跳到主要內容

臺灣博碩士論文加值系統

(44.212.94.18) 您好!臺灣時間:2023/12/11 23:09
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:戴瑋慶
研究生(外文):TAI, WEI-CHING
論文名稱:氧化錳/還原氧化石墨烯電化學沉積於鎳基反蛋白石結構之軟性基板應用在超級電容器
論文名稱(外文):Electrochemical deposition and characterization of MnO2/rGO on porous nickel of inverse opal structures on a flexible substrate for supercapacitor applications
指導教授:駱榮富
指導教授(外文):LOUH, RONG-FUH
口試委員:駱榮富蔡健益張棋榕
口試委員(外文):LOUH, RONG-FUHTSAY, CHIEN-YIECHANG, CHI-JUNG
口試日期:2019-07-24
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:148
中文關鍵詞:電泳自組裝電化學沉積光子晶體氧化錳氧化石墨烯反蛋白石結構超級電容器
外文關鍵詞:polystyrene microsphereselectrophoretic self-assemblyelectrochemical depositionphotonic crystalsManganese dioxidegraphene oxideinverse opal structuresupercapacitors
相關次數:
  • 被引用被引用:0
  • 點閱點閱:209
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
本論文研究重點由以下五個研究步驟組成:(1)以哈默法製備氧化石墨烯(graphene oxide; GO)粉體;(2)利用電泳自組裝(EPSA)將PS微球進行自組裝披覆於ITO玻璃基板,形成PS微球三維光子晶體結構;(3)利用電化學沉積(electrochemical deposition)法製作金屬Ni反蛋白石結構光子晶體;(4)電化學沉積法製作MnO2/Ni電極、MnO2/rGO/Ni電極與MnO2/rGO/Ni-IOS結構電極;(5)分析其MnO2、rGO薄膜組成與MnO2/rGO/Ni電極與MnO2/rGO/Ni-IOS結構電極顯微結構及電化學特性。
藉無乳化聚合法能成功合成各種粒徑之高分散PS微球,以EPSA順利地製作PS微球之三維光子晶體。單純藉由電化學沉積時間能夠自由調控結構厚度的金屬鎳反蛋白石結構(inverse opal structure; IOS)光子晶體。使用定電壓-1.4 V與電沉積時間10 min參數獲得的rGO/Ni-IOS結構電極。使用電沉積電壓0.4 V與電沉積時間3 min參數獲得MnO2/rGO/Ni-IOS結構電極。在充放電電流密度2 A/g條件下,獲得相當優異之比電容值(2,060 F/g)。樣品經由2,000圈循環壽命檢測,保有原始比電容值91%水準。本研究製作的反蛋白石結構光子晶體基材設計為MnO2/rGO/Ni-IOS超級電容器電極材料,將有對後續開發在高性能超級電容器有重大貢獻。

This work is consisted of five experimental procedures including (i) formation of graphene oxide (GO) via Hummers' method, (ii) production of photonic crystals (PhCs) of PS microspheres on the ITO glass substrates via electrophoretic self-assembly (EPSA) route, (iii) development of template-mediated technique to create a nickel inverse opal structure (IOS) via electrochemical deposition (ECD), (iv) MnO2/Ni foam, MnO2/rGO/Ni foam and MnO2/rGO/Ni-IOS samples were prepared by ECD, and (v) sample property analysis of their microstructure structures and electrochemical characteristics.
We successfully fabricated the 3-D PhCs of PS microspheres, which were of various size-distributed and well-dispersed features via emulsifier-free polymerization. Tuning electrochemical deposition time is able to control the thickness of the structure of nickel metal PhCs with invers opal structure. Electrochemical deposition of rGO/Ni-IOS through deposition voltage and deposition time led to the optimal electrochemical characteristics, and then the MnO2/rGO/Ni-IOS structure electrode of supercapacitor sample made by ECD route with constant voltage of 0.4 V and deposition time of 3 min had a rather outstanding specific capacitance of 2,060 F/g under a charging-discharging (CD) test at current density of 2 A/g. The specific capacitance of such a sample can still maintain at 91% level of the original specific capacitance after 2,000 cycles. In this study, we successfully demonstrated that the fabrication of a unique composite of nickel sulfide active media and a highly porous nickel metal media in an inverse opal structure prepared by EPSA and ECD can provide a great contribution for designing novel supercapacitor devices.

