跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.173) 您好!臺灣時間:2025/01/18 01:17
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:林義豐
研究生(外文):LIN, YI-FENG
論文名稱:利用離子液體溶解稻殼纖維素製備羥甲基糠醛及其反應動力學研究
論文名稱(外文):Preparation of HMF by dissolving cellulose of rice husk with ionic liquid and its kinetics study
指導教授:吳石乙
指導教授(外文):WU, SHU YII
口試委員:張光偉白景成
口試委員(外文):JHANG, GUANG-WEIBAI,JING-CHENG
口試日期:2019-07-12
學位類別:碩士
校院名稱:逢甲大學
系所名稱:化學工程學系
學門:工程學門
學類:化學工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:119
中文關鍵詞:[Bmim]Cl離子液體稻殼纖維素動力學預處理羥甲基糠醛
外文關鍵詞:[Bmim]Clionic liquidrice huskcellulosekineticspretreatmentHMF
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本研究將離子液體應用於含纖維素之料源製備羥甲基糠醛,並比較不同定量方法對檢測羥甲基糠醛之影響及探討其反應動力學。以及將稻殼預處理提高其纖維素含量,降低其轉化為化學品之成本。
選用稻殼作為預處理之料源,其溫度固定為80℃,濃度為0.5、1.5、3.5、6.5、10 M NaOH,時間分別為20、40、60、120、240 min,探討處理前後之纖維組成變化,其纖維素含量由36.00%提升至55.77%,並透過XRD分析其結晶度由38.65%略為提升至43.48%。EDS分析其元素組成證實預處理可有效去除96.39%的灰分,並降低灰分中之矽含量。
離子液體選用[Bmim]Cl,許多研究結果顯示其可有效將纖維素降解為羥甲基糠醛。分別以不同溫度及濃度進行纖維素製備羥甲基糠醛實驗,由實驗結果得知反應為一連續的一級反應,並且符合本文所假設之動力學模型,動力學模型如下式。

CA = CA0e(-k1t)
CG = "k1CA0" /"k2 + k3 - k1" [ e(-k1t) - e(-(k2 + k3)t)]
CH = "k1k2CA0" /"k2 + k3 - k1" [ "e(-k1t)" /"k4 - k1" - "e(-(k2 + k3)t)" /"k4 - (k2 + k3)" ] + "k1k2CA0e(-k4t)" /"(k4 - k1)(k4 - k2 - k3) "

Reaction k0 Ea (kJ/mol)
A → G 3.33 × 1016 142.54
G → H 2.33 × 1012 109.23
G → Hu 2.38 × 1012 107.70
H → Hu 5.53 × 1014 125.33

葡萄糖的降解速率常數kGl (0.1161)大於纖維素的降解速率常數k1 (0.0999),且溫度越高其差距越大,相對於葡萄糖的降解,纖維素的降解為一慢反應,控制整串反應之速率。以預處理後之稻殼製備羥甲基糠醛,溫度為423K、濃度為12 wt.%,所得羥甲基糠醛產率為12.11%,經由本實驗得知以稻殼為料源製備羥甲基糠醛是可行的。

In this study, HMF was prepared by dissolving lignocellulose materials in ionic liquid. The methods of HMF quantitative analysis are compared, and the reaction kinetics of cellulose to HMF redactions were investigated in this study. The pretreatment of rice husk by alkali resulted in the increasing cellulose recovery, and reducing the ionic liquids utilization during the process and lower the cost of the circular processing.
Rice husk was used as raw feed stock for the synthesis of HMF via alkali pretreatment. The concentrations of NaOH and reaction time were 0.5, 1.5, 3.5, 6.5, 10 M and 20, 40, 60, 120, 240 min, respectively in a 3-necked flask at 80°C. The cellulose content was increased from 36.00% to 55.77% after the alkali pretreatment. The crystallinity of cellulose of rice husk was slightly increased from 38.65% to 43.48% according to XRD analysis. Pretreatment effectively remove ash of 96.39% and reduce its silicon content based on EDS analysis.
Studies indicate [Bmim]Cl is an effective ionic liquid in converting cellulose into HMF. In this study, HMF was derived from cellulose at different temperatures and cellulose concentrations. According to literature reports, the conversion of cellulose to HMF is a continuous first-order reaction. Thus, the kinetic model for this study was based on this assumption. The kinetic model is as follows.

CA = CA0e(-k1t)
CG = "k1CA0" /"k2 + k3 - k1" [ e(-k1t) - e(-(k2 + k3)t)]
CH = "k1k2CA0" /"k2 + k3 - k1" [ "e(-k1t)" /"k4 - k1" - "e(-(k2 + k3)t)" /"k4 - (k2 + k3)" ] + "k1k2CA0e(-k4t)" /"(k4 - k1)(k4 - k2 - k3) "

Reaction k0 Ea (kJ/mol)
A → G 3.33 × 1016 142.54
G → H 2.33 × 1012 109.23
G → Hu 2.38 × 1012 107.70
H → Hu 5.53 × 1014 125.33

The degradation rate constant kGl (0.1161) of glucose was greater than the degradation rate constant k1 (0.0999) of cellulose, and the higher the temperature, the greater the difference. The degradation of cellulose was a slow reaction relative to the glucose, and controlled the rate of the entire series of reactions. Preparation of HMF from pretreated rice husk was carried out with 12wt.% of cellulose at 423K. The resulting HMF yield was 12.11%. This study suggests a feasible route to prepare HMF from rice husk in an ionic liquid.

