跳到主要內容

臺灣博碩士論文加值系統

(18.205.192.201) 您好!臺灣時間:2021/08/05 09:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:彭政諺
研究生(外文):Jheng-Yan Peng
論文名稱:新興技術之殺手級產品預測
論文名稱(外文):The Killer Application Product Forecasting for Emerging Technologies
指導教授:邱榆淨邱榆淨引用關係
指導教授(外文):Yu-Ching Chiu
學位類別:碩士
校院名稱:中原大學
系所名稱:企業管理研究所
學門:商業及管理學門
學類:企業管理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:86
中文關鍵詞:新興技術殺手級應用關鍵多數科技接受模式創新擴散理論AI醫學影像辨識
外文關鍵詞:Emerging TechnologyKiller ApplicationCritical MassTechnology Acceptance ModelInnovation Diffusion TheoryArtificial Intelligence in medical image
相關次數:
  • 被引用被引用:1
  • 點閱點閱:72
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在科技日新月異的環境下,市場競爭的程度愈趨激烈,各家廠商皆在尋求各項新興技術之殺手級應用,以求能於市場中佔有領導地位。殺手級應用(Killer Application)一詞指的是足以改變整個產業規則的新產品或服務,然至今卻仍無一可依循之模式以探討殺手級應用。因此,本研究欲以探討具備何種條件之產品、服務能稱之為殺手級應用,並透過分析、歸納其彼此間之共通性,以建構殺手級應用產品之預測模型。

本研究係以電視、行動電話、網際網路、AI醫學影像辨識為本研究之標的物,並使用關鍵多數、科技接受模式及創新擴散理論為本研究之架構基礎,以定義並分析殺手級應用。係經本研究探討,顯示若母體數為非固定之前提下,將難以明確定義殺手級應用之關鍵多數數值,因此本研究使用主流設計之概念為關鍵多數之定義,並以其為殺手級應用產品之判斷基準。

本研究分析指出,電視、行動電話及網際網路已達關鍵多數,因此判斷其為殺手級應用產品,且透過彙整相關文獻,得知此三項產品之認知有用性、認知易用性、使用態度、相容性、可試用性、可視性及結果展示性多對使用態度與使用意願有顯著影響,為其三項之共通點;AI醫學影像辨識則未達關鍵多數,故尚未為殺手級應用產品,因此本研究透過問卷調查,得知AI醫學影像辨識之可試用性、可視性及結果展示性對使用態度並未有顯著影響,為與電視、行動電話及網際網路之差異所在。

本研究結果係以關鍵多數與電視、行動電話及網際網路之共通點為殺手級應用產品預測模型之構面。殺手級應用產品預測模型之建立,將可作為國內業者尋求殺手級應用或後續研究者之有效參考依據;AI醫學影像辨識之可試用性、可視性及結果展示性則為其目前發展之重要關鍵因素,因此若能有效提升其曝光度,將能有效影響使用者的使用態度。其結果亦可作為廠商改進方向之建議與後續研究者之參考。
In these days of rapid technological change environment, the competition in the market has become more intense than ever. Companies are craving to take the leadership of their market by searching “Killer Application” out of entire emerging technologies. “Killer Application” indicates a new kind of application, product or service, which can transforms or redefines existing industries game rules, but still not have the model that we can follow to discussing “Killer Application”. But there’s not one model that we can follow to discuss or investigate for “Killer Application”. Therefore, this study will be exploring for conditions and qualifications which can make products or services be called or known as “Killer Application”, and to build a prediction model of “Killer Application” through analysis and summarize of their commonality.

To define and analyze “Killer Application”, this study is based on Critical Mass, Technology Acceptance Model and Innovation Diffusion Theory, and chooses television, cellphone, internet and Artificial Intelligence(AI) in medical image as research subjects. However, according to the study of Critical Mass, it is difficult to define the key number of Killer Application if the population is unfixed. So we use “Dominant Design” as the definition of Critical Mass instead, and the foundation for Killer Application’s judgment.

