跳到主要內容

臺灣博碩士論文加值系統

(44.220.249.141) 您好!臺灣時間:2023/12/11 20:38
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:許筑旻
研究生(外文):XU, ZHU-MIN
論文名稱:AZ31B脈衝微弧氧化之腐蝕行為與鎂離子 釋放對細胞之影響
論文名稱(外文):Corrosion Behavior of AZ31B Pulse Microarc Oxidation and Effect of Magnesium Ion Release on Cells
指導教授:陳昭翰李弘彬李弘彬引用關係
指導教授(外文):CHEN, JAU-HANLEE, HUNG-BIN
口試委員:蔡明勳葛明德
口試委員(外文):TSAI, MING-SHIUNGER, MING-DER
口試日期:2019-07-30
學位類別:碩士
校院名稱:大葉大學
系所名稱:醫療器材設計與材料碩士學位學程
學門:工程學門
學類:生醫工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:57
中文關鍵詞:微弧氧化人工模擬體液細胞培養試驗
外文關鍵詞:AZ31Bmicro-arc oxidation (MAO)artificial simulated body fluid (SBF)cell culture test
相關次數:
  • 被引用被引用:2
  • 點閱點閱:133
  • 評分評分:
  • 下載下載:23
  • 收藏至我的研究室書目清單書目收藏:0
  鎂是人體中必要元素之一,鎂合金有良好的生物相容性和可降解性,有潛力成為骨科臨時性植入材料,為創傷或病變組織癒合期間提供暫時的機械支持。但鎂合金植入物在人體中有腐蝕過快的問題,因此,為了在人體中降低鎂合金腐蝕速率並探討鎂合金降解影響因素及生物相容性,且避免在植入部位修復前完全降解,表面處理技術被認為是鎂合金主要的改善方向。
  本研究為探討AZ31B鎂合金在模擬人體血漿中降解速率等問題,運用微弧氧化處理(Micro-Arc Oxidation,MAO)改善耐腐蝕性,電解液採用矽酸鹽、氫氧化鈉及檸檬酸鈉配製,採用直流脈衝方式調整時間進行微弧氧化處理。實驗結果顯示AZ31B鎂合金經微弧氧化處理後(MAO-AZ31B),於人工模擬體液(Simulated Body Fluid,SBF)透過腐蝕極化曲線分析,AZ31B微弧氧化30 min處理具有為最佳耐腐蝕性。將MAO-AZ31B浸泡在SBF中7天,從掃描式電子顯微鏡(Scanning Electron Microscope,SEM)、穿透式電子顯微鏡(Transmission electron microscope,TEM)及X射線光電子光譜(X-ray photoelectron spectroscopy,XPS)進行交叉比對,顯示SBF會從表面孔洞及裂縫進入微弧氧化膜層中降解,使多孔層之孔洞被磷灰石Apatite填滿,並有一層磷灰石沉積物覆蓋於MAO-AZ31B,根據原子濃度縱深分析,MAO-AZ31B浸泡SBF溶液中1天與7天相比Ca2p及P2p無顯著差異,認為浸泡1天已有一定厚度之磷灰石Apatite沉積層。以不同數目之AZ31B試片測試於細胞培養基48小時,對Neuro2a小鼠神經瘤細胞之存活情況,顯示會明顯抑制細胞生長並造成死亡。