摘 要 II
ABSTRACT IV
目 錄 VI
圖目錄 X
表目錄 XIII
符號表 XIV
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 實驗架構 4
第二章 文獻回顧 5
2-1 木質纖維素 5
2-2 纖維素預處理 11
2-2-1 物理法 13
2-2-2 化學法 14
2-2-3 物理化學法 17
2-2-4 生物法 18
2-3 離子液體 21
2-3-1 離子液體的特性 23
2-3-2 離子液體的應用 27
2-4 羥甲基糠醛 (HMF) 30
2-4-1 羥甲基糠醛性質 30
2-4-2 羥甲基糠醛應用 31
2-4-3 羥甲基糠醛合成 34
2-4-3-1 單糖製備羥甲基糠醛 35
2-4-3-2 多糖製備羥甲基糠醛 35
2-4-3-3 催化劑的使用 38
2-4-4 纖維素製備羥甲基糠醛動力學模型 39
2-4-5 羥甲基糠醛檢測方法 41
2-5 胡敏素 (Humins) 42
第三章 實驗方法 44
3-1 實驗藥品與儀器 44
3-1-1 實驗藥品 44
3-1-2 實驗儀器 45
3-2 實驗裝置 46
3-2-1 生質料前處理裝置 46
3-2-2 羥甲基糠醛反應裝置 47
3-2-3 真空過濾裝置 48
3-3 實驗方法與步驟 49
3-3-1 纖維組成分析 49
3-3-2 稻殼預處理 52
3-3-3 羥甲基糠醛定量分析 53
3-3-4 纖維素製備羥甲基糠醛 54
3-3-5 纖維素製備羥甲基糠醛動力學 55
3-4 分析方法 57
3-4-1 傅立葉轉換紅外線光譜儀分析 (FTIR) 57
3-4-2 卡式水分滴定儀分析 58
3-4-3 熱重分析 (TGA) 59
3-4-4 能量散射光譜儀分析 (EDS) 59
3-4-5 高效能液相層析儀分析 (HPLC) 59
3-4-6 X射線繞射分析 (XRD) 60
3-4-7 還原糖分析 (DNS) 60
第四章 結果與討論 62
4-1 稻殼預處理之探討 62
4-1-1 生質料源選擇 62
4-1-2 稻殼預處理 63
4-1-3 纖維組成之比較 65
4-1-4 XRD分析 69
4-1-5 EDS分析 70
4-2 羥甲基糠醛定量方法之探討 71
4-3 纖維素製備羥甲基糠醛動力學探討 78
4-3-1 濃度、溫度效應 79
4-3-2 動力學參數 85
4-3-3 胡敏素性質 95
4-4 稻殼製備羥甲基糠醛 98
第五章 結論與未來展望 99
5-1 研究結論 99
5-2 未來展望 101
參考文獻 102
附件一:個人簡歷與學術成果 119
Agarwal, S., van Es, D., & Heeres, H. J. (2017). Catalytic pyrolysis of recalcitrant, insoluble humin byproducts from C6 sugar biorefineries. Journal of analytical and applied pyrolysis, 123, 134-143.
Agbor, V. B., Cicek, N., Sparling, R., Berlin, A., & Levin, D. B. (2011). Biomass pretreatment: fundamentals toward application. Biotechnology advances, 29(6), 675-685.
Aki, S. N., Mellein, B. R., Saurer, E. M., & Brennecke, J. F. (2004). High-pressure phase behavior of carbon dioxide with imidazolium-based ionic liquids. The Journal of Physical Chemistry B, 108(52), 20355-20365.
Alvira, P., Tomás-Pejó, E., Ballesteros, M., & Negro, M. (2010). Pretreatment technologies for an efficient bioethanol production process based on enzymatic hydrolysis: a review. Bioresource technology, 101(13), 4851-4861.
Amarasekara, A. S. (2016). Acidic ionic liquids. Chemical reviews, 116(10), 6133-6183.
Armand, M., Endres, F., MacFarlane, D. R., Ohno, H., & Scrosati, B. (2011). Ionic-liquid materials for the electrochemical challenges of the future Materials For Sustainable Energy: A Collection of Peer-Reviewed Research and Review Articles from Nature Publishing Group (pp. 129-137): World Scientific.
Avgerinos, G., & Wang, D. I. C. (1983). Selective solvent delignification for fermentation enhancement. Biotechnology and bioengineering, 25(1), 67-83.
Bals, B., Dale, B., & Balan, V. (2006). Enzymatic hydrolysis of distiller's dry grain and solubles (DDGS) using ammonia fiber expansion pretreatment. Energy & Fuels, 20(6), 2732-2736.
Bhaumik, P., & Dhepe, P. L. (2015). Conversion of biomass into sugars. Biomass sugars for non-fuel applications, 1-53.
