L. A. Curtiss, Computational Studies of the Thermochemistry for Conversion of Glucose to Levulinic Acid, The Journal of Physical Chemistry B, 114 (2010) 9002.
[147] Y. Román-Leshkov, J. N. Chheda and J. A. Dumesic, Phase Modifiers Promote Efficient Production of Hydroxymethylfurfural from Fructose, Science, 312 (2006) 1933.
[148] F. Salak Asghari and H. Yoshida, Acid-Catalyzed Production of 5-Hydroxymethyl Furfural from d-Fructose in Subcritical Water, Industrial & Engineering Chemistry Research, 45 (2006) 2163.
[149] T. S. Hansen, J. M. Woodley and A. Riisager, Efficient microwave-assisted synthesis of 5-hydroxymethylfurfural from concentrated aqueous fructose, Carbohydrate Research, 344 (2009) 2568.
[150] G. Busca, Acidity and basicity of zeolites: A fundamental approach, Microporous and Mesoporous Materials, 254 (2017) 3.
[151] N.-Y. Chen (1996). Shape selective catalysis in industrial applications, CRC press.
[152] V. Rac, V. Rakić, D. Stošić, O. Otman and A. Auroux, Hierarchical ZSM-5, Beta and USY zeolites: Acidity assessment by gas and aqueous phase calorimetry and catalytic activity in fructose dehydration reaction, Microporous and Mesoporous Materials, 194 (2014) 126.
[153] R. Lin and Y. Ding, A Review on the Synthesis and Applications of Mesostructured Transition Metal Phosphates, Materials (Basel, Switzerland), 6 (2013) 217.
[154] T. Armaroli, G. Busca, C. Carlini, M. Giuttari, A. M. Raspolli Galletti and G. Sbrana, Acid sites characterization of niobium phosphate catalysts and their activity in fructose dehydration to 5-hydroxymethyl-2-furaldehyde, Journal of Molecular Catalysis A: Chemical, 151 (2000) 233.
[155] C. Carlini, P. Patrono, A. M. R. Galletti and G. Sbrana, Heterogeneous catalysts based on vanadyl phosphate for fructose dehydration to 5-hydroxymethyl-2-furaldehyde, Applied Catalysis A: General, 275 (2004) 111.
[156] Y. Zhang, J. Wang, J. Ren, X. Liu, X. Li, Y. Xia, G. Lu and Y. Wang, Mesoporous niobium phosphate: an excellent solid acid for the dehydration of fructose to 5-hydroxymethylfurfural in water, Catalysis Science & Technology, 2 (2012) 2485.
[157] F. Sanz, C. Parada, J. M. Rojo and C. Ruiz-Valero, Crystal Structure, Magnetic Properties, and Ionic Conductivity of a New Mixed-Anion Phosphate Na4Ni5(PO4)2(P2O7)2, Chemistry of Materials, 11 (1999) 2673.
[158] Q. Luo, S. Shen, G. Lu, X. Xiao, D. Mao and Y. Wang, Synthesis of cubic ordered mesoporous YPO4:Ln3+ and their photoluminescence properties, Journal of Materials Chemistry, 19 (2009) 8079.
[159] X. Zhang, K. Wilson and A. F. Lee, Heterogeneously Catalyzed Hydrothermal Processing of C5-C6 Sugars, Chemical Reviews, 116 (2016) 12328.
[160] C. Lansalot-Matras and C. Moreau, Dehydration of fructose into 5-hydroxymethylfurfural in the presence of ionic liquids, Catalysis Communications, 4 (2003) 517.
[161] A. S. Dias, M. Pillinger and A. A. Valente, Dehydration of xylose into furfural over micro-mesoporous sulfonic acid catalysts, Journal of Catalysis, 229 (2005) 414.