The analysis of this study points out that television, cellphone, and internet have already reached the key number of Critical Mass, so we judge these products are “Killer Application”. And through the collection and organization of relevant literature researches, the factors that significantly affect Attitude Toward Using or Behavioral Intention to Use including Perceived Usefulness, Perceived Ease of Use, Attitude Toward Using, Compatibility, Trialability, Visibility, and Result Demonstrability. These factors are common for those three products. But, on the other hand, the analysis demonstrates that AI in medical image has not reached the key number yet, and its Trialability, Visibility and Result Demonstrability are not affecting Attitude Toward Using significantly according to surveys of this study. This is the differences between AI in medical image and other three products.

As mentioned above, this study uses Critical Mass for judging Killer Application, and the common factors of television, cellphone and internet, which are already Killer Application, as the impact factors while building the prediction model of Killer Application. We hope that the prediction model can be an effective reference for searching the Killer Application and follow-up studies. As for AI in medical image, its Trialability, Visibility and Result Demonstrability are important factors for its current and future development. So if its exposure can improve actively, it is bound to affect the attitude effectively.
目 錄
摘 要 I
Abstract II
致 謝 IV
目 錄 V
圖目錄 VII
表目錄 VIII
第壹章 緒 論 1
第一節 研究背景與動機 1
第二節 研究目的 2
第三節 研究範圍與對象 3
第四節 研究流程 4
第貳章 文 獻 探 討 5
第一節 殺手級應用定義與理論基礎 5
第二節 關鍵多數 8
第三節 科技接受模式(TAM) 11
第四節 創新擴散理論(IDT) 15
第五節 科技接受模式與創新擴散理論之融合 21
第參章 研 究 方 法 24
第一節 觀念性研究架構 24
第二節 研究假說 25
第三節 研究變數之操作型定義 27
第四節 問卷設計 28
第五節 資料蒐集與資料分析方法 33
第肆章 實 證 結 果 與 分 析 35
第一節 判斷是否為殺手級應用 35
第二節 既存殺手級應用之TAM與IDT特徵 37
第三節 敘述性統計 44
第四節 信度、效度分析 47
第五節 迴歸分析 48
第六節 無母數分析 53
第七節 實證結果彙整 54
第伍章 結 論 與 建 議 57
第一節 研究結論 57
第二節 研究貢獻 61
第三節 研究限制及未來研究建議 62
參考文獻 64
附錄 73
附錄一、研究問卷 73

圖目錄
圖1-1:2018年新興技術發展週期 1
圖1-2:研究流程圖 4
圖2-1:摩爾定律(Moore''s Law) 6
圖2-2:梅特卡夫定律(Metcalfe’s Law) 6
圖2-3:梅特卡夫定律之應用 7
圖2-4:擾亂定律(Law of Disruption) 7
圖2-5:擾亂定律-殺手級應用(Killer APP) 8
圖2-6:科技接受模式理論架構(TAM) 11
圖2-7:創新決策過程五大階段模式 17
圖2-8:接受者分類的鐘形曲線及S型累積曲線 18
圖3-1:觀念性研究架構 24
圖3-2:研究假說架構 26
圖4-1:臺灣彩色電視機普及率 35
圖4-2:臺灣行動電話普及率 36
圖4-3:全球網際網路用戶數占全球總人口比 37