  Magnesium is one of the essential elements in the human body. Magnesium alloy has good biocompatibility and degradability, and has the potential to become a temporary orthopedic implant material, providing temporary mechanical support for wound or diseased tissue healing. However, magnesium alloy implants have the problem of excessive corrosion in the human body. Therefore, in order to reduce the corrosion rate of magnesium alloy in the human body and explore the factors and biocompatibility of magnesium alloy degradation, and avoid complete degradation before the repair of the implant site. Surface treatment technology is considered to be the main improvement direction of magnesium alloys.
  In order to improve the degradation rate of AZ31B magnesium alloy in human plasma, this study used Micro-Arc Oxidation (MAO) to improve corrosion resistance. The electrolyte was prepared by using citrate, sodium hydroxide and sodium citrate. The micro-arc oxidation treatment is performed by adjusting the time by a direct current pulse method. The experimental results show that AZ31B magnesium alloy is treated by micro-arc oxidation (MAO-AZ31B), analyzed by corrosion polarization curve of Simulated Body Fluid (SBF), and AZ31B micro-arc oxidation for 30 min has the best corrosion resistance. MAO-AZ31B was immersed in SBF for 7 days, from Scanning Electron Microscope (SEM), Transmission Electron Microscope (TEM) and X-ray photoelectron spectroscopy (XPS). Cross-alignment shows that SBF will degrade from the surface pores and cracks into the micro-arc oxidation layer, so that the pores of the porous layer are filled with Apatite, and a layer of Apatite deposit covers the MAO-AZ31B, according to In the depth analysis of atomic concentration, there was no significant difference in Ca2p and P2p between MAO-AZ31B and SBF solution for 1 day and 7 days. It was considered that there was a certain thickness of Apatite deposit for 1 day. Survival of Neuro2a mouse neuroblastoma cells with different numbers of AZ31B test strips for 48 hours showed significant inhibition of cell growth and death.

目錄

封面內頁
簽名頁
中文摘要 ..iii
ABSTRACT...v
誌謝...vi
目錄...viii
圖目錄...xi
表目錄...xiii

第一章 前言...1
1.1 研究動機...1
1.2 研究目的...2

第二章 文獻回顧...4
2.1 鎂及其合...4
2.2 醫用金屬...6
2.3 微弧氧化處理...8

第三章 實驗流程...12
3.1 研究步驟...12
3.2 試片前處理及微弧氧化處理...13
3.3 體外生物活性測試...15
3.4 細胞測試...17
3.4 儀器設備...18
3.5 電化學量測與材料分析...20
3.5.1 電化學分析...20
3.5.2 分光儀分析...20
3.5.3 微硬度分析...20
3.5.4 XRD成分分析...21
3.5.5 FE-SEM及EDS分析...21
3.5.6 TEM分析...21
3.5.7 XPS分析...22
3.5.8 OM影像分析...22

第四章 結果與討論...23
4.1 研究結果...23
4.1.1 MAO-AZ31B微結構分析...23
4.1.2 MAO-AZ31B之腐蝕極化曲線分析...30
4.1.3 MAO-AZ31B於人工模擬體液(SBF)...31
4.2 結果與討論...35
4.2.1 MAO-AZ31B微結構與組成探討...35
4.2.2 鎂合金微弧氧化處理後於人工模擬體液(SBF)之TEM分析...39
4.2.3 微弧氧化處理後於人工模擬體液(SBF)之XPS成分分析...42
4.2.4 Ca/P比率...45
4.2.5 微弧氧化處理後人工模擬體液(SBF)之膜層降解反應機制...46
4.3 細胞試驗...47

