跳到主要內容

臺灣博碩士論文加值系統

(35.172.223.30) 您好!臺灣時間:2021/07/25 12:21
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊博亦
研究生(外文):Po-Yi Yang
論文名稱:以奈米銀線修飾之還原氧化石墨烯製備可撓性矽基板異質接面太陽電池
論文名稱(外文):Fabrication of flexible Ag nanowires modified reduced graphene oxide/silicon heterojunction solar cells
指導教授:涂維珍
指導教授(外文):Wei-Chen Tu
學位類別:碩士
校院名稱:中原大學
系所名稱:電子工程研究所
學門:工程學門
學類:電資工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:85
中文關鍵詞:可撓性還原氧化石墨烯太陽電池奈米銀線
外文關鍵詞:flexiblereduced graphene oxidesolar cellAg nanowires
相關次數:
  • 被引用被引用:0
  • 點閱點閱:53
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
隨著科技日新月異,對於便於攜帶的柔性裝置需求也在增加。具有良好太陽光吸收特性的矽(Si)晶圓是製備太陽能電池理想的基底材料。同時,具有寬能帶吸收特性,高透明度、高機械性和高載子遷移率的二維材料石墨烯成為太陽能電池各項材料應用的潛力材料。
在本論文中,為了使矽基板呈現可撓性的狀態,我們使用了濕式蝕刻的方式將矽基板進行薄化,實現了在可撓性薄型Si上旋塗還原氧化石墨稀(rGO)以製備蕭特基接面太陽能電池。由於rGO具有相當多的缺陷,因此在薄Si上另外旋塗一層奈米銀線(AgNWs)與rGO結合,提高rGO薄膜的導電性。通過改變不同濃度AgNWs的摻雜提高了太陽電池的轉換效率。本論文提供了一種透過較低成本的製備方式在可撓性薄型Si上成長rGO薄膜的技術,此技術為rGO和可撓性器件的應用提供了新的應用及發展。
As technology progresses with each passing day, the demand on flexible portable devices is increased. Silicon with great absorbing characteristic is a promising candidate for the absorbing material of solar cells. Meanwhile, two-dimensional graphene with broadband absorption, high transparent, flexible and high electrical mobility properties makes it a potential material in various field applications. Consequently, many researches on graphene/silicon heterojunction solar cells are reported.
In this work, rGO on flexible and thin Si to construct heterojunction solar cell was realized. Because the existence of defect in rGO , AgNWs combined with rGO was formed on thin Si to improve the conductivity of rGO film . By modifying the density of AgNWs in rGO solution, the power conversion efficiency (PCE) is enhanced. This study provides a technique for the fabrication of rGO films on flexible silicon through cost-effective process which provides an insight for the applications of rGO and flexible devices.
目錄
摘要 I
Abstract II
目錄 III
圖目錄 VI
第一章、 序論 1
1-1前言 1
1-2研究動機 1
1-3實驗架構 2
第二章、 實驗理論 4
2-1石墨烯簡介 4
2-2石墨烯的製備方法 6
2-1-1機械剝離法 (Mechanical Exfoliation) 7
2-1-2液相剝離法 (Mechanical Exfoliation) 8
2-1-3還原氧化石墨烯法 (Reduced Graphene Oxide, rGO) 9
2-1-4電化學剝離法(Electrochemical Exfoliation) 10
2-1-5 化學氣相沉積法(Chemical Vapor Deposition, CVD) 10
2-3 太陽電池原理與結構介紹 12
2-4 石墨烯於可撓性太陽電池之應用 17
2-5 奈米銀線摻雜之石墨烯 23
2-6 矽基板的蝕刻方式 25
2-7 臭氧系統(UV ozone)應用 29
第三章、 實驗儀器介紹 30
