跳到主要內容

臺灣博碩士論文加值系統

(44.222.104.206) 您好!臺灣時間:2024/05/28 11:42
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:游騰業
研究生(外文):YU, Teng-Yeh
論文名稱:Einstein-Maxwell-dilaton 理論裡的宇宙審查和弱重力猜想
論文名稱(外文):Cosmic Censorship and Weak Gravity Conjecture in the Einstein-Maxwell-dilaton theory
指導教授:溫文鈺
指導教授(外文):Wen-Yu Wen
學位類別:碩士
校院名稱:中原大學
系所名稱:物理研究所
學門:自然科學學門
學類:物理學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:25
中文關鍵詞:宇宙審查弱重力猜想Hoop 猜想
外文關鍵詞:Weak Gravity ConjectureCosmic CensorshipHoop Conjecture
相關次數:
  • 被引用被引用:0
  • 點閱點閱:166
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
我們按照 Wald 的假想實驗對Einstein-Maxwell-dilaton 理論中的宇宙審查進行試驗,透過測試粒子來摧毀黑洞,我們發現在帶有特定能量的粒子可以破壞極端帶電的dilaton 黑洞。然而我們如果考慮了self-force 等反作用力,宇宙審查將不會被違反。最後我們討論了 Hoop 猜想和弱重力猜想之間的關聯,以及使用了廣義的熱力學第二定律來保護宇宙審查制度。
We explore the cosmic censorship in the Einstein-Maxwell-dilaton theory following Wald’s thought experiment to destroy a black hole by throwing in a test particle. We discover that at probe limit the extremal charged dilaton black hole could be destroyed by a test particle with specific energy. Nevertheless the censorship is well protected if backreaction or self-force is included. At the end, we discuss an interesting connection between Hoop Conjecture and Weak Gravity Conjecture.
摘要 i
Abstract ii
Contents iii
List of Figures iv
1 Introduction 1
1.1 Weak Cosmic Censorship Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1
1.2 Hoop Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 2
1.3 Weak Gravity Conjecture . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
1.4 Einstein-Maxwell-dilaton theory . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 3
2 Destroying A Black Hole 5
2.1 Static Black Hole Solution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 5
2.2 Wald’s Gedanken Expeniment . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 6
2.3 Relation Between Hoop Conjecture And Cosmic Censorship . . . . . . . . . . . . . . . . 9
2.4 Generalized Thermodynamic 2nd Law And Weak Gravity Conjecture . . . . . . 10
3 Slowly Rotating Black Hole 13
4 Conclusion 15
A Weak Gravity Conjecture and black holes discharge 17
Bibliography 18
[1] R. Penrose, “Gravitational collapse: The role of general relativity,” Riv. Nuovo Cim. 1, 252(1969) [Gen. Rel. Grav. 34, 1141 (2002)].
[2] R. Penrose, “Gravitational collapse and space-time singularities,” Phys. Rev. Lett. 14, 57(1965). doi:10.1103/PhysRevLett.14.57
[3] R.M. Wald. Gedanken Experiments to Destroy a Black Hole - 1974. Annals Phys.,82,548
[4] R. M. Wald, “Gravitational collapse and cosmic censorship,” Fundam. Theor. Phys. 100,69 (1999) doi:10.1007/978-94-017-0934-7-5 [gr-qc/9710068].
[5] V. E. Hubeny, “Overcharging a black hole and cosmic censorship,” Phys. Rev. D 59, 064013
(1999) doi:10.1103/PhysRevD.59.064013 [gr-qc/9808043].
[6] T. Jacobson and T. P. Sotiriou, “Over-spinning a black hole with a test body,” Phys. Rev. Lett. 103, 141101 (2009) Erratum: [Phys. Rev. Lett. 103, 209903 (2009)] doi:10.1103/PhysRevLett.103.141101 [arXiv:0907.4146 [gr-qc]].
[7] T. Jacobson and T. P. Sotiriou, “Destroying black holes with test bodies,” J. Phys. Conf.Ser. 222, 012041 (2010) doi:10.1088/1742-6596/222/1/012041[arXiv:1006.1764 [gr-qc]].
[8] G. E. A. Matsas and A. R. R. da Silva, “Overspinning a nearly extreme charged black hole via a quantum tunneling process,” Phys. Rev. Lett. 99, 181301 (2007) doi:10.1103/PhysRevLett.99.181301 [arXiv:0706.3198 [gr-qc]].
[9] A. Saa and R. Santarelli, “Destroying a near-extremal Kerr-Newman black hole,” Phys.Rev. D 84, 027501 (2011) doi:10.1103/PhysRevD.84.027501 [arXiv:1105.3950 [gr-qc]].
[10] S. Hod, “Cosmic censorship, area theorem, and selfenergy of particles,” Phys. Rev. D 66,024016 (2002) doi:10.1103/PhysRevD.66.024016 [gr-qc/0205005].
[11] S. Gao and Y. Zhang, “Destroying extremal Kerr-Newman black holes with test particles,”Phys. Rev. D 87, no. 4, 044028 (2013) doi:10.1103/PhysRevD.87.044028 [arXiv:1211.2631[gr-qc]].