第五章 結論...49
參考文獻...50
1.M. P. Staiger, A. M. Pietak, J. Huadmai, G. Dias. Magnesium and its alloys as orthopedic biomaterials: A review, Biomaterials, 27 (2006) 1728-1734.
2.F. Witte, J. Fischer, J. Nellesen, H. A. Crostack, V. Kaese, A. Pisch, F. Beckmann, H. Windhagen. In vitro and in vivo corrosion measurements of magnesium alloys, Biomaterials, 27 (2006) 1013-1018.
3.R. Zeng, W. Dietzel, F. Witte, N. Hort, C. Blawert. Progress and Challenge for Magnesium Alloys as Biomaterials, Advanced Engineering Materials, 10 (2008) B3-B14.
4.A. Lambotte. Technique et Indications de la prothèse perdue dans le traitement des fractures, Presse Med Belge, 17 (1909) 321-323.
5.B. Heublein, R. Rohde, V. Kaese, M. Niemeyer, W. Hartung, A Haverich. Biocorrosion of magnesium alloys: a new principle in cardiovascular implant technology, Heart, 89 (2003) 651-656.
6.F. Witte, V. Kaese, H. Haferkamp, E. Switzer, A. Meyer-Lindenberg, C.J. Wirth, H. Windhagen. In vivo corrosion of four magnesium alloys and the associated bone response, Biomaterials, 26 (2005) 3557-3563.
7.F. Witte, F. Feyerabend, P. Maier, J. Fischer, M. Störmer, C. Blawert, W. Dietzel, N. Hort. Biodegradable magnesium–hydroxyApatite metal matrix composites, Biomaterials, 28 (2007) 2163-2174.
8.D. Williams. New Interests in Magnesium, Medica Device Technology, 17 (2006) 9-10.
9.P. Helmecke, M. Ezechieli, C. Becher, J. Köhler, B. Denkena. Resorbable interference screws made of magnesium based alloy, Biomedizinische Technik, 2013, 58, doi: 10.1515/bmt-2013-4074.
10.H. Windhagen, K. Radtke, A. Weizbauer, J. Diekmann, Y. Noll, U. Kreimeyer, R. Schavan, C. Stukenborg-Colsman and H. Waizy. Biodegradable magnesium-based screw clinically equivalent to titanium screw in hallux valgus surgery: Short term results of the first prospective, randomized, controlled clinical pilot study, BioMedical Engineering, 2013,12:62, doi: 10.1186/1475-925X- 12-62.
11.J. W. Lee, H. S. Han, K. J. Han, J. Park, H. Jeon, M. R. Ok, H. K. Seok, J. P. Ahn, K. E. Lee, D. H. Lee, S. J. Yang, S. Y. Cho, P. R. Cha, H. Kwon, T. H. Nam, J. H. Han, H. J. Rho, K. S. Lee, Y. C. Kim, D. Mantovani. Long-term clinical study and multiscale analysis of in vivo biodegradation mechanism of Mg alloy, Proceedings of the National Academy of Sciences of the United States of America, 113 (2016) 716-721.
12.Y. Gu, X. Cai, Y. Guo, C. Ning. Effect of chloride ion level on the corrosion performance of MAO modified AZ31B alloy in NaCl solutions, Materials & Design, 43 (2013) 542-548.
13.W.D. Mueller, M. Lucia Nascimento, M.F. Lorenzo de Mele. Critical discussion of the results from different corrosion studies of Mg and Mg alloys for biomaterial applications, Acta Biomaterialia, 6 (2010) 1749-1755.
14.Ya. Unigovski, A. Eliezer, E. Abramov, Y. Snir, E. M. Gutman. Corrosion fatigue of extruded magnesium alloys, Materials Science and Engineering: A, 360 (2003) 132-139.
15.X. Yan, M. C. Zhao, Y. Yang, L. Tan, Y. C. Zhao, D. F. Yin, K. Yang, A. Atrens. Improvement of biodegradable and antibacterial properties by solution treatment and micro-arc oxidation (MAO) of a magnesium alloy with a trace of copper, Corrosion Science, 156 (2019) 125-138.
16.Y. F. Zheng, X. N. Gu, F. Witte. Biodegradable metals, Materials Science and Engineering R 77 (2014) 1-34.
17.M. Erinc, W. H. Sillekens, R. G. T. M. Mannens, R. J. Werkhoven. Applicability of existing magnesium alloys as biomedical implant materials, Magnesium Technology, 15 (2009) 209-214.