致 謝 I
摘 要 II
ABSTRACT III
目 錄 IV
圖 目 錄 VIII
表 目 錄 XIII
第一章 緒 論 1
1.1 研究動機 1
1.2 研究目的與重點 4
第二章 理論基礎 7
2.1 超級電容器 7
2.1.1 擬電容器 8
2.1.2 電雙層電容器 9
2.1.3 混合電容器 11
2.1.4 超電容器電極材料簡介 12
2.2 光子晶體介紹與發展 13
2.2.1 光子晶體簡介 13
2.2.2 光子晶體的結構特性 14
2.2.3 常見光子晶體結構與應用元件 18
2.2.4 光子晶體製成技術簡介 21
2.3 無乳化劑乳液聚合法製備高分子微球 23
2.4 電泳自組裝與電泳披覆 24
2.4.1 電泳自組裝與電泳披覆基礎原理 24
2.4.2 電雙層基礎原理 28
2.4.3 電雙層與DLVO理論 29
2.4.4 電泳披覆影響參數 34
2.5 二氧化錳材料的性質、製備及應用 36
2.5.1 MnO2材料性質 36
2.5.2 MnO2材料的結構 37
2.5.3 合成MnO2文獻回顧 39
2.6石墨烯製程方法簡介 45
2.6.1物理剝離法 49
2.6.2 碳化矽裂解法 50
2.6.3 化學氣相沉積法 53
2.6.4 液相與電化學剝離方法 54
2.6.5 氧化還原法 55
2.7三維石墨烯製備方法 62
2.8 石墨烯奈米粒子複合材料 65
第三章 實驗步驟與方法 67
3.1 實驗藥品與裝置 67
3.2哈默法製備氧化石墨烯粉體(GO) 69
3.3電泳自組裝(EPSA)製備PS蛋白石結構光子晶體 71
3.4電化學法沉積金屬鎳反蛋白石結構光子晶體 72
3.5 電化學法沉積氧化錳於泡沫鎳之電極 75
3.6 電化學法沉積氧化錳於鎳反蛋白石結構光子晶體之電極材料 75
3.7 電化學法沉積氧化錳/還原氧化石墨烯於泡沫鎳之電極 77
3.8 電化學法沉積氧化錳/還原氧化石墨烯於鎳反蛋白石結構光子晶體之電極 78
3.9 分析儀器 79
3.9.1冷場發射掃描式電子顯微鏡 79
3.9.2 拉曼光譜分析儀 80
3.9.3傅立葉轉換紅外光譜儀(FTIR) 81
3.9.4多功能薄膜X光繞射儀 83
3.9.5電化學工作站(Electrochemical Workstation) 83
第四章 結果與討論 85
4.1 製備氧化石墨烯 85
4.1.1氧化石墨烯之光譜分析 85
4.2 電泳自組裝聚苯乙烯微球 88
4.2.1不同水醇比例之膠體溶液對微球自組裝之影響 89
4.2.2 電場強度對微球自組裝之影響 91
4.2.3 電泳時間對微球自組裝之影響 93
4.3 電化學法製備金屬鎳反蛋白石結構 94
4.3.1定電壓對於電沉積鎳反蛋白石結構影響 96
4.3.2 電化學沉積時間對鎳反蛋白石結構厚度之影響 98
4.3.3 電化學沉積鎳反蛋白石結構性質分析 100
4.4 電化學沉積法製備氧化錳薄膜 101
4.4.1 電化學沉積法製備氧化錳電極材料之元素分析 102
4.4.2 電化學沉積法製備氧化錳電極材料之晶相分析 104
4.4.3 電化學沉積法製備氧化錳電極材料之電子能帶分析 105
4.5 電化學沉積法製備氧化錳之電極材料 106
4.5.1 不同定電壓製備氧化錳/泡沫鎳電極之影響 106
4.5.2 不同沉積時間製備氧化錳/泡沫鎳電極之影響 107
4.5.3 氧化錳/泡沫鎳電極之循環伏安測試 108
4.6 電化學沉積法製備還原氧化石墨烯薄膜 111
4.6.1 不同定電壓製備rGO/ITO/PET的拉曼光譜分析 111
4.7 電化學沉積法製備MnO2/rGO電極材料 112
4.7.1 改變不同還原氧化石墨烯鍍液濃度製備MnO2/rGO/Ni-foam電極之影響 112
4.7.2 改變不同還原氧化石墨烯沉積時間製備氧化錳/還原氧化石墨烯/泡沫鎳電極之影響 114
4.7.3 氧化錳/還原氧化石墨烯/泡沫鎳電極之循環伏安測試 116
4.8 電化學法沉積氧化錳/還原氧化石墨烯/金屬鎳反蛋白石之電極 119
4.8.1 改變不同沉積時間製備rGO/Ni反蛋白石結構的顯微結構 119
4.8.2 改變不同rGO沉積時間製備MnO2/rGO/Ni-IOS的顯微結構 121
4.8.3 氧化錳/還原氧化石墨烯/鎳反蛋白石結構電極之循環伏安測試 123
4.8.4 氧化錳/還原氧化石墨烯/鎳反蛋白石結構電極之充放電測試 125
4.9 不同電極之循環壽命測試材料 128
4.10 不同彎曲角度之循環伏安測試 129
4.11 未來研究方向 131
第五章 結 論 135
參考文獻 137
作者簡歷 147




[1] B.E. Conway, Electrochemical Supercapacitors, Kluwer-Plenum, New York (1999) pp.33-65.
[2] R. Kotz and M. Carlen, “Principles and applications of electrochemical capacitors,” Electrochimica Acta, 45 (2000) 2483-2498.