圖4-4:恆常性檢定 50
圖4-5:研究假說關聯結果 56

表目錄
表2-1:關鍵多數之相關研究整理 9
表2-2:TAM之相關研究整理 13
表2-3:IDT之相關研究整理 20
表2-4:TAM & IDT之相關研究整理 22
表3-1:研究變數之操作型定義 27
表3-2:認知有用性題項 28
表3-3:認知易用性題項 29
表3-4:使用態度題項 29
表3-5:使用意願題項 30
表3-6:相容性題項 30
表3-7:可試用性題項 31
表3-8:可視性題項 31
表3-9:結果展示性題項 31
表4-1:電視之TAM及IDT之相關研究整理 38
表4-2:行動電話之TAM及IDT之相關研究整理 40
表4-3:網際網路之TAM及IDT之相關研究整理 42
表4-4:樣本基本資料分佈狀況表 44
表4-5:AI醫學影像辨識推動之整理 46
表4-6:各構面之信度分析 47
表4-7:迴歸式之說明 48
表4-8:Kolmogorov-Smirnov常態性檢定 48
表4-9:獨立性檢定 50
表4-10:認知易用性對認知有用性之迴歸分析 51
表4-11:認知有用性、認知易用性、相容性、可試用性、可視性與結果展示性對使用態度之多元迴歸分析 52
表4-12:認知有用性對使用意願之曼惠二氏U檢定法 53
表4-13:使用態度對使用意願之曼惠二氏U檢定法 53
表4-14:電視、行動電話、網際網路之關鍵多數 54
表4-15:電視、手機、網際網路之TAM及IDT之特徵歸納 54
表4-16:研究假說實證結果彙整 56
表5-1:既存殺手級應用之TAM與IDT之共同特徵 57
表5-2:殺手級應用之關鍵多數及其與影響AI醫學影像辨識之TAM、IDT特徵 60
一、中文部分
江志卿、黃興進與嚴紀中,2005,中小企業採用網路科技之比較:創新擴散通用模式的整合觀點(A Comparison of Adopting Network Technologies in SMEs: An Integrated Perspective of IDT General Model),資訊管理學報,12(2),103-139,doi: 10.6382/jim.200504.0103。
余強生,2008,網路銀行的採用與採用持續性(Adoption and Adoption Continuance of Online Banking),電子商務學報,10(4),1067-1106,doi: 10.6188/jeb.2008.10(4).03。
吳欣穎,2003,文化價值、消費價值與消費者行為─以兩岸大學生手機購買決策為例,國立中興大學行銷學系碩士論文。
吳亞馨、朱素玥與方文昌,2008,網路購物信任與科技接受模式之實證研究(An Empirical Study of Trust and TAM-An Example of Online Shopping),資訊管理學報,15(1),123-152,doi: 10.6382/jim.200801.0123。
吳玫瑩與林怡君,2011,臺灣的大學院校師生對Library 2.0網站的使用意圖及使用行為之探討(A Study of Taiwan Universities'' Intention and Behavior to Use Library 2.0),圖書資訊學研究,6(1),139-180。
吳百堅,2011,影響消費者使用智慧型手機的相關因素之研究,國立成功大學企業管理研究所碩士論文。
吳奕璋,2012,以延伸性科技接受模型探討數位電視消費意願之研究,國立中興大學資訊管理學系碩士論文。
吳智鴻與蔡依錞,2014,以科技接受模式來探討社群網站Facebook的使用意圖(Using Technology Acceptance Model for Investigating the Social Network Website (Facebook) Usage Intenton),國立臺灣科技大學人文社會學報,10(1),29-44。
李一靜、樊台聖與王炯傑,2015,行動社群使用意願之影響因素探討(An Investigation on the Willingness to Use of Mobile Community),Electronic Commerce Studies,13(4),403-430。
林政坤、曹文瑜、劉宜菁與楊惠貞,2007,影響技專院校學生創新採用相關因素之研究-以即時通爲例(To Investigate the Factors Affecting Institute Collegers'' Innovation Adoption-A Case of Instant Messenger),勤益學報,25,M-21-M-37,doi: 10.6753/cyj.200712.0017。
林畯城、廖本裕與黃嘉勝,2007,彰化縣國民小學推廣網路學籍管理系統現況及影響使用之因素研究(An Investigation on the Current Situation and Factors Affecting the Adaptation of Internet Registration System in Chunghua County Elementary Schools),臺中教育大學學報:教育類,21(1),1-25,doi: 10.7037/jntue.200706.0001。
林安泰,2010,以科技接受模式、創新擴散理論及品牌忠誠度探討智慧型手機使用之影響因素,國立東華大學國際企業學系碩士論文。