Binder, J. B., & Raines, R. T. (2009). Simple chemical transformation of lignocellulosic biomass into furans for fuels and chemicals. Journal of the American Chemical Society, 131(5), 1979-1985.
Blanchard, L. A., Hancu, D., Beckman, E. J., & Brennecke, J. F. (1999). Green processing using ionic liquids and CO2. Nature, 399(6731), 28.
Brandt, A., Gräsvik, J., Hallett, J. P., & Welton, T. (2013). Deconstruction of lignocellulosic biomass with ionic liquids. Green Chemistry, 15(3), 550-583.
Brinchi, L., Cotana, F., Fortunati, E., & Kenny, J. (2013). Production of nanocrystalline cellulose from lignocellulosic biomass: technology and applications. Carbohydrate Polymers, 94(1), 154-169.
Bubalo, M. C., Radošević, K., Redovniković, I. R., Halambek, J., & Srček, V. G. (2014). A brief overview of the potential environmental hazards of ionic liquids. Ecotoxicology and environmental safety, 99, 1-12.
Bugg, T. D., Ahmad, M., Hardiman, E. M., & Singh, R. (2011). The emerging role for bacteria in lignin degradation and bio-product formation. Current opinion in biotechnology, 22(3), 394-400.
Buszewski, B., & Studzińska, S. (2008). A review of ionic liquids in chromatographic and electromigration techniques. Chromatographia, 68(1-2), 1-10.
Carrillo-Reyes, J., Barragán-Trinidad, M., & Buitrón, G. (2016). Biological pretreatments of microalgal biomass for gaseous biofuel production and the potential use of rumen microorganisms: A review. Algal research, 18, 341-351.
Caruso, M. M., Davis, D. A., Shen, Q., Odom, S. A., Sottos, N. R., White, S. R., & Moore, J. S. (2009). Mechanically-induced chemical changes in polymeric materials. Chemical reviews, 109(11), 5755-5798.
Chen, L., Zhu, J., Baez, C., Kitin, P., & Elder, T. (2016). Highly thermal-stable and functional cellulose nanocrystals and nanofibrils produced using fully recyclable organic acids. Green Chemistry, 18(13), 3835-3843.
Cherian, B. M., Leão, A. L., de Souza, S. F., Thomas, S., Pothan, L. A., & Kottaisamy, M. (2010). Isolation of nanocellulose from pineapple leaf fibres by steam explosion. Carbohydrate Polymers, 81(3), 720-725.
Cherian, B. M., Pothan, L. A., Nguyen-Chung, T., Mennig, G. n., Kottaisamy, M., & Thomas, S. (2008). A novel method for the synthesis of cellulose nanofibril whiskers from banana fibers and characterization. Journal of agricultural and food chemistry, 56(14), 5617-5627.
Cuissinat, C., & Navard, P. (2006). Swelling and Dissolution of Cellulose Part 1: Free Floating Cotton and Wood Fibres in N‐Methylmorpholine‐N‐oxide–Water Mixtures. Paper presented at the Macromolecular Symposia.
de Andrade, J. K., de Andrade, C. K., Komatsu, E., Perreault, H., Torres, Y. R., da Rosa, M. R., & Felsner, M. L. (2017). A validated fast difference spectrophotometric method for 5-hydroxymethyl-2-furfural (HMF) determination in corn syrups. Food chemistry, 228, 197-203.
de Jong, E., Higson, A., Walsh, P., & Wellisch, M. (2012). Bio-based chemicals value added products from biorefineries. IEA Bioenergy, Task42 Biorefinery, 34.
Demirbaş, A. (2001). Biomass resource facilities and biomass conversion processing for fuels and chemicals. Energy conversion and Management, 42(11), 1357-1378.
Du, X., Zhang, J., Wang, Y., & Qu, Y. (2017). Conversion of carbohydrates into platform chemicals catalyzed by alkaline ionic liquids. Catalysts, 7(9), 245.
Fan, L.-t., Gharpuray, M. M., & Lee, Y.-H. (2012). Cellulose hydrolysis (Vol. 3): Springer Science & Business Media.
Fengel, D., & Wegener, G. (1984). Wood: chemistry, ultrastructure. Reactions, 613, 1960-1982.
Filiciotto, L., Balu, A. M., Romero, A. A., Rodríguez-Castellón, E., van der Waal, J. C., & Luque, R. (2017). Benign-by-design preparation of humin-based iron oxide catalytic nanocomposites. Green Chemistry, 19(18), 4423-4434.
Freire, M. G., Teles, A. R. R., Ferreira, R. A., Carlos, L. D., Lopes-da-Silva, J. A., & Coutinho, J. A. (2011). Electrospun nanosized cellulose fibers using ionic liquids at room temperature. Green Chemistry, 13(11), 3173-3180.
Galbe, M., & Zacchi, G. (2007). Pretreatment of lignocellulosic materials for efficient bioethanol production Biofuels (pp. 41-65): Springer.