[162] X. Guo, Q. Cao, Y. Jiang, J. Guan, X. Wang and X. Mu, Selective dehydration of fructose to 5-hydroxymethylfurfural catalyzed by mesoporous SBA-15-SO3H in ionic liquid BmimCl, Carbohydrate Research, 351 (2012) 35.
[163] J. Chen, K. Li, L. Chen, R. Liu, X. Huang and D. Ye, Conversion of fructose into 5-hydroxymethylfurfural catalyzed by recyclable sulfonic acid-functionalized metal–organic frameworks, Green Chemistry, 16 (2014) 2490.
[164] X. Sun, J. Wang, J. Chen, J. Zheng, H. Shao and C. Huang, Dehydration of fructose to 5-hydroxymethylfurfural over MeSAPOs synthesized from bauxite, Microporous and Mesoporous Materials, 259 (2018) 238.
[165] J. Dai, L. Zhu, D. Tang, X. Fu, J. Tang, X. Guo and C. Hu, Sulfonated polyaniline as a solid organocatalyst for dehydration of fructose into 5-hydroxymethylfurfural, Green Chemistry, 19 (2017) 1932.
[166] R. Insyani, D. Verma, S. M. Kim and J. Kim, Direct one-pot conversion of monosaccharides into high-yield 2,5-dimethylfuran over a multifunctional Pd/Zr-based metal–organic framework@sulfonated graphene oxide catalyst, Green Chemistry, 19 (2017) 2482.
[167] I. Thapa, B. Mullen, A. Saleem, C. Leibig, R. T. Baker and J. B. Giorgi, Efficient green catalysis for the conversion of fructose to levulinic acid, Applied Catalysis A: General, 539 (2017) 70.
[168] X. Guo, J. Tang, B. Xiang, L. Zhu, H. Yang and C. Hu, Catalytic Dehydration of Fructose into 5-Hydroxymethylfurfural by a DMSO-like Polymeric Solid Organocatalyst, ChemCatChem, 9 (2017) 3218.
[169] Z. Hu, Y. Peng, Y. Gao, Y. Qian, S. Ying, D. Yuan, S. Horike, N. Ogiwara, R. Babarao, Y. Wang, N. Yan and D. Zhao, Direct Synthesis of Hierarchically Porous Metal–Organic Frameworks with High Stability and Strong Brønsted Acidity: The Decisive Role of Hafnium in Efficient and Selective Fructose Dehydration, Chemistry of Materials, 28 (2016) 2659.
[170] Z. Ma, H. Hu, Z. Sun, W. Fang, J. Zhang, L. Yang, Y. Zhang and L. Wang, Acidic Zeolite L as a Highly Efficient Catalyst for Dehydration of Fructose to 5-Hydroxymethylfurfural in Ionic Liquid, ChemSusChem, 10 (2017) 1669.
[171] H. Hafizi, A. Najafi Chermahini, M. Saraji and G. Mohammadnezhad, The catalytic conversion of fructose into 5-hydroxymethylfurfural over acid-functionalized KIT-6, an ordered mesoporous silica, Chemical Engineering Journal, 294 (2016) 380.
[172] (!!! INVALID CITATION !!! {})
[173] Z. Yang, W. Qi, R. Huang, J. Fang, R. Su and Z. He, Functionalized silica nanoparticles for conversion of fructose to 5-hydroxymethylfurfural, Chemical Engineering Journal, 296 (2016) 209.
[174] T. Deng, J. Li, Q. Yang, Y. Yang, G. Lv, Y. Yao, L. Qin, X. Zhao, X. Cui and X. Hou, A selective and economic carbon catalyst from waste for aqueous conversion of fructose into 5-hydroxymethylfurfural, RSC Advances, 6 (2016) 30160.
[175] L. Hu, X. Tang, Z. Wu, L. Lin, J. Xu, N. Xu and B. Dai, Magnetic lignin-derived carbonaceous catalyst for the dehydration of fructose into 5-hydroxymethylfurfural in dimethylsulfoxide, Chemical Engineering Journal, 263 (2015) 299.