林淑玲,2010,網路電視接受度、知覺風險與轉換意圖之研究-以中華電信MOD為例,國立臺北大學企業管理學系碩士論文。
林月琴與黃靖文,2012,科技接受模式於政府歲計會計資訊管理系統之應用(An Application of Technology Acceptance Model to Government Budgeting and Accounting System),科技管理學刊,17(4),1-37,doi: 10.6378/jtm.201212.0001。
洪新原、梁定澎與張嘉銘,2005,科技接受模式之彙總研究(A Meta-Analysis of Empirical Research Using TAM),資訊管理學報,12(4),211-234. doi: 10.6382/jim.200510.0211。
洪新原、張碩毅、許凱筑與張益誠,2010,從創新擴散觀點探討影響企業採用協同商務技術之因素(Critical Factors of Collaborative Commerce Adoption: An Empirical Study),臺大管理論叢,20(S1),29-68,doi: 10.6226/nturm2010.20.s1.29。
洪畹秋,2011,運用科技接受模式探討銀髮族對手機接受度之研究,南開科技大學福祉科技與服務管理研究所碩士論文。
孫嘉祈、張世其與陳世良,2008,如何提升顧客忠誠度-融合交易成本理論及科技接受模式觀點(How to Enhance Consumers'' Loyalty: Combining Transaction Cost Theory with Technology Acceptance Model),科技管理學刊,13(1),1-39,doi: 10.6378/jtm.200803.0001。
徐淑如與林家琪,2010,線上品牌社群知覺關鍵多數、知覺價值與忠誠度之研究(Consumer Perceived Critical Mass, Value and Loyalty in Web-based Brand Communities),資訊管理學報,17(2),175-200,doi: 10.6382/jim.201004.0175。
陳協勝,2010,科技產品採用行為意向整合模式之研究-以數位電視為例(Study of Integrated Model for Behavioral Intention of Technology Products Usage-Digital TV as Example),行銷評論,7(1),75-98,doi: 10.29931/mr.201003.0004。
高淑珍、陳華慶與吳建興,2011,VoIP使用意向之研究-以金門縣公務機關為例(An Empirical Study of Intention of VoIP Adoption for Public Sectors in Kinmen County),中華管理學報,12(2) ,25-46,doi: 10.30053/chjm.201106.0002。
陳智維,2012,3D顯示電視之科技接受模型分析----以創新擴散觀點,長庚大學管理學院碩士論文。
郭仕堯與陳淑娟,2012,應用科技接受模式研究中華電信MOD之使用者行為(Applying the Technology Acceptance Model to Explore MOD Users Behavior),玄奘資訊傳播學報,9,1-22,doi: 10.29594/xlzy.201207.0001。
徐永模,2016,以科技接受理論來探討消費者使用智慧型手機商品之行為意圖研究,國立成功大學高階管理在職專班碩士論文。
許麗玲、徐村和與吳憲政,2009,影響部落格使用意向的前置因素(The Antecedents of Influencing Usage Intention in Blog Context,電子商務學報,11(1),1-28,doi: 10.6188/jeb.2009.11(1).01。
許月珍,2013,以科技接受模式與創新擴散理論探討視障者使用智慧型手機之影響因素,臺北教育大學數位科技設計學系碩士論文。
張琇羢,2014,以科技接受模式與創新擴散理論探討企業導入以MVC進行軟體開發之影響因素研究,元智大學資訊管理學系碩士論文。
黃詩芸,2010,以科技接受模式檢視臺灣數位無線電視之採用行為,國立交通大學傳播研究所碩士論文。
黃興進、韓懷恩、郭光明與鄭嘉挺,2012,以糖尿病為例探討影響醫院建置個人健康記錄入口網站之關鍵因素-資訊人員之觀點(Critical Factors Influencing the Implementation of Personal Health Record Portals for Diabetes Mellitus-Perspectives of Information Systems Departments),資訊管理學報,19(2),407-437,doi: 10.6382/jim.201204.0196。
董峰呈與張淑昭,2007,利用新混合科技接受模型來探討財務服務產業電子化顧客關係管理資訊系統之應用(A New Hybrid Technology Acceptance Approach for Exploring e-CRM System Adoption in the Financial Services Industry: An Empirical Study),致遠管理學院學報,2(2),41-62,doi: 10.6595/bdcm.2007.2(2).3。