Gawade, A. B., Tiwari, M. S., & Yadav, G. D. (2016). Biobased green process: Selective hydrogenation of 5-hydroxymethylfurfural to 2, 5-dimethyl furan under mild conditions using Pd-Cs2.5H0. 5PW12O40/K-10 clay. ACS Sustainable Chemistry & Engineering, 4(8), 4113-4123.
Gazal, U., Khan, I., Usmani, M., & Bhat, A. (2018). Modification of polymer nanocomposites and significance of ionic liquid for supercapacitor application Polymer-based Nanocomposites for Energy and Environmental Applications (pp. 315-332): Elsevier.
Geissdoerfer, M., Savaget, P., Bocken, N. M., & Hultink, E. J. (2017). The Circular Economy–A new sustainability paradigm? Journal of cleaner production, 143, 757-768.
Ghaemi, F., Abdullah, L. C., & Ariffin, H. (2019). Lignocellulose Structure and the Effect on Nanocellulose Production. Lignocellulose for Future Bioeconomy, 17.
Gogate, P. R., & Prajapat, A. L. (2015). Depolymerization using sonochemical reactors: A critical review. Ultrasonics sonochemistry, 27, 480-494.
Gräsvik, J., Winestrand, S., Normark, M., Jönsson, L. J., & Mikkola, J.-P. (2014). Evaluation of four ionic liquids for pretreatment of lignocellulosic biomass. BMC biotechnology, 14(1), 34.
Greenhalf, C., Nowakowski, D., Harms, A., Titiloye, J., & Bridgwater, A. (2013). A comparative study of straw, perennial grasses and hardwoods in terms of fast pyrolysis products. Fuel, 108, 216-230.
Hall, M., Horrocks, A., & Seddon, H. (1999). The flammability of Lyocell. Polymer degradation and Stability, 64(3), 505-510.
Han, D., Tang, B., Ri Lee, Y., & Ho Row, K. (2012). Application of ionic liquid in liquid phase microextraction technology. Journal of separation science, 35(21), 2949-2961.
Hatakka, A. (1994). Lignin-modifying enzymes from selected white-rot fungi: production and role from in lignin degradation. FEMS microbiology reviews, 13(2-3), 125-135.
Holtzapple, M. T., Jun, J.-H., Ashok, G., Patibandla, S. L., & Dale, B. E. (1991). The ammonia freeze explosion (AFEX) process. Applied Biochemistry and Biotechnology, 28(1), 59-74.
Hom-Diaz, A., Passos, F., Ferrer, I., Vicent, T., & Blánquez, P. (2016). Enzymatic pretreatment of microalgae using fungal broth from Trametes versicolor and commercial laccase for improved biogas production. Algal research, 19, 184-188.
Hu, S., Zhang, Z., Song, J., Zhou, Y., & Han, B. (2009). Efficient conversion of glucose into 5-hydroxymethylfurfural catalyzed by a common Lewis acid SnCl4 in an ionic liquid. Green Chemistry, 11(11), 1746-1749.
Hu, X., Xiao, Y., Niu, K., Zhao, Y., Zhang, B., & Hu, B. (2013). Functional ionic liquids for hydrolysis of lignocellulose. Carbohydrate Polymers, 97(1), 172-176.
Isikgor, F. H., & Becer, C. R. (2015). Lignocellulosic biomass: a sustainable platform for the production of bio-based chemicals and polymers. Polymer Chemistry, 6(25), 4497-4559.
Jacquemin, J., Nancarrow, P., Rooney, D. W., Costa Gomes, M. F., Husson, P., Majer, V., Hardacre, C. (2008). Prediction of ionic liquid properties. II. Volumetric properties as a function of temperature and pressure. Journal of Chemical & Engineering Data, 53(9), 2133-2143.
Javed, F., Ullah, F., Zakaria, M. R., & Akill, H. M. (2018). An approach to classification and hi-tech applications of room-temperature ionic liquids (RTILs): A review. Journal of Molecular Liquids.
Kim, B., Jeong, J., Lee, D., Kim, S., Yoon, H.-J., Lee, Y.-S., & Cho, J. K. (2011). Direct transformation of cellulose into 5-hydroxymethyl-2-furfural using a combination of metal chlorides in imidazolium ionic liquid. Green Chemistry, 13(6), 1503-1506.
Kosma, P. (2011). Green Refinery-Ionic Liquids As Novel Media For Biomass Processing.
Kumar, P., Barrett, D. M., Delwiche, M. J., & Stroeve, P. (2009). Methods for pretreatment of lignocellulosic biomass for efficient hydrolysis and biofuel production. Industrial & engineering chemistry research, 48(8), 3713-3729.
Kuo, C.-H., & Lee, C.-K. (2009). Enhancement of enzymatic saccharification of cellulose by cellulose dissolution pretreatments. Carbohydrate Polymers, 77(1), 41-46.
Larson, K. A., & King, M. L. (1986). Evaluation of supercritical fluid extraction in the pharmaceutical industry. Biotechnology progress, 2(2), 73-82.
Laureano-Perez, L., Teymouri, F., Alizadeh, H., & Dale, B. E. (2005). Understanding factors that limit enzymatic hydrolysis of biomass. Applied Biochemistry and Biotechnology, 124(1-3), 1081-1099.