[176] X. Zhu, J. Gu, Y. Wang, B. Li, Y. Li, W. Zhao and J. Shi, Inherent anchorages in UiO-66 nanoparticles for efficient capture of alendronate and its mediated release, Chemical Communications, 50 (2014) 8779.
[177] G. Férey, C. Mellot-Draznieks, C. Serre, F. Millange, J. Dutour, S. Surblé and I. Margiolaki, A Chromium Terephthalate-Based Solid with Unusually Large Pore Volumes and Surface Area, Science, 309 (2005) 2040.
[178] T. Loiseau, C. Serre, C. Huguenard, G. Fink, F. Taulelle, M. Henry, T. Bataille and G. Férey, A Rationale for the Large Breathing of the Porous Aluminum Terephthalate (MIL‐53) Upon Hydration, Chemistry – A European Journal, 10 (2004) 1373.
[179] R. C. Klet, Y. Liu, T. C. Wang, J. T. Hupp and O. K. Farha, Evaluation of Bronsted acidity and proton topology in Zr- and Hf-based metal-organic frameworks using potentiometric acid-base titration, Journal of Materials Chemistry A, 4 (2016) 1479.
[180] M. R. DeStefano, T. Islamoglu, S. J. Garibay, J. T. Hupp and O. K. Farha, Room-Temperature Synthesis of UiO-66 and Thermal Modulation of Densities of Defect Sites, Chemistry of Materials, 29 (2017) 1357.
[181] B. Bueken, N. Van Velthoven, T. Willhammar, T. Stassin, I. Stassen, D. A. Keen, G. V. Baron, J. F. M. Denayer, R. Ameloot, S. Bals, D. De Vos and T. D. Bennett, Gel-based morphological design of zirconium metal-organic frameworks, Chem Sci, 8 (2017) 3939.
[182] P. S. Bárcia, D. Guimarães, P. A. P. Mendes, J. A. C. Silva, V. Guillerm, H. Chevreau, C. Serre and A. E. Rodrigues, Reverse shape selectivity in the adsorption of hexane and xylene isomers in MOF UiO-66, Microporous and Mesoporous Materials, 139 (2011) 67.
[183] M. Taddei, K. C. Dümbgen, J. A. van Bokhoven and M. Ranocchiari, Aging of the reaction mixture as a tool to modulate the crystallite size of UiO-66 into the low nanometer range, Chemical Communications, 52 (2016) 6411.
[184] J. Aguado, D. P. Serrano, J. M. Escola and J. M. Rodríguez, Low temperature synthesis and properties of ZSM-5 aggregates formed by ultra-small nanocrystals, Microporous and Mesoporous Materials, 75 (2004) 41.
[185] M. Sanchez-Sanchez, I. de Asua, D. Ruano and K. Diaz, Direct Synthesis, Structural Features, and Enhanced Catalytic Activity of the Basolite F300-like Semiamorphous Fe-BTC Framework, Crystal Growth & Design, 15 (2015) 4498.
[186] D. Ning, Q. Liu, Q. Wang, X.-M. Du, W.-J. Ruan and Y. Li, Luminescent MOF nanosheets for enzyme assisted detection of H2O2 and glucose and activity assay of glucose oxidase, Sensors and Actuators B: Chemical, 282 (2019) 443.
[187] R. S. Thombal and V. H. Jadhav, Efficient conversion of carbohydrates to 5-hydroxymethylfurfural (HMF) using ZrCl4 catalyst in nitromethane, Biofuel Research Journal, 1 (2014) 81.
[188] M. Rimoldi, A. J. Howarth, M. R. DeStefano, L. Lin, S. Goswami, P. Li, J. T. Hupp and O. K. Farha, Catalytic Zirconium/Hafnium-Based Metal–Organic Frameworks, ACS Catalysis, 7 (2016) 997.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文