跳到主要內容

臺灣博碩士論文加值系統

(18.204.48.64) 您好!臺灣時間:2021/08/03 12:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:吳俊緣
研究生(外文):Chun-Yuan Wu
論文名稱:石墨烯/鉑奈米粒子於金字塔薄型矽上之太陽電池分析
論文名稱(外文):Analysis of Graphene coupled with Pt nanoparticles/Pyramidal Thin Silicon Solar Cells
指導教授:涂維珍
指導教授(外文):Wei-Chen Tu
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:84
中文關鍵詞:石墨烯;太陽電池;薄矽
外文關鍵詞:Graphene;Solar cell;Thin Silicon
相關次數:
  • 被引用被引用:0
  • 點閱點閱:43
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
石墨烯具有有多項優異性能,包括高導電性,高透明度,良好的化學穩定性和的機械柔韌性,在光電器件如光感測器、太陽電池,電晶體應用中具有巨大的潛力。
藉由有限差分時域(FDTD)方法對Pt奈米粒子石墨烯/金字塔形薄型矽太陽能電池進行了模擬,以提高轉換效率,在三種不同顆粒大小下的比較,具有10nm Pt顆粒大小的太陽能電池表現最佳,由於表面電漿共振展現出明顯增強的電場強度,從效率5.3%提高至6.14%。
在此採取還原氧化石墨烯旋塗於自製的金字塔薄型矽基板上製作溶液製程的石墨烯太陽電池,經由調整旋塗佈部機次數與轉速來控制薄膜分佈及品質,並旋塗鉑奈米粒子溶液達成表面電漿共振之效果。經由各種量測分析證實其效果,未來可透過表面電漿共振的改善,提升石墨烯元件的發展與應用。
Graphene with excellent properties, including high electrical conductivity, high transparency, well chemical stability, and remarkable mechanical flexibility has great potential in applications of optoelectronic devices, such as photodetectors, solar cells, and transistors.
Simulation of graphene/pyramidal thin Si solar cell with Pt nanoparticles to improve the conversion efficiency was performed by the finite-difference time-domain (FDTD) method. solar cell with 10nm Pt nanoparticles shows obviously enhanced electrical field intensity due to surface plasmon resonance, are the efficiency was improved from 5.3% to 6.14 %.
Here, the graphene solar cell in the reduced graphene oxide is spin-coated on the pyramidal thin silicon substrate to prepare a solution process is controlled, the film distribution and quality are controlled by adjusting the number and rotation speed of the spin coating machine, the effect of surface plasma resonance is achieved by spin coating a platinum nanoparticle solution. It is confirmed by various measurement and analysis that it can be improved in the future and the contribute to the development and application of graphene components.
目錄
中文摘要 I
Abstract II
目錄 III
圖目錄 VI
第一章、緒論 1
1-1 前言 1
1-2 研究背景與動機 1
1-3 論文架構 2
第二章、原理與文獻 3
2-1 石墨烯簡介 3
2-2 石墨烯的製備方式 4
2-2-1 機械剝離法(mechanical exfoliation) 5
2-2-2 還原氧化石墨烯法(reduction of graphene oxide) 6
2-2-3 化學氣相沉積法(chemical vapor deposition) 7
2-2-4 電化學剝離法(electrochemical exfoliation) 9
2-3 太陽電池原理與結構簡介 9
2-4 石墨烯太陽電池 13
2-5 表面電漿共振(surface plasmon resonance) 21
2-5-1 金屬與電介質介面表面電漿波 22
2-5-2金屬粒子局域性表面電漿 25
2-6 金字塔結構形成 28
第三章、實驗設備與量測儀器 30