Lebo Jr, S. E., Gargulak, J. D., & McNally, T. J. (2002). Lignin. Encyclopedia of Polymer Science and Technology, 3.
Lee, H., Hamid, S. B. A., & Zain, S. (2014). Conversion of lignocellulosic biomass to nanocellulose: structure and chemical process. The Scientific World Journal, 2014.
Leng, E., Mao, M., Peng, Y., Li, X., Gong, X., & Zhang, Y. (2019). The Direct Conversion of Cellulose into 5‐Hydroxymethylfurfural with CrCl3 Composite Catalyst in Ionic Liquid under Mild Conditions. ChemistrySelect, 4(1), 181-189.
Li, X., Mupondwa, E., Panigrahi, S., Tabil, L., Sokhansanj, S., & Stumborg, M. (2012). A review of agricultural crop residue supply in Canada for cellulosic ethanol production. Renewable and Sustainable Energy Reviews, 16(5), 2954-2965.
Lin, H., Sun, W., Ru, B., Chen, J., & Wang, S. (2015). Kinetic study on conversion of glucose to 5-hydroxymethylfurfural in different solvents. Trans. Chin. Soc. Agric. Mach, 46, 201-207.
Liou, T.-H. (2004). Evolution of chemistry and morphology during the carbonization and combustion of rice husk. Carbon, 42(4), 785-794.
Liu, B., & Zhang, Z. (2013). One-pot conversion of carbohydrates into 5-ethoxymethylfurfural and ethyl D-glucopyranoside in ethanol catalyzed by a silica supported sulfonic acid catalyst. RSC Advances, 3(30), 12313-12319.
Lu, X., Withers, M. R., Seifkar, N., Field, R. P., Barrett, S. R., & Herzog, H. J. (2015). Biomass logistics analysis for large scale biofuel production: case study of loblolly pine and switchgrass. Bioresource technology, 183, 1-9.
Mäki-Arvela, P., Anugwom, I., Virtanen, P., Sjöholm, R., & Mikkola, J.-P. (2010). Dissolution of lignocellulosic materials and its constituents using ionic liquids—a review. Industrial Crops and Products, 32(3), 175-201.
Ma, Y., Ji, W., Zhu, X., Tian, L., & Wan, X. (2012). Effect of extremely low AlCl3 on hydrolysis of cellulose in high temperature liquid water. Biomass and bioenergy, 39, 106-111.
MA, Z.-l., LIU, J.-h., HUANG, X., CAIYIN, Q.-g., & ZHU, H.-j. (2017). Research Progress on Utilization of Lignocellulosic Biomass by Microorganisms. China Biotechnology, 37(6), 124-133.
Mansfield, S. D., Mooney, C., & Saddler, J. N. (1999). Substrate and enzyme characteristics that limit cellulose hydrolysis. Biotechnology progress, 15(5), 804-816.
McMillan, J. D. (1994). Pretreatment of lignocellulosic biomass. Paper presented at the ACS symposium series (USA).
Mija, A., Van Der Waal, J., Pin, J.-M., Guigo, N., & De Jong, E. (2015). Humins as promising material for producing sustainable polyssacharide-derived building materials. Paper presented at the First International Conference on Bio-based Building Materials.
Morton, M. D., & Hamer, C. K. (2018). Ionic liquids–The beginning of the end or the end of the beginning?–A look at the life of ionic liquids through patent claims. Separation and Purification Technology, 196, 3-9.
Mosier, N., Wyman, C., Dale, B., Elander, R., Lee, Y., Holtzapple, M., & Ladisch, M. (2005). Features of promising technologies for pretreatment of lignocellulosic biomass. Bioresource technology, 96(6), 673-686.
Nakajima, H., Dijkstra, P., & Loos, K. (2017). The recent developments in biobased polymers toward general and engineering applications: Polymers that are upgraded from biodegradable polymers, analogous to petroleum-derived polymers, and newly developed. Polymers, 9(10), 523.
Nishiyama, Y., Langan, P., & Chanzy, H. (2002). Crystal structure and hydrogen-bonding system in cellulose Iβ from synchrotron X-ray and neutron fiber diffraction. Journal of the American Chemical Society, 124(31), 9074-9082.
Okano, K., Kitagawa, M., Sasaki, Y., & Watanabe, T. (2005). Conversion of Japanese red cedar (Cryptomeria japonica) into a feed for ruminants by white-rot basidiomycetes. Animal Feed Science and Technology, 120(3-4), 235-243.
Olivier-Bourbigou, H., Magna, L., & Morvan, D. (2010). Ionic liquids and catalysis: Recent progress from knowledge to applications. Applied Catalysis A: General, 373(1-2), 1-56.
Passos, H., Freire, M. G., & Coutinho, J. A. (2014). Ionic liquid solutions as extractive solvents for value-added compounds from biomass. Green Chemistry, 16(12), 4786-4815.
Patil, S. K., Heltzel, J., & Lund, C. R. (2012). Comparison of structural features of humins formed catalytically from glucose, fructose, and 5-hydroxymethylfurfuraldehyde. Energy & Fuels, 26(8), 5281-5293.