3-1旋轉塗佈機(Spin coater) 31
3-2熱蒸鍍機(Evaporat) 31
3-3外部量子效率量測(External Quantum Efficiency, EQE)介紹 33
3-4光譜儀(Spectrometer) 33
3-5拉曼光譜儀(Raman Spectroscope) 34
3-6掃描式電子顯微鏡(Scanning Electron Microscope) 35
3-7 電流電壓 (I-V Measurement)量測系統 36
3-8微量滴管 38
第四章、 實驗步驟 39
4-1 實驗材料 39
4-2 實驗步驟 40
4-3 基本洗淨 41
4-4 基板蝕刻 42
4-5 太陽電池製備 43
第五章、 結果與討論 44
5-1光學顯微鏡探討與可撓性測試 44
5-2掃描式電子顯微鏡分析 47
5-2-1太陽電池表面分析 47
5-2-2太陽電池側面SEM分析 56
5-3拉曼光譜分析 57
5-4穿透、反射及吸收光譜 59
5-5太陽電池AFM量測 63
5-6 電流電壓特性量測 64
第六章、 結論 68
參考文獻 69


圖目錄
圖1-1 實驗架構圖 3
圖2-1石墨烯所構成其他碳材料富勒烯、奈米碳管和石墨示意圖[1] 5
圖2-2空氣、單層與雙層石墨烯的透射率[6] 5
圖2-3不同製程下,石墨烯品質與大量生產成本關係圖[7] 6
圖2-4石墨稀液相剝離法式意圖[8] 9
圖2-5 CVD成長之石墨烯過程的示意圖[8] 11
圖2-6 太陽電池示意圖 12
圖2-7電流-電壓及相關參數示意圖 16
圖2-8 (a)元件表面圖與(b)二氧化矽窗口橫切面圖[31] 18
圖2-9 AFM影像與石墨稀厚度分析圖[31] 18
圖2-10石墨烯在綠雷射照射下拉曼光譜[31] 19
圖2-11元件拉曼光譜分析圖[30] 20
圖2-12石墨烯-矽蕭特基接面能帶圖和I-V特性圖[30] 21
圖2-13隨時間變長PCE與VOC衰退程度[32] 22
圖2-14(a)不同濃度奈米銀線摻雜其穿透率與(b)片電阻變化趨勢圖[33] 24
圖2-15不同濃度奈米銀線摻雜其I-V圖[33] 24
圖2-16混合溶液 HF、HNO3、CH3COOH 不同比例蝕刻速率圖[17] 26
圖2-17混合溶液 HF、HNO3、H2O 不同比例下的蝕刻速率圖[18] 27
圖2-18以醋酸做為稀釋劑的溫度-蝕刻速率關係圖 [18] 28
圖3-1 實驗室所使用的旋轉塗佈機 31
圖3-2 實驗室所使用的蒸鍍機 32
圖3-3蒸鍍機的操作介面 32
圖3-4 掃描式電子顯微鏡 36
圖3-5 模擬太陽光與針座 37
圖3-6 量測介面 37
圖3-7 實驗所使用微量滴管 38
圖4-1 製備流程圖 40
圖4-2 基本洗淨流程圖 41
圖4-3 矽基板蝕刻示意圖 42
圖4-4 實驗流程圖 43
圖5-1矽基板經過9分鐘蝕刻後剖面圖 44
圖5-2矽基板經過12分鐘蝕刻後剖面圖 44
圖5-3矽基板經過15分鐘蝕刻後剖面圖 45
圖5-4矽基板可撓性機能測試 46
圖5-5以夾子彎曲基板 46
圖5-6旋塗2次石墨烯後之SEM影像 (a)1000倍 (b)5000倍 (c)10000倍 (d)20000倍 47
圖5-7旋塗3次石墨烯後之SEM影像 (a)1000倍 (b)5000倍 (c)10000倍 (d)20000倍 48
圖5-8旋塗4次石墨烯後之SEM影像 (a)1000倍 (b)5000倍 (c)10000倍 (d)20000倍 49
圖5-9石墨烯於矽基板表面元素散佈影像, (a)掃描式電子顯微鏡影像 (b)碳元素分佈 (c)氧元素分佈 (d)矽元素分佈 50
圖5-10旋塗0.05wt%奈米銀線於石墨烯上後之SEM影像 (a)1000倍 (b)5000倍 (c)10000倍 (d)20000倍 52
圖5-11旋塗0.15wt%奈米銀線於石墨烯上後之SEM影像 (a)1000倍 (b)5000倍 (c)10000倍 (d)20000倍 53
圖5-12旋塗0.25wt%奈米銀線於石墨烯上後之SEM影像 (a)1000倍 (b)5000倍 (c)10000倍 (d)20000倍 54
圖5-13 薄型矽基板之側面SEM影像在 (a)5000倍 (b)10000倍 56
圖5-14旋塗還原氧化石墨烯之拉曼光譜 57
圖5-15不同時間時刻所對應的吸收光譜 59
圖5-16以光譜儀量測下525µm的矽(Si)、矽+還原氧化石墨烯(rGO)、薄型矽(thin Si)、薄型矽+還原氧化石墨烯、薄型矽+還原氧化石墨烯+稀釋後奈米銀線五種參數所對應之穿透率 60
圖5-17以光譜儀量測下525µm的矽(Si)、矽+還原氧化石墨烯(rGO)、薄型矽(thin Si)、薄型矽+還原氧化石墨烯、薄型矽+還原氧化石墨烯+稀釋後奈米銀線五種參數所對應之反射率 61
圖5-18以光譜儀量測下525µm的矽(Si)、矽+還原氧化石墨烯(rGO)、薄型矽(thin Si)、薄型矽+還原氧化石墨烯、薄型矽+還原氧化石墨烯+稀釋後奈米銀線五種參數所對應之吸收率 62
圖5-19基板蝕刻過後表面AFM 63
圖5-20基板蝕刻過後再放入UV ozone後表面AFM圖 63
圖5-21以電流電壓量測系統量測下石墨稀/薄型矽蕭特基接面太陽電池摻雜不同濃度奈米銀線 64
圖5-22以電流電壓量測系統量測下石墨稀/薄型矽蕭特基接面太陽電池摻雜不同濃度奈米銀線之太陽參數 65
圖5-23以電流電壓量測系統量測下不同紫外光照射時間比較 66
圖5-24以電流電壓量測系統量測下石墨烯/薄型矽蕭特基接面太陽電池摻雜不同濃度奈米銀線電流電壓特性量測 66