3-1 實驗設備 30
3-1-1超音波清洗機(ultrasonic cleaner) 30
3-1-2 電磁攪拌加熱器(magnetic stirrer) 31
3-1-3 紫外光臭氧處理機(UV Ozone) 31
3-1-4 旋轉塗佈機(spin coater) 32
3-1-5 微量滴管 33
3-1-6 蒸鍍機(thermal evaporator) 34
3-2 量測儀器 34
3-2-1 掃描式電子顯微鏡(scanning electron microscope, SEM) 34
3-2-2 分光光譜儀(spectrophotometer) 35
3-2-3 拉曼光譜儀(Raman microscope) 36
3-2-4 電流電壓量測(I-V measurement) 37
第四章、實驗步驟 38
4-1 矽基板洗淨 39
4-2 蝕刻矽基板薄化 40
4.3 金字塔結構處理 41
4.4 石墨烯/鉑奈米粒子金字塔薄型矽太陽電池製作 42
第五章、結果與討論 45
5-1-1 模擬電場 46
5-1-2 模擬太陽電池效率 48
5-2薄矽厚度與可撓性測試 49
5-3掃描式電子顯微鏡 51
5-4 拉曼光譜之分析 57
5-5 穿透、反射、吸收光譜 59
5-6 原子力顯微鏡量測 62
5-7電流電壓特性量測 64
第六章、結論 68
參考文獻 69




圖目錄
圖2-1 石墨烯結構示意圖[3] 3
圖2-2 石墨烯在不同生產方式下的品質及價格 [6] 4
圖2-3機械剝離法製備石墨烯示意圖[7] 6
圖2-4 還原氧化石墨烯製備流程[9] 7
圖2-5 以化學氣相沉積製備石墨烯轉換移至基板[13] 8
圖2-6 經由電化學剝離法剝離石墨烯之示意圖[14] 9
圖2-7 太陽電池工作示意圖 11
圖2-8太陽電池電流-電壓特性曲線示意圖[17] 11
圖2-9石墨烯/矽太陽電池結構圖[19] 14
圖2-10石墨烯轉移至矽機板拉曼光譜圖[20] 15
圖2-11 石墨烯與鉑奈米粒子耦合矽太陽電池元件示意圖[21] 16
圖2-12 添加鉑奈米粒子後的特性比較 [21] 16
圖2-13 在粗糙化矽基版直接生長石墨烯拉曼圖[22] 18
圖2-14具有不同厚度Al2O3界面層J-V圖[22] 18
圖2-15 比較有無Al2O3界面層J-V圖[22] 19
圖2-16 銀/鎳電鍍電極於石墨烯/矽太陽能電池製作流程[23] 20
圖2-17 金/鉻電鍍電極與銀/鎳電鍍電極傳遞長度法之比較[23] 21
圖2-18傳波型態之表面電漿波[32] 22
圖2-19局域性之表面電漿 22
圖2-20金屬與介電質介面經由TM波入射情況下示意圖 23
圖2-21電磁波與金屬粒子作用示意圖 25
圖2-22兩截角四面粒子-粒子相互作用消光譜[35] 28
圖2-23金字塔矽表面型態[37] 29
圖3-1 超音波洗淨機 30
圖3-2 電磁攪拌器 31
圖3-3 紫外光臭氧處理機 32
圖3-4旋轉塗佈機 33
圖3-5 微量滴管 33
圖3-6 蒸鍍機設備圖 34
圖3-7 SEM儀器設備圖 35
圖3-8光譜儀結內部構示意圖 36
圖3-9 太陽光模擬系統 37
圖4-1 實驗製作流程圖 38
圖4-2 矽基板清洗流程圖 40
圖4-3蝕刻矽基板薄化過程 41
圖4-4 蝕刻金字塔過程 42
圖4-5顯示(a)薄型矽表面(b)具有金字塔結構薄型矽表面 42
圖4-6石墨烯/鉑奈米粒子金字塔薄型矽太陽電池製作過程 44
圖5-1 模擬結構圖 46
圖5-2 入射波長550 nm電場強度 47
圖5-3 入射波長750 nm電場強度 47
圖5-4 入射波長950 nm電場強度 48
圖5-5在未添加與添加三種尺徑鉑奈米粒子太陽電池模擬效率圖 49
圖5-6 ~50wt% KOH蝕刻120分鐘過後的矽在光學顯微鏡下拍攝厚度(a)樣品一(b)樣品二(c)樣品三 50
圖5-7 薄矽的可撓測試 50
圖5-8 薄型矽表面於5000倍SEM影像 51
圖5-9 薄型矽剖面30000倍SEM影像 51
圖5-10金字塔薄型矽表面SEM影像,(a)1000倍(b)5000倍(c)10000倍 52
圖5-11金字塔薄型矽剖面SEM影像,(a)1000倍(b)5000倍(c)10000倍 52
圖5-12 還原氧化石墨烯旋塗一次於金字塔薄矽上之SEM影像,(a)1000倍(b)5000倍(c)10000倍 53
圖5-13 還原氧化石墨烯旋塗兩次於金字塔薄矽上的SEM在 5000倍影像(a)初轉2750轉(b)初轉3500轉(c)初轉4250轉 54
圖5-14 還原氧化石墨烯旋塗兩次於金字塔薄矽上的SEM在 10000倍影像(a)初轉2750轉(b)初轉3500轉(c)初轉4250轉 54
圖5-15 還原氧化石墨烯旋塗三次於金字塔薄矽上的SEM在5000倍影像(a)初轉2750轉(b)初轉3500轉(c)初轉4250轉 55
圖5-17 鉑奈米粒子旋塗於表面20000倍SEM圖 56
圖5-18 EDS分析其表面元素比例 57
圖5-19 EDS分析元素比例值 57
圖5-20 還原氧化石墨烯在金字塔薄型矽基板之拉曼圖 58
圖5-21 為矽(Si)、薄矽(thin Si)、金字塔矽(pyramidal Si)、金字塔薄矽(pyramidal thin Si) 金字塔薄矽旋塗還原氧化石墨烯(pyramidal thin Si+rGO)、金字塔薄矽旋塗還原氧化石墨烯與鉑奈米粒子(pyramidal thin Si+rGO+Pt Nps)之穿透率 60