Pfab, E., Filiciotto, L., Romero, A. A., & Luque, R. (2019). Valorization of humins-extracted 5-Methoxymethylfurfural: towards high added value furanics via continuous flow catalytic hydrogenation. Industrial & engineering chemistry research.
Phinichka, N., & Kaenthong, S. (2018). Regenerated cellulose from high alpha cellulose pulp of steam-exploded sugarcane bagasse. Journal of Materials Research and Technology, 7(1), 55-65.
Pinkert, A., Marsh, K. N., Pang, S., & Staiger, M. P. (2009). Ionic liquids and their interaction with cellulose. Chemical reviews, 109(12), 6712-6728.
Poszytek, K., Ciezkowska, M., Sklodowska, A., & Drewniak, L. (2016). Microbial consortium with high cellulolytic activity (MCHCA) for enhanced biogas production. Frontiers in microbiology, 7, 324.
Prasad, B. R., & Senapati, S. (2009). Explaining the differential solubility of flue gas components in ionic liquids from first-principle calculations. The Journal of Physical Chemistry B, 113(14), 4739-4743.
Qing, Q., Guo, Q., Wang, P., Qian, H., Gao, X., & Zhang, Y. (2018). Kinetics study of levulinic acid production from corncobs by tin tetrachloride as catalyst. Bioresource technology, 260, 150-156.
Rouches, E., Herpoël-Gimbert, I., Steyer, J., & Carrere, H. (2016). Improvement of anaerobic degradation by white-rot fungi pretreatment of lignocellulosic biomass: a review. Renewable and Sustainable Energy Reviews, 59, 179-198.
Roy Goswami, S., Mukherjee, A., Dumont, M.-J. e., & Raghavan, V. (2016). One-pot conversion of corn starch into 5-hydroxymethylfurfural in water-[Bmim] Cl/MIBK biphasic media. Energy & Fuels, 30(10), 8349-8356.
Saha, B. C. (2003). Hemicellulose bioconversion. Journal of industrial microbiology and biotechnology, 30(5), 279-291.
Saini, J. K., Saini, R., & Tewari, L. (2015). Lignocellulosic agriculture wastes as biomass feedstocks for second-generation bioethanol production: concepts and recent developments. 3 Biotech, 5(4), 337-353.
Saqib, A. A. N., & Whitney, P. J. (2011). Differential behaviour of the dinitrosalicylic acid (DNS) reagent towards mono-and di-saccharide sugars. Biomass and bioenergy, 35(11), 4748-4750.
Saravanamurugan, S., Pandey, A., & Sangwan, R. S. (2017). Biomass-Derived HMF Oxidation with Various Oxidants Biofuels (pp. 51-67): Springer.
Saritha, M., & Arora, A. (2012). Biological pretreatment of lignocellulosic substrates for enhanced delignification and enzymatic digestibility. Indian journal of microbiology, 52(2), 122-130.
Sasikumar, B., Arthanareeswaran, G., & Ismail, A. (2018). Recent progress in ionic liquid membranes for gas separation. Journal of Molecular Liquids.
Scheller, H. V., & Ulvskov, P. (2010). Hemicelluloses. Annual review of plant biology, 61.
Segal, L., Creely, J., Martin Jr, A., & Conrad, C. (1959). An empirical method for estimating the degree of crystallinity of native cellulose using the X-ray diffractometer. Textile Research Journal, 29(10), 786-794.
Shi, J., Gao, H., Xia, Y., Li, W., Wang, H., & Zheng, C. (2013). Efficient process for the direct transformation of cellulose and carbohydrates to 5-(hydroxymenthyl) furfural with dual-core sulfonic acid ionic liquids and co-catalysts. RSC Advances, 3(21), 7782-7790.
Shi, J., Yang, Y., Wang, N., Song, Z., Gao, H., Xia, Y., Wang, H. (2013). Catalytic conversion of fructose and sucrose to 5-hydroxymethylfurfural using simple ionic liquid/DMF binary reaction media. Catalysis Communications, 42, 89-92.
Shi, Y., Yan, X., Li, Q., Wang, X., Xie, S., Chai, L., & Yuan, J. (2017). Directed bioconversion of Kraft lignin to polyhydroxyalkanoate by Cupriavidus basilensis B-8 without any pretreatment. Process Biochemistry, 52, 238-242.
Sumerskii, I., Krutov, S., & Zarubin, M. Y. (2010). Humin-like substances formed under the conditions of industrial hydrolysis of wood. Russian Journal of Applied Chemistry, 83(2), 320-327.
Sun, Y., & Cheng, J. (2002). Hydrolysis of lignocellulosic materials for ethanol production: a review. Bioresource technology, 83(1), 1-11.
Swatloski, R. P., Spear, S. K., Holbrey, J. D., & Rogers, R. D. (2002). Dissolution of cellose with ionic liquids. Journal of the American Chemical Society, 124(18), 4974-4975.
Tadesse, H., & Luque, R. (2011). Advances on biomass pretreatment using ionic liquids: an overview. Energy & Environmental Science, 4(10), 3913-3929.
Taherzadeh, M., & Karimi, K. (2008). Pretreatment of lignocellulosic wastes to improve ethanol and biogas production: a review. International journal of molecular sciences, 9(9), 1621-1651.