[3] Y. Zhang, H.F., X.B. Wu, L.Z. Wang, A.Q. Zhang, T.C. Xia, H.C. Dong, X.F. Li, and L.S. Zhang, “Progress of electrochemical capacitor electrode materials: A review,” Int. J. Hydrogen Energy, 34 (2009) 4889-4899.
[4] J.P. Zheng, P.J. Cygan, and T.R. Jow, “Hydors Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors,” J. Electrochem Soc, 142 (1995) 2699.
[5] Eli Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett., 58 (1987) 2059-62.
[6] Sajeev John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., 58 (1987) 2486-89.
[7] P. Jiang, K.S. Hwang, “Template-Directed Preparation of Macroporous Polymers with Oriented and Crystalline Arrays of Voids”, Am. Chem. Soc, 121 (1999) 11630-11637.
[8] 楊志忠,“新世紀奈米級光電材料結構,” 物理雙月刊(廿三卷六期, (2001) 647-651.
[9] F. Cuesta, A. Griol, A. Mariinez, J. Marti., “Optical directional couplers based on autocloned photonic crystals,” Electronics Letters, 39 (2003) 53-54.
[10] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science, 284 (1999) 1819-1821.
[11] C.C. Chen, C.Y Chen, W.K. Wang, F.H. Huang, C.K. Lin, W.Y. Chiu, Y.J. Chan, “Photonic crystal directional couplers formed by InAlGaAs nano-rods,” Optics Express, 13 (2005) 38-43.
[12] S.Y. Chou, P.R. Krauss, P.J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science, 272 (1996) 85-87.
[13] SA Rinnie, Garcia-Santamaria F, Braun PV. “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat Photonics., 2 (2008) 52–56.
[14] L.M. Tham, L.Su, L. Cheng and M. Gupta, “Micromechanical Modeling of Processing-induced Damage in Al-SiC Metal Matrix Composites Synthesized Using the Disintegrated Melt Deposition Technique,” Mater. Res. Bull., 34 (1999) 71-79.
[15] J. Chen, Y. Wang, B. Jia, T. Geng, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nature Photonics, 5 (2011) 239-245.
[16] A. Blanco, E. Chomski, S. Grabtchak, etc., “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature, 405 (2000) 437-440.
[17] Q.-B. Meng, Z. Gu, O. Sato, “Fabrication of highly ordered porous structures,” Appl. Phys. Lett., 77 (2000) 4313-15.
[18] Q.B. Meng, C.H. Fu, Y. Einaga, etc., “Assembly of Highly Ordered Three-Dimensional Porous Structure with Nanocrystalline TiO2 Semiconductors,” Chem. Mater., 14 (2002) 83-88.