楊敦質,2008,以科技接受模型分析數位有線電視之使用者採用行為,國立中山大學傳播管理研究所碩士論文。
廖御超,2006,影響採用創新產品之相關因素探討--以3G手機為例,國立東華大學企業管理學系碩士論文。
鄭青展,蔡明春與張雅媛,2010,臺灣互動電視潛在消費者行爲意向模式(The Model of the Behavioral Intention of Potential Consumers in Taiwan''s Interactive TV market),臺北海洋技術學院學報,3(2),24-53,doi: 10.29770/jtcmt.201009.0002。
廖凱雯,2013,整合TAM與TRA理論探討消費者購買液晶電視之意願,國立成功大學高階管理專班碩士論文。
樊祖燁,2014,產品有用與產品易用 孰者為重?(Usefulness or Ease-of-Use? Which One is More Important?),致理學報,34,1229-1253。
樓永堅與曾威智,2016,以後設分析法探討科技接受模式之研究(A Study of Technology Acceptance Model Using Meta-Analysis.),科技管理學刊,21(2),1-28。
蔡慈芸,2013,以創新擴散理論探討醫療院所導入ISMS之研究,國立成功大學經營管理學程碩士論文。
盧希鵬、林泓君與林娟娟,2003,電子商務人員生涯抉擇之探討,(EC Employee Turnover Intention: An Empirical Study),管理評論,22(2),111-129,doi: 10.6656/mr.2003.22.2.chi.111。
謝政益,2003,網路電話接受度之研究,國立臺灣科技大學資訊管理學系碩士論文。
蘇柏叡,2012,以科技接受模式、網路外部性與創新擴散理論之觀點探究智慧型手機採用之因素,義守大學管理學院碩士論文。
饒怡凡,2013,科技接受模式在第四代行動電話之研究,國立交通大學企業管理學系碩士論文。
二、英文部分
Agarwal, R., and Prasad, J. 1997. The role of innovation characteristics and perceived voluntariness in the acceptance of information technologies. Decision sciences, 28(3), 557-582.
Agrawal, A., Catalini, C., and Goldfarb, A. 2016. Are Syndicates the Killer App of Equity Crowdfunding? California Management Review, 58(2), 111-124. doi: 10.1525/cmr.2016.58.2.111
Armentano, M. G., Christensen, I., and Schiaffino, S. 2015. Applying the technology acceptance model to evaluation of recommender systems. Polibits(51), 73-79.
Atienza, A. A., and Patrick, K. 2011. Mobile Health The Killer App for Cyberinfrastructure and Consumer Health. American Journal of Preventive Medicine, 40(5), S151-S153. doi: 10.1016/j.amepre.2011.01.008
Chen, M.-C., and Yen, Y.-S. 2015. Determinants of Usage Intention of LINE Users in Taiwan. Modern Economy, 6(10), 1090-1100. doi: 10.4236/me.2015.610105
Cho, H. 2011. Theoretical intersections among social influences, beliefs, and intentions in the context of 3G mobile services in Singapore: Decomposing perceived critical mass and subjective norms. Journal of Communication, 61(2), 283-306.
Davis, F. D., Bagozzi, R. P., and Warshaw, P. R. 1989. User acceptance of computer technology: a comparison of two theoretical models. Management science, 35(8), 982-1003.
Davis, F. D. 1989. Perceived usefulness, perceived ease of use, and user acceptance of information technology. MIS quarterly, 319-340.