Tang, S., Liu, S., Guo, Y., Liu, X., & Jiang, S. (2014). Recent advances of ionic liquids and polymeric ionic liquids in capillary electrophoresis and capillary electrochromatography. Journal of Chromatography A, 1357, 147-157.
Tosi, P., van Klink, G. P., Celzard, A., Fierro, V., Vincent, L., de Jong, E., & Mija, A. (2018). Auto‐Crosslinked Rigid Foams Derived from Biorefinery Byproducts. ChemSusChem, 11(16), 2797-2809.
Trulove, P., & Mantz, R. (2003). Ionic liquids in synthesis. P. Wasserscheid, T. Welton.
Usmani, M., Khan, I., Gazal, U., Haafiz, M. M., & Bhat, A. (2018). Interplay of polymer bionanocomposites and significance of ionic liquids for heavy metal removal Polymer-based Nanocomposites for Energy and Environmental Applications (pp. 441-463): Elsevier.
Van Nguyen, C., Chang, Y.-C., Yoshikawa, T., Masuda, T., & Wu, K. C.-W. (2016). CrCl3· 6H2O and Boric Acid as a New Catalytic System: Enhanced 5-Hydroxymethylfurfural Production from Cellulose Under Milder Conditions. Nanoscience and Nanotechnology Letters, 8(3), 273-276.
Van Nguyen, C., Lewis, D., Chen, W.-H., Huang, H.-W., ALOthman, Z. A., Yamauchi, Y., & Wu, K. C.-W. (2016). Combined treatments for producing 5-hydroxymethylfurfural (HMF) from lignocellulosic biomass. Catalysis Today, 278, 344-349.
Van Putten, R.-J., Van Der Waal, J. C., De Jong, E., Rasrendra, C. B., Heeres, H. J., & de Vries, J. G. (2013). Hydroxymethylfurfural, a versatile platform chemical made from renewable resources. Chemical reviews, 113(3), 1499-1597.
Van Soest, P., Robertson, J., & Lewis, B. (1991). Symposium: carbohydrate methodology, metabolism, and nutritional implications in dairy cattle. Journal of Dairy Science, 74(10), 3583-3597.
van Zandvoort, I., Wang, Y., Rasrendra, C. B., van Eck, E. R., Bruijnincx, P. C., Heeres, H. J., & Weckhuysen, B. M. (2013). Formation, molecular structure, and morphology of humins in biomass conversion: influence of feedstock and processing conditions. ChemSusChem, 6(9), 1745-1758.
Walden, P. (1914). Ueber die Molekulargrösse und elektrische Leitfähigkeit einiger geschmolzenen Salze. Известия Российской академии наук. Серия математическая, 8(6), 405-422.
Wan, C., & Li, Y. (2012). Fungal pretreatment of lignocellulosic biomass. Biotechnology advances, 30(6), 1447-1457.
Wang, H., Gurau, G., & Rogers, R. D. (2012). Ionic liquid processing of cellulose. Chemical Society Reviews, 41(4), 1519-1537.
Wang, P., Yu, H., Zhan, S., & Wang, S. (2011). Catalytic hydrolysis of lignocellulosic biomass into 5-hydroxymethylfurfural in ionic liquid. Bioresource technology, 102(5), 4179-4183.
Wang, T., Nolte, M. W., & Shanks, B. H. (2014). Catalytic dehydration of C 6 carbohydrates for the production of hydroxymethylfurfural (HMF) as a versatile platform chemical. Green Chemistry, 16(2), 548-572.
Wasserscheid, P., & Welton, T. (2008). Ionic liquids in synthesis: John Wiley & Sons.
Wei, Z., Li, Y., Thushara, D., Liu, Y., & Ren, Q. (2011). Novel dehydration of carbohydrates to 5-hydroxymethylfurfural catalyzed by Ir and Au chlorides in ionic liquids. Journal of the Taiwan Institute of Chemical Engineers, 42(2), 363-370.
Welton, T. (1999). Room-temperature ionic liquids. Solvents for synthesis and catalysis. Chemical reviews, 99(8), 2071-2084.
Werpy, T., & Petersen, G. (2004). Top value added chemicals from biomass: volume I--results of screening for potential candidates from sugars and synthesis gas: National Renewable Energy Lab., Golden, CO (US).
Wilpiszewska, K., & Spychaj, T. (2011). Ionic liquids: Media for starch dissolution, plasticization and modification. Carbohydrate Polymers, 86(2), 424-428.
Wong, S. S., Kasapis, S., & Huang, D. (2012). Molecular weight and crystallinity alteration of cellulose via prolonged ultrasound fragmentation. Food Hydrocolloids, 26(2), 365-369.
Wongwilaiwalin, S., Rattanachomsri, U., Laothanachareon, T., Eurwilaichitr, L., Igarashi, Y., & Champreda, V. (2010). Analysis of a thermophilic lignocellulose degrading microbial consortium and multi-species lignocellulolytic enzyme system. Enzyme and Microbial Technology, 47(6), 283-290.