圖5-25以電流電壓量測系統量測下石墨烯/薄型矽蕭特基接面太陽電池摻雜不同濃度奈米銀線電流電壓特性量測 67
參考文獻
[1] Geim, Andre K., and Konstantin S. Novoselov. "The rise of graphene." Nanoscience and Technology: A Collection of Reviews from Nature Journals. 2010. 11-19..
[2] Ruess, G., and F. Vogt. "Höchstlamellarer Kohlenstoff aus Graphitoxyhydroxyd." Monatshefte für Chemie und verwandte Teile anderer Wissenschaften 78.3-4 (1948): 222-242.
[3]  Zhang, H., Virally, S., Bao, Q., Ping, L. K., Massar, S., Godbout, N., & Kockaert, P. (2012). Z-scan measurement of the nonlinear refractive index of graphene. Optics letters, 37(11), 1856-1858.
[4]  Li, X., Cai, W., Colombo, L., & Ruoff, R. S. (2009). Evolution of graphene growth on Ni and Cu by carbon isotope labeling. Nano letters, 9(12), 4268-4272.
[5]  Suk, J. W., Kitt, A., Magnuson, C. W., Hao, Y., Ahmed, S., An, J., ... & Ruoff, R. S. (2011). Transfer of CVD-grown monolayer graphene onto arbitrary substrates. ACS nano, 5(9), 6916-6924.
[6]  Gomez De Arco, L., Zhang, Y., Schlenker, C. W., Ryu, K., Thompson, M. E., & Zhou, C. (2010). Continuous, highly flexible, and transparent graphene films by chemical vapor deposition for organic photovoltaics. ACS nano, 4(5), 2865-2873.
[7] Tung, V. C., Allen, M. J., Yang, Y., & Kaner, R. B. (2009). High-throughput solution processing of large-scale graphene. Nature nanotechnology, 4(1), 25.
[8]  Loh, Kian Ping, et al. "The chemistry of graphene." Journal of Materials Chemistry 20.12 (2010): 2277-2289.
[9] Brodie, Benjamin Collins. "XIII. On the atomic weight of graphite." Philosophical Transactions of the Royal Society of London 149 (1859): 249-259.
[10] French, J. E., and Bede Morris. "The tissue distribution and oxidation of 14C‐labelled chylomicron fat injected intravenously in rats." The Journal of physiology 140.2 (1958): 262-271.
[11] Hodgkin, Allan L., and Andrew F. Huxley. "The components of membrane conductance in the giant axon of Loligo." The Journal of physiology 116.4 (1952): 473-496.
[12] Eda, Goki, and Manish Chhowalla. "Chemically derived graphene oxide: towards large‐area thin‐film electronics and optoelectronics." Advanced materials 22.22 (2010): 2392-2415.
[13] He, Heyong, et al. "A new structural model for graphite oxide." Chemical physics letters 287.1-2 (1998): 53-56.
[14] Loh, Kian Ping, et al. "Graphene oxide as a chemically tunable platform for optical applications." Nature chemistry 2.12 (2010): 1015.