Dingfelder, H. E., and Mandell, D. S. 2011. Bridging the Research-to-Practice Gap in Autism Intervention: An Application of Diffusion of Innovation Theory. Journal of Autism and Developmental Disorders, 41(5), 597-609. doi: 10.1007/s10803-010-1081-0
Emani, S., Yamin, C. K., Peters, E., Karson, A. S., Lipsitz, S. R., Wald, J. S., . . . Bates, D. W. 2012. Patient Perceptions of a Personal Health Record: A Test of the Diffusion of Innovation Model. Journal of Medical Internet Research, 14(6), 310-324. doi: 10.2196/jmir.2278
Gefen, D., Karahanna, E., and Straub, D. W. 2003. Inexperience and experience with online stores: The importance of TAM and trust. Ieee Transactions on Engineering Management, 50(3), 307-321. doi: 10.1109/tem.2003.817277
Holden, R. J., and Karsh, B. T. 2010. The Technology Acceptance Model: Its past and its future in health care. Journal of Biomedical Informatics, 43(1), 159-172. doi: 10.1016/j.jbi.2009.07.002
Hu, P. J., Chau, P. Y. K., Sheng, O. R. L., and Tam, K. Y. 1999. Examining the Technology Acceptance Model Using Physician Acceptance of Telemedicine Technology. Journal of Management Information Systems, 16(2), 91-112. doi: 10.1080/07421222.1999.11518247
Katz, M. L., and Shapiro, C. 1985. Network externalities, competition, and compatibility. The American economic review, 75(3), 424-440.
Kim, J. W., and Hanneman, R. A. 2011. A Computational Model of Worker Protest. Jasss-the Journal of Artificial Societies and Social Simulation, 14(3).
Legris, P., Ingham, J., and Collerette, P. 2003. Why do people use information technology? A critical review of the technology acceptance model. Information & management, 40(3), 191-204.
Lee, Y.-H., Hsieh, Y.-C., and Hsu, C.-N. 2011. Adding innovation diffusion theory to the technology acceptance model: Supporting employees'' intentions to use e-learning systems. Journal of Educational Technology & Society, 14(4), 124.
MARKUS, M. L. 1987. Toward a “Critical Mass” Theory of Interactive Media:Universal Access, Interdependence and Diffusion. Communication Research, 14(5), 491-511. doi: 10.1177/009365087014005003
McNeill, K. M. 2004. Radiology: "Killer app" for next generation networks? Journal of Digital Imaging, 17(1), 28-36. doi: 10.1007/s10278-003-1666-7
Moon, J.-W., and Kim, Y.-G. 2001. Extending the TAM for a World-Wide-Web context. Information & management, 38(4), 217-230.
Moore, G. C., and Benbasat, I. 1991. Development of an instrument to measure the perceptions of adopting an information technology innovation. Information systems research, 2(3), 192-222.
Moore, G. E. 2006. Progress in digital integrated electronics [Technical literaiture, copyright 1975 IEEE. reprinted, with permission. technical digest. international electron devices meeting, IEEE, 1975, pp. 11-13.]. IEEE Solid-State Circuits Society Newsletter, 20(3).
O''Brien, D. Z., and Rickne, J. 2016. Gender Quotas and Women''s Political Leadership. American Political Science Review, 110(1), 112-126. doi: 10.1017/s0003055415000611
Oliveira, T., Thomas, M., and Espadanal, M. 2014. Assessing the determinants of cloud computing adoption: An analysis of the manufacturing and services sectors. Information & management, 51(5), 497-510. doi: 10.1016/j.im.2014.03.006
Oliver, P., Marwell, G., and Teixeira, R. 1985. A theory of the critical mass. I. Interdependence, group heterogeneity, and the production of collective action. American journal of Sociology, 91(3), 522-556.
Park, S. Y. 2009. An Analysis of the Technology Acceptance Model in Understanding University Students'' Behavioral Intention to Use e-Learning. Educational Technology & Society, 12(3), 150-162.
Rotolo, D., Hicks, D., and Martin, B. R. 2015. What is an emerging technology? Research Policy, 44(10), 1827-1843.