Xiao, S., Liu, B., Wang, Y., Fang, Z., & Zhang, Z. (2014). Efficient conversion of cellulose into biofuel precursor 5-hydroxymethylfurfural in dimethyl sulfoxide–ionic liquid mixtures. Bioresource technology, 151, 361-366.
Xiao, Y., & Song, Y.-F. (2014). Efficient catalytic conversion of the fructose into 5-hydroxymethylfurfural by heteropolyacids in the ionic liquid of 1-butyl-3-methyl imidazolium chloride. Applied Catalysis A: General, 484, 74-78.
Yamamoto, K., & Tamaru, Y. (2016). Important Roles of the Cellulosome on Degradation of Plant Biomass New and Future Developments in Microbial Biotechnology and Bioengineering (pp. 3-8): Elsevier.
Yan, X., Wang, Z., Zhang, K., Si, M., Liu, M., Chai, L., Shi, Y. (2017). Bacteria-enhanced dilute acid pretreatment of lignocellulosic biomass. Bioresource technology, 245, 419-425.
Yang, H., Yan, R., Chen, H., Lee, D. H., & Zheng, C. (2007). Characteristics of hemicellulose, cellulose and lignin pyrolysis. Fuel, 86(12-13), 1781-1788.
Yong, G., Zhang, Y., & Ying, J. Y. (2008). Efficient catalytic system for the selective production of 5‐hydroxymethylfurfural from glucose and fructose. Angewandte Chemie International Edition, 47(48), 9345-9348.
Yu, J., Paterson, N., & Millan, M. (2019). The primary products of cellulose pyrolysis in the absence of extraparticle reactions. Fuel, 237, 911-915.
Zakzeski, J., Bruijnincx, P. C., Jongerius, A. L., & Weckhuysen, B. M. (2010). The catalytic valorization of lignin for the production of renewable chemicals. Chemical reviews, 110(6), 3552-3599.
Zhang, Q., He, J., Tian, M., Mao, Z., Tang, L., Zhang, J., & Zhang, H. (2011). Enhancement of methane production from cassava residues by biological pretreatment using a constructed microbial consortium. Bioresource technology, 102(19), 8899-8906.
Zhao, H., Holladay, J. E., Brown, H., & Zhang, Z. C. (2007). Metal chlorides in ionic liquid solvents convert sugars to 5-hydroxymethylfurfural. Science, 316(5831), 1597-1600.
Zhao, Q. (2016). Lignification: flexibility, biosynthesis and regulation. Trends in plant science, 21(8), 713-721.
Zheng, X., Zhi, Z., Gu, X., Li, X., Zhang, R., & Lu, X. (2017). Kinetic study of levulinic acid production from corn stalk at mild temperature using FeCl3 as catalyst. Fuel, 187, 261-267.
Zheng, Y., Lin, H. M., & Tsao, G. T. (1998). Pretreatment for cellulose hydrolysis by carbon dioxide explosion. Biotechnology progress, 14(6), 890-896.
Zheng, Y., Zhao, J., Xu, F., & Li, Y. (2014). Pretreatment of lignocellulosic biomass for enhanced biogas production. Progress in energy and combustion science, 42, 35-53.
Zhou, C., Zhao, J., Yagoub, A. E. A., Ma, H., Yu, X., Hu, J., Liu, S. (2017). Conversion of glucose into 5-hydroxymethylfurfural in different solvents and catalysts: Reaction kinetics and mechanism. Egyptian journal of petroleum, 26(2), 477-487.
Zhou, X., Zhang, Z., Liu, B., Zhou, Q., Wang, S., & Deng, K. (2014). Catalytic conversion of fructose into furans using FeCl3 as catalyst. Journal of Industrial and Engineering Chemistry, 20(2), 644-649.
Zhu, S., Wu, Y., Chen, Q., Yu, Z., Wang, C., Jin, S., Wu, G. (2006). Dissolution of cellulose with ionic liquids and its application: a mini-review. Green Chemistry, 8(4), 325-327.
萬毅. (2009). 離子液體中單醣催化脫水製 5-羥甲基糠醛 [D]. 大連理工大學.
行政院農委會. (2018). 農業統計年報. from https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx
張玉玉, 張興, 章慧鶯, 陳怡穎, 陳海濤, & 李全宏. (2014). 3 種單醣模擬體系中 5-羥甲基糠醛的形成動力學分析.
財團法人資源循環台灣基金會. (2018). 何謂循環經濟. https://www.circular-taiwan.org/ceintro.
常春, 馬曉建, & 岑沛霖. (2008). 分光光度法測定纖維素水解液中 5-羥甲基糠醛和糠醛.
常春, 馬曉建, 李洪亮, 方書起, & 岑沛霖. (2009). 高溫稀酸條件下木屑降解動力學研究.
郭天鑫. (2010). 5-羥甲基糠醛的檢測方法及其在食品中產生研究 [D]. 天津: 天津科技大學
韓洪燕. (2014). 微晶纖維素在離子液體中製備 5-HMF 及反應動力學研究. 青島科技大學.
熊碧. (2014). 纖維素在鹼尿素體系中溶解機理的核磁共振研究. 武漢: 武漢大學.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