18.X Lei, T Liu, J Chen, B Miao, W Zeng. Microstructure and Mechanical Properties of Magnesium Alloy AZ31B Processed by Compound Channel Extrusion, Materials Transactions, 52 (2011) 1082-1087.
19.M. Avedesion. H. Baker, Magnesium and Magnesium Alloys, ASM Specialty Handbook, 1999.
20.M. Ali, M. A. Hussein, N. Al-Aqeeli. Magnesium-based composites and alloys for medical applications: A review of mechanical and corrosion properties, Journal of Alloys and Compounds, 792 (2019) 1162-1190.
21.J. Chen, L. Tan, X. Yu, I. P. Etim, M. Ibrahim, K. Yang. Mechanical properties of magnesium alloys for medical application: A review, Journal of the Mechanical Behavior of Biomedical Materials, 87 (2018) 68-79.
22.H. Liu, F. Cao, G. L. Song, D. Zheng, Z. Shi, M. S. Dargusch, A Atrens. Review of the atmospheric corrosion of magnesium alloys, Journal of Materials Science & Technology, 35 (2019) 2003-2016.
23.H. Hornberger, S. Virtanen, A.R. Boccaccini. Biomedical coatings on magnesium alloys-A review. Acta Biomaterialia, 8 (2012) 2442-2455.
24.L Xu, F Pan, G Yu, L Yang, E Zhang, K Yang. In vitro and in vivo evaluation of the surface bioactivity of a calcium phosphate coated magnesium alloy, Biomaterials, 30 (2009)1512-1523.
25.Gh. Barati Darband, M. Aliofkhazraei, P. Hamghalam, N. Valizade. Plasma electrolytic oxidation of magnesium and its alloys: Mechanism, properties and applications, Journal of Magnesium and Alloys, 5 (2017) 74-132.
26.A. L. Yerokhin, A. Shatrov, V. Samsonov, P. Shashkov, A. Leyland, A. Matthews. Fatigue properties of Keronite coatings on a magnesium alloy, Surface and Coatings Technology, 182 (2004)78-84.
27.T.S.N. Sankara Narayanan, I. S. Park, M. H. Lee. Strategies to improve the corrosion resistance of microarc oxidation (MAO) coated magnesium alloys for degradable implants: Prospects and challenges, Progress in Materials Science, 60 (2014) 1-71.
28.M. Toorani, M Aliofkhazraei, R. Naderi. Ceria-embedded MAO process as pretreatment for corrosion protection of epoxy films applied on AZ31B-magnesium alloy, Journal of Alloys and Compounds, 785 (2019) 669-683.
29.C. Y. Li, X. L. Fan, R. C. Zeng, L. Y. Cui, S. Q. Li, F. Zheng, Q. K. He, M. B. Kannan, H. W. Jiang, D. C. Chen, S. K. Guan. Corrosion resistance of in-situ growth of nano-sized Mg(OH)2 on micro-arc oxidized magnesium alloy AZ31B—Influence of EDTA, Journal of Materials Science & Technology, 35 (2019) 1088-1098.
30.Z. Li, Q. Yu, C. Zhang, Y. Liu, J. Liang, D. Wang, F. Zhou. Synergistic effect of hydrophobic film and porous MAO membrane containing alkynol inhibitor for enhanced corrosion resistance of magnesium alloy, Surface and Coatings Technology, 357 (2019) 515-525.
31.B. Mingo, R. Arrabal, M. Mohedano, Y. Llamazares, E. Matykina, A. Yerokhin, A. Pardo. Influence of sealing post-treatments on the corrosion resistance of PEO coated AZ91 magnesium alloy, Applied Surface Science, 433 (2018) 653-667.
32.Y. Wang, X. Wang, T. Zhang, K. Wu, F. Wang. Role of β phase during microarc oxidation of Mg alloy AZ91D and corrosion resistance of the oxidation coating, Journal of Materials Science & Technology, 29 (2013) 1129-1133.
33.L. R. Krishna, G. Poshal, A. Jyothirmayi, G. Sundararajan. Relative hardness and corrosion behavior of micro arc oxidation coatings deposited on binary and ternary magnesium alloys, Materials & Design, 77 (2015) 6-14,.
34.M. J. Shena, X. J. Wanga, M.F. Zhang, High-compactness coating grown by plasma electrolytic oxidation on AZ31B magnesium alloy in the solution of silicate-borax, Applied Surface Science, 259 (2012) 362-366