[19] Z.Z Gu, S. Kubo, A. Fujishima, O. Sato, “Infiltration of colloidal crystal with nanoparticles using capillary forces: a simple technique for the fabrication of films with an ordered porous structure,” Appl. Phys. Lett., 74 (2002) 127-129.
[20] Z.Z. Gu, S. Hayami, S. Kubo, Q.B. Meng, etc., “Fabrication of Structured Porous Film by Electrophoresis,” J. Am. Chem. Soc., 123 (2001) 175-176.
[21] Daniel Scodeler Raimundo, Walter Jaimes Salcedo, “2-D and 3-D photonic crystal fabrication by self-assembling of polystyrene micro-spheres,” Phys. Status. Solid C, 1 (2004) 62-65.
[22] S. Kubo, Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable Photonic Band Gap Crystals Based on a Liquid Crystal-Infiltrated Inverse Opal Structure,” J. Am. Chem. Soc., 126 (2004) 8314-8319.
[23] G. Subramanian, V. N. Manoharan, J. D. Thorne, D. J. Pine, “Ordered Macroporous Materials by Colloidal Assembly: A Possible Route to Photonic Bandgap Materials,” Advanced Materials, 11 (1999) 1261-1265.
[24] BT Holland, CF Blanford, A Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science, 281 (1998) 538-540.
[25] BT. Holland, CF. Blanford, T. Do, A. Stein, “Synthesis of Highly Ordered, Three-Dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides, Phosphates, and Hybrid Composites,” Chem. Mater., 11 (1999) 795-805.
[26] H. Yan, CF. Blanford, BT. Holland, M. Parent, WH. Smyrl, A. Stein, “Chemical synthesis of periodic macroporous NiO and metallic Ni,” Chem. Mater., 11 (1999) 1003-1006.
[27] H. Yan, CF. Blanford, BT. Holland, WH. Smyrl, A. Stein, “General Synthesis of Periodic Macroporous Solids by Templated Salt Precipitation and Chemical Conversion,” Chem. Mater., 12 (2000) 1034-1141.
[28] O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, “Microstructured Porous Silica Obtained via Colloidal Crystal Templates,” Chem. Mater., 10 (1998) 3597-3602.
[29]J.E.G.J. Wijnhoven and W.L. Vos, “Preparation of Photonic Crystals Made of Air Spheres in Titania,” Science, 281 (1998) 802-804.
[30] A.S. Dimitrov, “Observations of Latex Particle Two-Dimensional Crystal Nucleation in Wetting Films on Mercury, Glass, and Mica,” Langmuir, 10 (1994) 432-440.
[31]A.S. Dimitrov, T. Miwa, and H. Yoshimura, “A Comparison between the Optical Properties of Amorphous and Crystalline Monolayers of Silica Particles,” Langmuir, 15 (1999) 5257-5264.
[32] Q.B. Meng, Z.Z. Gu, and O. Sato, “Fabrication of Highly Ordered Porous Structures,” Appl. Phys. Lett., 77 (2000) 4313-4315.
[33] M. Holgado, F.G. Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C.J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. López, “Electrophoretic Deposition To Control Artificial Opal Growth,” Langmuir, 15 (1999) 4701-4704.
[34] Y.A. Vlasov, X.Z. Bo, J.C. Sturm, and D.J. Norris, “On-chip Natural Assembly of Silicon Photonic Bandgap Crystals,” Nature, 414 (2001)289-293.
[35] H. Míguez, E. Chomski, F.G. Santamaría, M. Ibisate, S. John, C. López, F. Meseguer, J.P. Mondia, G.A. Ozin, O. Toader, and H.M.V. Driel, “Photonic Bandgap Engineering in Germanium Inverse Opals by Chemical Vapor Deposition,” Adv. Mater., 13 (2001) 1634-1637.
[36] A.V. Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed Colloidal Crystallization,” Nature, 385 (1997) 321-324.
[37] A.S. Dimitrov and K. Nagayama, “Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces,” Langmuir, 12 (1996) 1303-1311.
[38] Q. Zhou, P. Dong, and B. Cheng, “Progress in Three-Dimensionally Ordered Self-assembly of Colloidal SiO2 Particles,” China Particuology, 1 (2003) 124-130.