Scott, S. D., Plotnikoff, R. C., Karunamuni, N., Bize, R., and Rodgers, W. 2008. Factors influencing the adoption of an innovation: An examination of the uptake of the Canadian Heart Health Kit (HHK). Implementation Science, 3, 8. doi: 10.1186/1748-5908-3-41
Shih, H. P. 2004. An empirical study on predicting user acceptance of e-shopping on the Web. Information & management, 41(3), 351-368. doi: 10.1016/s0378-7206(03)00079-x
Stávková, J., and Sharma, S. 2005. Behaviour of consumers in EU countries. Acta univ. Agric. Et silvic. Mendel. Brun., 53, 311–318.
Taylor, S., and Todd, P. 1995. Decomposition and crossover effects in the theory of planned behavior: A study of consumer adoption intentions. International journal of research in marketing, 12(2), 137-155.
Tornatzky, L. G., and Klein, K. J. 1982. Innovation characteristics and innovation adoption-implementation: A meta-analysis of findings. Ieee Transactions on Engineering Management(1), 28-45.
Vallier, J. 2010. Twenty-first Century Academic Media Center: Killer App or Chindogu? Library Trends, 58(3), 378-390.
Venkatesh, V., and Davis, F. D. 2000. A Theoretical Extension of the Technology Acceptance Model: Four Longitudinal Field Studies. Management science, 46(2), 187.
West, J., and Mace, M. 2010. Browsing as the killer app: Explaining the rapid success of Apple''s iPhone. Telecommunications Policy, 34(5/6), 270-286. doi: 10.1016/j.telpol.2009.12.002
Yin, P.-L., Davis, J. P., and Muzyrya, Y. 2014. Entrepreneurial innovation: Killer apps in the iPhone ecosystem. American Economic Review, 104(5), 255-259.
三、其他參考文獻
邱文寶譯,2000,Killer APP:十二步打造數位企業,台北:天下文化。Downes, L. and Chunka, M. 1998. Unleashing the Killer App: Digital Strategies for Market Dominance. Massachusetts Boston: HBR Press.
李亭林譯,2017,科技創新管理(第五版),台北:華泰文化。Melissa A. Schilling. 2017. Strategic Management of Technological Innovation, 5th ed. Taiwan: McGraw-Hill International Enterprises.
陳正平譯,2000,跨越鴻溝,台北:臉譜文化。Moore, G. A. 1999. Crossing The Chasm: Marketing and Selling High-Tech Products to Mainstream Customers. New York: Harper Business.
陳正平譯,1996,龍捲風暴,台北:麥田。Moore, G. A. 1995. Inside the Tornado: Marketing Strategies from Silicon Valley’s Cutting Edge. New York: Harper Business.
陳正昌、程炳林、陳新豐與劉子鍵,2003,多變量分析方法—統計軟體應用(初版),台北市:五南。
唐錦超譯,2006,創新的擴散,台北:遠流。Rogers, E. M. 1995. Diffusion of Innovations. New York: Free Press.
黃煜文譯,2012,文明:決定人類走向的六大殺手級Apps,台北:聯經。Ferguson, N. 2011. Civilization: The West and the Rest. London: Penguin Books.
中華民國統計資訊網,2017,家庭主要設備普及率-年,http://statdb.dgbas.gov.tw/pxweb/Dialog/varval.asp?ma=FF0009A1A&ti=%AEa%AEx%A5D%ADn%B3%5D%B3%C6%B4%B6%A4%CE%B2v%20%20-%A6%7E&path=../PXfile/HouseholdFinances/&lang=9&strList=L,搜尋日期:2018年10月19日。
中華民國內政部戶政司全球資訊網,2018,民國107年12月戶口統計資料分析,https://www.moi.gov.tw/chi/chi_news/news_detail.aspx?sn=15355&type_code=01&pages=0&src=news,搜尋日期:2019年1月24日。
中華民國衛生福利部統計處,2018,機構執業醫事人員數及每萬人口醫事人員數,https://dep.mohw.gov.tw/DOS/cp-1735-3245-113.html,搜尋日期:2019年1月24日。
國家高速網路與計算中心,2018,加速醫療影像AI發展 再創臺灣優勢 科技部啟動臺灣首座跨醫療院所之醫療影像標註資料庫,https://www.nchc.org.tw/posts/oDjp45LFGy/aimidph181226,搜尋日期:2019年1月24日。
烏鎮智庫,2017,全球人工智能發展報告(2017),http://h5.iwuzhen.org/pdf/AI-China20170726.pdf,搜尋日期:2019年2月14日。
數位時代,2017,2018十大策略科技趨勢預測,Gartner:主戰場在AI,https://www.bnext.com.tw/article/46573/gartner-identifies-the-top-10-strategic-technology-trends-for-2018,搜尋日期:2018年5月3日。
MoneyDJ理財網,2017,研調:AI醫療影像應用趨勢成形,資料庫完整度扮關鍵,https://www.moneydj.com/KMDJ/News/NewsViewer.aspx?a=f6d8e346-5c7a-43c0-8dbd-fe986e73b297&c=MB070100,搜尋日期:2019年1月24日。
Ajzen, I., and Fishbein, M. 1980. Understanding attitudes and predicting social behavior. Englewood Cliffs, NJ: Prentice-Hall.