35.D. Sreekanth, N. Rameshbabu, K. Venkateswarlu, Ch. Subrahmanyam, L. Rama Krishna, K. Prasad Rao. Effect of K2TiF6 and Na2B4O7 as electrolyte additives on pore morphology and corrosion properties of plasma electrolytic oxidation coatings on ZM21 magnesium alloy, Surface & Coatings Technology, 222 (2013) 31-37.
36.B. Salami, A. Afshar, A. Mazaheri. The effect of sodium silicate concentration on microstructure and corrosion properties of MAO-coated magnesium alloy AZ31B in simulated body fluid, Journal of Magnesium and Alloys, 2 (2014) 72-77.
37.S. Levent Aktuğ, SalihDurdu, I. Kutbay, M. Usta. Effect of Na2SiO3•5H2O concentration on microstructure and mechanical properties of plasma electrolytic oxide coatings on AZ31B Mg alloy produced by twin roll casting, Ceramics International, 42 (2016)1246-1253.
38.P. Bala Srinivasan, J. Liang, C. Blawert, M. Störmer, W. Dietzel. Effect of current density on the microstructure and corrosion behaviour of plasma electrolytic oxidation treated AM50 magnesium alloy, Applied Surface Science, 255 (2009) 4212-4218.
39.Y. Li, F. Lu, H. Li, W. Zhu, H. Pan, G. Tan, Y. Lao, C. Ning, G. Ni. Corrosion mechanism of micro-arc oxidation treated biocompatible AZ31B magnesium alloy in simulated body fluid, Progress in Natural Science Materials International, 24 (2014) 516-522.
40.X. Song, J. Lu, X. Yin, J. Jiang, J. Wang. The effect of pulse frequency on the electrochemical properties of micro arc oxidation coatings formed on magnesium alloy, Journal of Magnesium and Alloys, 1 (2013) 318-322.
41.Y. Gu, S. Bandopadhyay, C. F. Chen, Y. Guo, C. Ning. Effect of oxidation time on the corrosion behavior of micro-arc oxidation produced AZ31B magnesium alloys in simulated body fluid, Journal of Alloys and Compounds, 543 (2012) 109-117.
42.H. Xu, T. Hu, M. Wang, Y. Zheng, H. Qin, H. Cao, Z. An. Degradability and biocompatibility of magnesium-MAO: The consistency and contradiction between in-vitro and in-vivo outcomes, Arabian Journal of Chemistry, 20 (2018).
43.T. Kokubo, H. Takadama. How useful is SBF in predicting in vivo bone bioactivity? Biomaterials, 27 (2006) 2907-2915.
44.H. Duan, C. Yan, F. Wang. Effect of electrolyte additives on performance of plasma electrolytic oxidation films formed on magnesium alloy AZ91D, Electrochimica Acta, 52 (2007) 3785-3793.
45.O. Khaselev, D. Weiss, J. Yahalom. Structure and composition of anodic films formed on binary Mg-Al alloys in KOH-aluminate solutions under continuous sparking, Corrosion. Science., 43 (2001) 1295-1307.
46.Y. Gu, C. f. Chen, S. Bandopadhyay, C. Ning, Y. Zhang,Y. Guo. Corrosion mechanism and model of pulsed DC microarc oxidation treated AZ31B alloy in simulated body fluid, Applied Surface Science, 258 (2012) 6116-6126.
47.M.T. Carayon, J.L. Lacout. Study of the Ca/P atomic ratio of the amorphous phase in plasma-sprayed hydroxyApatite coatings, Journal of Solid State Chemistry, 172 (2003) 339-350.
48.Y. Gu, S. Bandopadhyay, C. F. Chen, Y. Guo, C. Ning. Effect of oxidation time on the corrosion behavior of micro-arc oxidation produced AZ31B magnesium alloys in simulated body fluid, Journal of Alloys and Compounds, 543 (2012) 109-117.
49.E. Boanini, M. Gazzano, A. Bigi. Ionic substitutions in calcium phosphates synthesized at low temperature, Acta Biomaterialia, 6 (2010) 1882-1894.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top