[12] Z. Li and C. Bambi, “Destroying the event horizon of regular black holes,” Phys. Rev. D87, no. 12, 124022 (2013) doi:10.1103/PhysRevD.87.124022 [arXiv:1304.6592 [gr-qc]].
[13] K. Düztaş and İ. Semiz, “Cosmic Censorship, Black Holes and Integer-spin Test Fields,”Phys. Rev. D 88, no. 6, 064043 (2013) doi:10.1103/PhysRevD.88.064043 [arXiv:1307.1481[gr-qc]].
[14] K. Düztaş, “Electromagnetic field and cosmic censorship,” Gen. Rel. Grav. 46, 1709 (2014) doi:10.1007/s10714-014-1709-z [arXiv:1312.7361 [gr-qc]].
[15] İ. Semiz and K. Düztaş, “Weak Cosmic Censorship, Superradiance and Quantum Particle Creation,” Phys. Rev. D 92, no. 10, 104021 (2015)doi:10.1103/PhysRevD.92.104021 [arXiv:1507.03744 [gr-qc]].
[16] G. Z. Tóth, “Weak cosmic censorship, dyonic Kerr–Newman black holes and Dirac fields,” Class. Quant. Grav. 33, no. 11, 115012 (2016) doi:10.1088/02649381/33/11/115012 [arXiv:
1509.02878 [gr-qc]].
[17] B. Gwak and B. H. Lee, “Cosmic Censorship of Rotating Anti-de Sitter Black Hole,” JCAP 1602, 015 (2016) doi:10.1088/1475-7516/2016/02/015[arXiv:1509.06691 [gr-qc]].
[18] B. Gwak and B. H. Lee, “Thermodynamics of Three-dimensional Black Holes via Charged Particle Absorption,” Phys. Lett. B 755, 324 (2016) doi:10.1016/j.physletb.2016.02.028 [arXiv:1510.08215 [gr-qc]].
[19] V. Cardoso and L. Queimada, “Cosmic Censorship and parametrized spinning black-hole geometries,” Gen. Rel. Grav. 47, no. 12, 150 (2015) doi:10.1007/s10714-015-1990-5 [arXiv:1511.00690 [gr-qc]].
[20] K. S. Revelar and I. Vega, “Overcharging higher-dimensional black holes with point particles,” Phys. Rev. D 96, no. 6, 064010 (2017) doi:10.1103/PhysRevD.96.064010 [arXiv:1706.07190 [gr-qc]].
[21] J. Sorce and R. M. Wald, “Gedanken experiments to destroy a black hole. II. Kerr-Newman black holes cannot be overcharged or overspun,” Phys. Rev. D 96, no. 10, 104014 (2017) doi:10.1103/PhysRevD.96.104014 [arXiv:1707.05862 [gr-qc]].
[22] K. Düztaş, “Can test fields destroy the event horizon in the Kerr-Taub-NUT spacetime?,” arXiv:1710.06610 [gr-qc].
[23] B. Gwak and B. H. Lee, “Rotating Black Hole Thermodynamics with a Particle Probe,” Phys. Rev. D 84, 084049 (2011) doi:10.1103/PhysRevD.84.084049 [arXiv:1106.1483 [gr-qc]].
[24] J. An, J. Shan, H. Zhang and S. Zhao, “Five Dimensional Myers-Perry Black Holes Cannot be Over-spun by Gedanken Experiments,” arXiv:1711.04310 [hep-th].
[25] G. Chirco, S. Liberati and T. P. Sotiriou, “Gedanken experiments on nearly extremal black holes and the Third Law,” Phys. Rev. D 82, 104015 (2010) doi:10.1103/PhysRevD.82.104015 [arXiv:1006.3655 [gr-qc]].
[26] H. M. Siahaan, “Destroying Kerr-Sen black holes,” Phys. Rev. D 93, no. 6, 064028 (2016) doi:10.1103/PhysRevD.93.064028 [arXiv:1512.01654 [gr-qc]].
[27] P. Aniceto, P. Pani and J. V. Rocha, “Radiating black holes in Einstein-Maxwelldilaton theory and cosmic censorship violation,” JHEP 1605, 115 (2016) doi:10.1007/
JHEP05(2016)115 [arXiv:1512.08550 [hep-th]].
[28] K. S. Thorne, In *J R Klauder, Magic Without Magic*, San Francisco 1972, 231-258
[29] M. Banados, J. Silk and S. M. West, Phys. Rev. Lett. 103, 111102 (2009) doi:10.1103/PhysRevLett.103.111102 [arXiv:0909.0169 [hep-ph]].
[30] P. J. Mao, R. Li, L. Y. Jia and J. R. Ren, Chin. Phys. C 41, no. 6, 065101 (2017) doi:10.1088/1674-1137/41/6/065101 [arXiv:1008.2660 [hep-th]].
[31] S. Hod, Phys. Lett. B 759, 593 (2016) doi:10.1016/j.physletb.2016.06.028 [arXiv:1609.06717 [gr-qc]].