[39] Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed Colloidal Spheres: Old Materials with New Applications,” Adv. Mater., 12 (2000) 693-713.
[40] A. Foissy and G. Robert, “Electrophoretic Forming of Beta- Alumina from Dichloromethane Suspensions,” Am. Ceram. Soc. Bull., 61 (1982) 251-255.
[41] R.F. Louh, Eric Huang, “Electrophoretic Self-Assembly of Silica Microspheres for 3-D Photonic Crystals,” 逢甲大學材料科學與工程學系碩士論文, (2008).
[42] T. Alfrey, E.B. Bradford, and J.W. Vanderhoff, “Optical properties of uniform particle-size latexes,” J. Opt. Soc. Am., 44 (1954) 603-609.
[43] H. Yoshimura, M. Matsumoto, S. Endo, and K. Nagayama, “Two-dimensional Crystallization of Proteins on Mercury,” Ultramicroscopy, 32 (1990) 265-274.
[44] S. Hayashi, Y. Kumanoto, T. Suzuki, and T. Hirai, “Imaging by polystyrene latex particles,” J. Colloid interface Sci., 144 (1991) 538- 547.
[45] R. Mayoral, J. Requena, C. Lopez, A. Cintas, H. Miguez, “3D long-range ordering in an SiO2 ubmicrometer-sphere sintered superstructure,” Adv Mater, 9 (1997) 257-60.
[46] P. Sarkar and P.S. Nicholson, “Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics,” J. the Am. Ceram. Soc., 79 (1996) 1987-2002.
[47] 張有義, 郭蘭生編著, D.J. Shaw原著, “Introduction to Colloid and Surface Chemistry,”高立圖書有限公司, (2004).
[48] D. Myers, “Surfaces, Interfaces, and Colloids: Principles and Applications,” 2nd Ed., Wiley, City New York, 2 (1999) 231-232.
[49] 北原文雄,谷澤邦夫,尾崎正孝,大島廣行, “ゼ- タ電位-微粒子界面の物理化学,” (1995) pp.27-30.
[50] M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning and A.J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature, 404 (2000) 53-56.
[51]S.L. Kuo and N.L. Wu, “Investigation of Pseudocapacitive Charge-Storage Reaction of MnO2•H2O Supercapacitors in Aqueous Electrolytes”, J. Electrochem. Soc., 153 (2006) 1317-1314
[52]P. Ragupathy, H.N. Vasan, N. Munichandraiah, “Synthesis and characterization of nano-MnO2 for electrochemical supercapacitor studies,” J. Electrochem. Soc., 155 (2008) 34-40.
[53]L. Mao, T. Sotomura, K. Nakatsu, N. Koshiba, D. Zhang, T. Ohsaka, “Electrochemical characterization of catalytic activities of manganese oxides to oxygen reduction in alkaline aqueous solution,” J. Electrochem. Soc., 149 (2002) 504-507.
[54]B.D. McCloskey, R. Scheffler, A. Speidel, D.S. Bethune, R.M. Shelby, A.C. Luntz, “On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries,” J. Amer. Chem. Soc., 133 (2011)18038-41.
[55]X. Lang, A. Hirata, T. Fujita, M. Chen, “Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors,” Nature nanotechnology, 6 (2011) 232-236.
[56]F. Cheng, Y. Su, J. Liang, Z. Tao, “MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media,” Chemical Materials, 22 (2010) 898–905.
[57]T. Bordjiba, D. Bélanger, “Hydrothermal synthesis and electrochemical characterizationof α-MnO2 nanorods as cathode material for lithium batteries,” Int. J. Electrochem. Sci., 156 (2009) 378-384.
[58]S.L. Chou, J.Z. Wang, S.Y. Chew, H.K. Liu, S.X. Dou, “Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors,” Electrochem. Comm., 10 (2008) 1724-1727.
[59]T. Yousefi, A.N. Golikand, M.H. Mashhadizadeh, “Template-free synthesis of MnO2 nanowires with secondary flower like structure: Characterization and supercapacitor behavior studies,” Current Applied Physics, 12 (2012) 193-198.