圖5-22 為矽(Si)、薄矽(thin Si)、金字塔矽(pyramidal Si)、金字塔薄矽(pyramidal thin Si) 金字塔薄矽旋塗還原氧化石墨烯(pyramidal thin Si+rGO)、金字塔薄矽旋塗還原氧化石墨烯與鉑奈米粒子(pyramidal thin Si+rGO+Pt Nps)之反射率 61
圖5-23 為矽(Si)、薄矽(thin Si)、金字塔矽(pyramidal Si)、金字塔薄矽(pyramidal thin Si) 金字塔薄矽旋塗還原氧化石墨烯(pyramidal thin Si+rGO)、金字塔薄矽旋塗還原氧化石墨烯與鉑奈米粒子(pyramidal thin Si+rGO+Pt Nps)之吸收率 62
圖5-24 金字塔薄型矽(a)2D(b)3D表面AFM圖 63
圖5-25 金字塔薄型矽旋塗2次還原氧化石墨烯(a)2D(b)3D表面AFM圖 63
圖5-26 旋塗還原氧化石墨烯一次之電流電壓量測 64
圖5-27旋塗還原氧化石墨烯一次之電流電壓量測之相關參數 64
圖5-28 旋塗還原氧化石墨烯兩次之電流電壓量測 65
圖5-29旋塗還原氧化石墨烯兩次之電流電壓量測之相關參數 65
圖5-30旋塗還原氧化石墨烯三次之電流電壓量測 66
圖5-31旋塗還原氧化石墨烯三次之電流電壓量測之相關參數 66
圖5-32添加鉑奈米粒子比較電流電壓量測 67
圖5-33添加鉑奈米粒子電流電壓量測之相關參數 67
[1] Novoselov, Kostya S., et al. "Electric field effect in atomically thin carbon films." science 306.5696 (2004): 666-669.
[2] Meyer, Jannik C., et al. "The structure of suspended graphene sheets." Nature 446.7131 (2007): 60.
[3] Schedin, F., et al. "Detection of individual gas molecules adsorbed on graphene." Nature materials 6.9 (2007): 652.
[4] Li, Xuesong, et al. "Large-area synthesis of high-quality and uniform graphene films on copper foils." science 324.5932 (2009): 1312-1314.
[5] Schedin, F., et al. "Detection of individual gas molecules adsorbed on graphene." Nature materials 6.9 (2007): 652.
[6] Novoselov, Konstantin S., et al. "A roadmap for graphene." nature 490.7419 (2012): 192.
[7] Yi, Min, and Zhigang Shen. "A review on mechanical exfoliation for the scalable production of graphene." Journal of Materials Chemistry A 3.22 (2015): 11700-11715.
[8] Stankovich, Sasha, et al. "Graphene-based composite materials." nature 442.7100 (2006): 282.
[9] Eda, Goki, and Manish Chhowalla. "Chemically derived graphene oxide: towards large‐area thin‐film electronics and optoelectronics." Advanced materials 22.22 (2010): 2392-2415.
[10] Marchini, S., S. Günther, and J. Wintterlin. "Scanning tunneling microscopy of graphene on Ru (0001)." Physical Review B 76.7 (2007): 075429.
[11] Coraux, Johann, et al. "Structural coherency of graphene on Ir (111)." Nano letters 8.2 (2008): 565-570.
[12] Reina, Alfonso, et al. "Large area, few-layer graphene films on arbitrary substrates by chemical vapor deposition." Nano letters 9.1 (2008): 30-35.
[13] Chen, Mingguang, et al. "Advances in transferring chemical vapour deposition graphene: A review." Materials Horizons 4.6 (2017): 1054-1063.
[14] Su, C. Y., Lu, A. Y., Xu, Y., Chen, F. R., Khlobystov, A. N., & Li, L. J. (2011). High-quality thin graphene films from fast electrochemical exfoliation. ACS nano, 5(3), 2332-2339.