[32] N. Arkani-Hamed, L. Motl, A. Nicolis and C. Vafa, “The String landscape, black holes and gravity as the weakest force,” JHEP 0706, 060 (2007) doi:10.1088/1126-6708/2007/06/060[hep-th/0601001].
[33] S. Hod, “A proof of the weak gravity conjecture,” Int. J. Mod. Phys. D 26, no. 12, 1742004 (2017) doi:10.1142/S0218271817420044 [arXiv:1705.06287 [gr-qc]].
[34] S. Hod, “Universal Bound on Dynamical Relaxation Times and Black-Hole Quasinormal Ringing,” Phys. Rev. D 75, 064013 (2007) doi:10.1103/PhysRevD.75.064013 [gr-qc/
0611004].
[35] P. Aniceto and J. V. Rocha, “Dynamical black holes in low-energy string theory,” JHEP 1705, 035 (2017) doi:10.1007/JHEP05(2017)035 [arXiv:1703.07414 [hep-th]].
[36] M. J. Duff and J. Rahmfeld, “Massive string states as extreme black holes,” Phys. Lett. B 345, 441 (1995) doi:10.1016/0370-2693(94)01638-S [hep-th/9406105].
[37] M. J. Duff and J. Rahmfeld, “Bound states of black holes and other P-branes,” Nucl. Phys.B 481, 332 (1996) doi:10.1016/S0550-3213(96)90139-X [hep-th/9605085].
[38] G. W. Gibbons, “Antigravitating Black Hole Solitons with Scalar Hair in N=4 Supergravity,” Nucl. Phys. B 207, 337 (1982). doi:10.1016/0550-3213(82)90170-5
[39] D. Garfinkle, G. T. Horowitz and A. Strominger, “Charged black holes in string theory,” Phys. Rev. D 43, 3140 (1991) Erratum: [Phys. Rev. D 45, 3888 (1992)]. doi:10.1103/PhysRevD.43.3140, 10.1103/PhysRevD.45.3888
[40] D. G. Boulware and S. Deser, “Effective Gravity Theories With Dilatons,” Phys. Lett. B 175, 409 (1986). doi:10.1016/0370-2693(86)90614-3
[41] G. W. Gibbons and K. i. Maeda, “Black Holes and Membranes in Higher Dimensional Theories with Dilaton Fields,” Nucl. Phys. B 298, 741 (1988). doi:10.1016/0550-3213(88)90006-5
[42] A. D. Shapere, S. Trivedi and F. Wilczek, “Dual dilaton dyons,” Mod. Phys. Lett. A 6, 2677 (1991). doi:10.1142/S0217732391003122
[43] G. J. Cheng, R. R. Hsu and W. F. Lin, “Dyonic black holes in string theory,” J. Math.Phys. 35, 4839 (1994) doi:10.1063/1.530817 [hep-th/9302065].
[44] A. G. Smith and C. M. Will, “Force On A Static Charge Outside A Schwarzschild Black Hole,” Phys. Rev. D 22, 1276 (1980). doi:10.1103/PhysRevD.22.1276
[45] J. D. Bekenstein, “Generalized second law of thermodynamics in black hole physics,” Phys.Rev. D 9, 3292 (1974). doi:10.1103/PhysRevD.9.3292
[46] J. H. Horne and G. T. Horowitz, “Rotating dilaton black holes,” Phys. Rev. D 46, 1340 (1992) doi:10.1103/PhysRevD.46.1340 [hep-th/9203083].
[47] T. Banks, M. Johnson and A. Shomer, JHEP 0609, 049 (2006) doi: 10.1088/1126-6708/2006/09/049 [hep th/0606277].
[48] G. T. Horowitz, J. E. Santos and B. Way, Class. Quant. Grav. 33, no. 19, 195007 (2016) doi:10.1088/0264-9381/33/19/195007 [arXiv:1604.06465 [hep-th]].
[49] T. Crisford and J. E. Santos, Phys. Rev. Lett. 118, no. 18, 181101 (2017) doi:10.1103/PhysRevLett.118.181101 [arXiv:1702.05490 [hep-th]].
[50] T. Crisford, G. T. Horowitz and J. E. Santos, Phys. Rev. D 97, no. 6, 066005 (2018) doi: 10.1103/PhysRevD.97.066005 [arXiv:1709.07880 [hep-th]].
[51] H. Kawai, Y. Matsuo and Y. Yokokura, Int. J. Mod. Phys. A 28, 1350050 (2013) doi:10.1142/S0217751X13500504 [arXiv:1302.4733 [hep-th]].
[52] P. M. Ho, Nucl. Phys. B 909, 394 (2016) doi:10.1016/j.nuclphysb.2016.05.016 [arXiv:1510.07157 [hep-th]].
[53] M. K. Parikh and F. Wilczek, Phys. Rev. Lett. 85, 5042 (2000) doi:10.1103/PhysRevLett.85.5042 [hep-th/9907001].
[54] K. Furuuchi, Fortsch. Phys. 66, no. 10, 1800016 (2018) doi:10.1002/prop.201800016 [arXiv:1712.01302 [hep-th]].
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top