[15] Su, Ching-Yuan, et al. "Highly efficient restoration of graphitic structure in graphene oxide using alcohol vapors." Acs Nano 4.9 (2010): 5285-5292.
[16] Lu, D., & Wong, C. P. (Eds.). (2009). Materials for advanced packaging (Vol. 181). New York: Springer.
[17] Schwartz, B., & Robbins, H. (1976). Chemical etching of silicon IV. Etching technology. Journal of the electrochemical society, 123(12), 1903-1909. [18] Schwartz, B., & Robbins, H. (1961). Chemical etching of silicon III. A temperature study in the acid system. Journal of the electrochemical society, 108(4), 365-372.
[18] Schwartz, B., & Robbins, H. (1961). Chemical etching of silicon III. A temperature study in the acid system. Journal of the electrochemical society, 108(4), 365-372.
[19] Xuan Wang, Linjie Zhi, and Klaus Müllen;Nano Lett.8 (1), pp 323–327(2008)
[20] Sun, Shengrui, Lian Gao, and Yangqiao Liu. "Enhanced dye-sensitized solar cell using graphene-TiO 2 photoanode prepared by heterogeneous coagulation." Applied physics letters 96.8 (2010): 083113.
[21] Wenjing Xu, Bing Deng, Enzheng Shi, Shiting Wu, Mingchu Zou, Liusi Yang, Jinquan Wei, Hailin Peng, and Anyuan Cao; Appl. Mater.&Interfaces. 7 (31), pp 17088–17094(2015)
[22] Yi Song, Xinming Li, Charles Mackin, Xu Zhang, Wenjing Fang, Tomás Palacios, Hongwei Zhu,and Jing Kong; Nano Lett.15 (3), pp 2104–2110(2015)
[23] Klo¨ppel A, Meyer B, Trube J. Influence of substrate temperature and sputtering atmosphere on electrical and optical properties of double silver layer systems. Thin Solid Films 2001;392(2):311–4.
[24] Baek K, Jang K, Lee YJ, Ryu K, Choi W, Kim D, et al. Improvement of mechanical reliability by patterned silver/ Indium-Tin-Oxide structure for flexible electronic devices. Thin Solid Films 2013;531:349–53.
[25] Perμmbilavil, S., Sankar, P., Priya Rose, T., & Philip, R. (2015). White light Z-scan measurements of ultrafast optical nonlinearity in reduced graphene oxide nanosheets in the 400–700 nm region. Applied Physics Letters, 107(5), 051104
[26] Shen, J., Hu, Y., Shi, M., Lu, X., Qin, C., Li, C., & Ye, M. (2009). Fast and facile preparation of graphene oxide and reduced graphene oxide nanoplatelets. Chemistry of Materials, 21(15), 3514-3520.
[27] Eda, G., & Chhowalla, M. (2010). Chemically derived graphene oxide: towards large‐area thin‐film electronics and optoelectronics. Advanced materials, 22(22), 2392-2415.
[28] Pimenta, M. A., Dresselhaus, G., Dresselhaus, M. S., Cancado, L. G., Jorio, A., & Saito, R. (2007). Studying disorder in graphite-based systems by Raman spectroscopy. Physical chemistry chemical physics, 9(11), 1276-1290.
[29]  Kim, K. S., Zhao, Y., Jang, H., Lee, S. Y., Kim, J. M., Kim, K. S., ... & Hong, B. H. (2009). Large-scale pattern growth of graphene films for stretchable transparent electrodes. nature, 457(7230), 706.
[30] Rehman, Malik Abdul, et al. "Influence of an Al2O3 interlayer in a directly grown graphene-silicon Schottky junction solar cell." Carbon 132 (2018): 157-164.
[31] Singh, Sumitra, et al. "Fabrication and Characterization of Graphene based Silicon Schottky Solar Cell." Superlattices and Microstructures (2018).
[32] Alnuaimi, Aaesha, et al. "Interface engineering of graphene–silicon Schottky junction solar cells with an Al 2 O 3 interfacial layer grown by atomic layer deposition." RSC Advances 8.19 (2018): 10593-10597.
[33] Shin, Dong Hee, et al. "Graphene/porous silicon Schottky-junction solar cells." Journal of Alloys and Compounds 715 (2017): 291-296
[34] Kogelschatz, Ulrich. "Dielectric-barrier discharges: their history, discharge physics, and industrial applications." Plasma chemistry and plasma processing 23.1 (2003): 1-46.
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top