[60]T. Yousefi, A.N. Golikand, M.H. Mashhadizadeh, “Facile synthesis of α-MnO2 one-dimensional (1D) nanostructure and energy storage ability studies,” J. Solid State Chem., 190 (2012) 202-207.
[61]M. Kundu, L. Liu, “Direct growth of mesoporous MnO2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors,” J. Power Sources, 243 (2013)676-681.
[62]D. Zhao, Z. Yang, L. Zhang, X. Feng, Y. Zhang, “Electrodeposited manganese oxide on nickel foam–supported carbon nanotubes for electrode of supercapacitors,” Electrochem. Solid-State Lett., 14 (2011) 93-96.
[63]S. Hassan, M. Suzuki, A.A. El-Moneim, “Synthesis of MnO2-chitosan nanocomposite by one-step electrodeposition for electrochemical energy storage application,” J. Power Sources, 246 (2014) 68-73.
[64]Y.Q. Zhao, D.D. Zhao, P.Y. Tang, Y.M. Wang, C.L. Xu, H.L. Li, “MnO2/graphene/nickel foam composite as high performance supercapacitor electrode via a facile electrochemical deposition strategy,” Mater. Lett., 76 (2012) 127-130.
[65]D.P. Dubala, D.S. Dhawalea, T.P. Gujarb, C.D. Lokhandea, “Effect of different modes of electrodeposition on supercapacitive properties of MnO2 thin films,” Appl. Surf. Sci., 257 (2011) 3378-3372.
[66]P.R. Jadhav, M.P. Suryawanshi, D.S. Dalavi, D.S. Patil, E.A. Jo, S.S. Kolekar, A.A. Wali, M.M. Karanjkar, J.H. Kim, P.S. Patil, “Design and electro-synthesis of 3-D nanofibers of MnO2 thin films and their application in high performance supercapacitor,” Electrochim. Acta, 176 (2015) 523-532.
[67]G.A. Ali, M.M. Yusoff, Y.H. Ng, H.N. Lim, K.F. Chong, “Potentiostatic and galvanostatic electrodeposition of manganese oxide for supercapacitor application: A comparison study,” Current Applied Physics, 15 (2015) 1143-1147.
[68]Z. Zeng, H. Zhou, X. Long, E. Guo, X. Wang, “Electrodeposition of hierarchical manganese oxide on metal nanoparticlesdecorated nanoporous gold with enhanced supercapacitor performance, Journal of Alloys and Compounds,” J. Alloys Compd., 632 (2015) 376-385.
[69]F.A. Lindemann, “The calculation of molecular vibration frequencies,” Z Phys, 11 (1910) 609-612.
[70]A.K. Geim, K.S. Novoselov, “The rise of graphene,” Nature Materials, 6 (2007) 183-191.
[71]K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun, 146 (2008) 351-355.
[72]C. Lee, X. Wei, J.W. Kysar, “Measurement of the elastic properties andintrinsic strength of monolayer graphene,” Science, 321 (2008) 385-388.
[73]A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett, 8 (2008) 902-907.
[74]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, “Electric field effect in atomically thin carbon films,” Science, 306 (2004) 666-669.
[75]Y. Zhang, J.P. Small, W.V. Pontius, P. Kim, “Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices,” Applied Physics Letters, 86 (2005) 1-3.
[76] P. Sutter, “How silicon leaves the scene,” Nature Materials, 8 (2009) 171-172.
[77]D.S. Lee, C. Riedl, B. Krauss, K. von Klitzing, U. Starke, J.H. Smet, “Ramanspectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2,” Nano Lett, 8 (2008) 4320-4325.
[78] R.C. Johnson, “Graphene wafers ready to fab carbon chips,” EE Times, (2010).
[79]吳至彧, “利用化學氣相沉積法合成數層石墨烯以及其透明導電薄膜之研究”,清華大學碩士論文(2009) pp.14-25.
[80]莊鎮宇, “石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展”,物理雙月刊, 33 (2011) pp.155-162.
[81]C.Y. Su, A.Y. Lu, Y.P. Xu, F.R. Chen, A.N. Khlobystov, L.J. Li, “High-quality thin graphene films from fast electrochemical exfoliation,” ACS Nano, 5 (2011) 2332-2339.