[15] Green, Martin A. "Solar cells: operating principles, technology, and system applications." Englewood Cliffs, NJ, Prentice-Hall, Inc., 1982. 288 p. (1982).
[16]太陽能電池-原理、元件、材料、製程與檢測技術-翁敏航、楊茹媛、管鴻、晁成虎
[17] http://met.usc.edu/projects/solarcells.php
[18] Wang, Xuan, Linjie Zhi, and Klaus Müllen. "Transparent, conductive graphene electrodes for dye-sensitized solar cells." Nano letters 8.1 (2008): 323-327.
[19] Won, Rachel. "Photovoltaics: Graphene–silicon solar cells." Nature Photonics 4.7 (2010): 411.
[20] Ihm, Kyuwook, et al. "Number of graphene layers as a modulator of the open-circuit voltage of graphene-based solar cell." Applied Physics Letters 97.3 (2010): 032113.
[21] Huang, Kun, et al. "Graphene coupled with Pt cubic nanoparticles for high performance, air-stable graphene-silicon solar cells." Nano Energy 32 (2017): 225-231.
[22] Rehman, Malik Abdul, et al. "Influence of an Al2O3 interlayer in a directly grown graphene-silicon Schottky junction solar cell." Carbon 132 (2018): 157-164.
[23] Ng, K. K., and H. C. Card. "Asymmetry in the SiO2 tunneling barriers to electrons and holes." Journal of Applied Physics 51.4 (1980): 2153-2157.
[24] Xu, Yang, et al. "Contacts between two-and three-dimensional materials: ohmic, Schottky, and p–n heterojunctions." ACS nano 10.5 (2016): 4895-4919.
[25] Gahng, Sarang, et al. "Reduction of metal contact resistance of graphene devices via CO2 cluster cleaning." Applied Physics Letters 104.22 (2014): 223110.
[26] Zhong, Hua, et al. "Realization of low contact resistance close to theoretical limit in graphene transistors." Nano Research 8.5 (2015): 1669-1679.
[27] Popescu, Sinziana M., et al. "Electroless nickel deposition: an alternative for graphene contacting." ACS applied materials & interfaces 8.45 (2016): 31359-31367.
[28] Wood, Robert Williams. "XLII. On a remarkable case of uneven distribution of light in a diffraction grating spectrum." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 4.21 (1902): 396-402.
[29] Wood, R. W. "XXVII. Diffraction gratings with controlled groove form and abnormal distribution of intensity." The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 23.134 (1912): 310-317.
[30] Ritchie, Rufus H. "Plasma losses by fast electrons in thin films." Physical review 106.5 (1957): 874.
[31] Otto, Andreas. "Excitation of nonradiative surface plasma waves in silver by the method of frustrated total reflection." Zeitschrift für Physik A Hadrons and nuclei 216.4 (1968): 398-410.
[32] Barnes, William L., Alain Dereux, and Thomas W. Ebbesen. "Surface plasmon subwavelength optics." nature 424.6950 (2003): 824.
[33] Mie, Gustav. "Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen." Annalen der physik 330.3 (1908): 377-445.
[34] Willets, Katherine A., and Richard P. Van Duyne. "Localized surface plasmon resonance spectroscopy and sensing." Annu. Rev. Phys. Chem. 58 (2007): 267-297.
[35] Jensen, Traci R., George C. Schatz, and Richard P. Van Duyne. "Nanosphere lithography: Surface plasmon resonance spectrum of a periodic array of silver nanoparticles by ultraviolet− visible extinction spectroscopy and electrodynamic modeling." The Journal of Physical Chemistry B 103.13 (1999): 2394-2401.
[36] Xi, Zhenqiang, et al. "Investigation of texturization for monocrystalline silicon solar cells with different kinds of alkaline." Renewable Energy 29.13 (2004): 2101-2107.
[37] Al-Husseini, Ammar Mahmoud, and Bashar Lahlouh. "Silicon Pyramid Structure as a Reflectivity Reduction Mechanism." Journal of Applied Sciences 17.8 (2017): 374-383.
[38] https://www.live-strong.com.tw/optoelectronics_2.htm
[39] Li, Xinming, et al. "Graphene‐on‐silicon Schottky junction solar cells." Advanced materials 22.25 (2010): 2743-2748.
[40] Yee, Kane. "Numerical solution of initial boundary value problems involving Maxwell''s equations in isotropic media." IEEE Transactions on antennas and propagation 14.3 (1966): 302-307.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關論文
 
無相關期刊
 
無相關點閱論文