Nunnally, J. C., and Bernstein, I. H. 1994. Psychometric theory, 3rd ed. New York : McGraw-Hill.
Rogers, E. M. 1983. Diffusion of Innovations. 3rd ed. New York: Free Press.
Ahmed El-Khatib. 2011. 10 Consumer Behavior Differences between Developed and Developing Countries. https://wearedevelopment.net/2011/11/01/10-consumer-behavior-differences-between-developed-and-developing-countries/. Accessed Feb. 14, 2019.
CB Insights. 2018. The AI Industry Series: Top Healthcare AI Trends To Watch. https://www.cbinsights.com/research/report/ai-trends-healthcare/. Accessed Sep. 30, 2018.
Clarivate Analytics. 2017. The State of Innovation Report 2017. https://cdn.clarivate.com/wp-content/uploads/2017/10/The_State_of_Innovation_Report_2017.pdf. Accessed May. 17, 2018.
FANDOM. 2011. Metcalfe’s Law. http://collaboration.wikia.com/wiki/Metcalfe%E2%80%99s_Law. Accessed Mar. 18, 2018.
Gartner. 2018. 5 Trends Emerge in the Gartner Hype Cycle for Emerging Technologies, 2018. https://www.gartner.com/smarterwithgartner/5-trends-emerge-in-gartner-hype-cycle-for-emerging-technologies-2018/. Accessed Nov. 15, 2018.
Internet World Statistics. 2018. INTERNET GROWTH STATISTICS. https://www.internetworldstats.com/emarketing.htm. Accessed Jan. 24, 2019.
Kanellos, M. 2003. Moore''s Law to roll on for another decade. https://www.cnet.com/news/moores-law-to-roll-on-for-another-decade/. Accessed Mar. 18, 2018.
KTH Royal Institute of Technology網頁. 2009. Moore''s law. https://www.kth.se/social/upload/507d1d3af276540519000002/Moore''s%20law.pdf. Accessed Mar. 18, 2018.
Mike, H. 2006. Guest Blogger Bob Metcalfe: Metcalfe’s Law Recurses Down the Long Tail of Social Networks. https://vcmike.wordpress.com/2006/08/18/metcalfe-social-networks/. Accessed Mar. 18, 2018.
Peplow, Mark. 2015. Graphene booms in factories but lacks a killer app. https://www.nature.com/news/graphene-booms-in-factories-but-lacks-a-killer-app-1.17771. Accessed May. 17, 2018.
The Atlantic. 2013. The 50 Greatest Breakthroughs Since the Wheel. https://www.theatlantic.com/magazine/archive/2013/11/innovations-list/309536/#list. Accessed Dec. 14, 2018.
Tractica. 2018. Artificial Intelligence Software Market to Reach $105.8 Billion in Annual Worldwide Revenue by 2025. https://www.tractica.com/newsroom/press-releases/artificial-intelligence-software-market-to-reach-105-8-billion-in-annual-worldwide-revenue-by-2025/. Accessed Feb. 14, 2019.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top