[82]L. Staudenmaier, “Verfahren zur Darstellung der Graphitsaure,” Ber. Dtsch. Chem, 31 (1898) 1481-1487.
[83]W.S. Hummer, R.E. Offeman, J. Am. Chem, “Preparation of Graphitic Oxide,” Soc, 80 (1958) 1339-42.
[84]C.Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.H. Tsai, and L.J. Li, “Electrical and Spectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers,” Chem. Mater, 21 (2009) 5674-5680.
[85]蘇清源, “石墨烯量產技術與產業應用”,光連雙月刊, No.108 (2013) pp.61-25.
[86]D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nature Nanotechnology, 3 (2008) 101-105.
[87]U. Kosidlo, M.A.R. de Larramendi, F. Tonner, H.J. Park,C. Glanz, V. Skakalova, S. Roth, and I. Kolaric, “Production methods of graphene and resulting material properties,” Poster appeared in the 7th Nano Europe Symposium, 70182 (2009) 1.
[88]A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, and V.B. Shenoy, “Structural evolution during the reduction of chemically derived graphene oxide,” Nature Chemistry, 2 (2010) 581-587.
[89]Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, “Supercapacitor Devices Based on Graphene Materials,” J. Phys. Chem, 113 (2009) 13103-07.
[90]S. Park, J. An, I. Jung, R.D. Piner, S.J. An, X. Li, A. Velamakanni, and R.S. Ruoff, “Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents,” Nano Lett, 9 (2009) 1593-1597.
[91]W.B. Wan, Z.B. Zhao, H. Hu, Q. Zhou, Y.R. Fan , and J.S. Qiu, “Green reduction of graphene oxide to graphene by sodium citrate,” New Carbon Mater, 26 (2011) 16-20.
[92]Y. Li, W. Gao, L. Ci, C. Wang, and P.M. Ajayan, “Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation,” Carbon, 48 (2010) 1124-1130.
[93]W. Yuan, B. Li, and L. Li, “A green synthetic approach to graphene nanosheets for hydrogen adsorption,” Applied Surface Science, 257 (2011) 10183-87.
[94]A.B. Bourlinos, D. Gournis, D. Petridis, T. Szabo, A. Szeri, and I. Dekany, “Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids,” Langmuir, 19 (2003) 6050-6055.
[95]J.I. Paredes, S. Villar-Rodil, M.J. Fernandez-Merino, L. Guardia, A. Martinez-Alonso, and J.M.D. Tascon, “Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide,” J. Mater. Chem, 21 (2011) 298-306.
[96]S. Pei, J. Zhao, J. Du, W. Ren, and H.M. Cheng, “Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids,” Carbon, 48 (2010) 4466-4474.
[97]Z.S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, and H.M. Cheng, “Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation,” ACS Nano, 3 (2009) 411-417.
[98]Z.S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, and H.M. Cheng, “Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation,” ACS Nano, 3 (2009) 411-417.
[99]Z.H. Sheng, L. Shao, J.J. Chen, W.J. Bao, F.B. Wang, and X.H. Xia, “Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis,” ACS Nano, 5 (2011) 4350-4358.
[100] C.M. Chen, Y.G. Yang, Y.F. Wen, Q.H. Yang, and M.Z. Wang, “有序石墨烯導電炭薄膜的製備,” New Carbon Materials, 23 (2008) 345-350.
[101] H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors,” ACS Nano, 2 (2008) 463-470.
[102] H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'homme, R. Car, D.A. Saville , and I.A. Aksay, “Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide,” J. Phys. Chem, 110 (2006) 8535-8539.
[103] Z. Gonzalez, C. Botas, P. Alvarez, S. Roldan, C. Blanco, R. Santamarıa, M. Granda, and R. Menendez, “Thermally reduced graphite oxide as positive electrode in Vanadium Redox Flow Batteries,” Carbon, 50 (2012) 882-834.
[104] P. Steurer, R. Wissert, R. Thomann, and R. Mulhaupt, “Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide,” Macromolecular Rapid Communications, 30 (2009) 316-327.
[105] Y.Z. Liu, Y.F. Li, Y.G. Yang, Y.F. Wen, and M.Z. Wang, “The effect of thermal treatment at low temperatures on graphene oxide films,” New Carbon Material, 26 (2011) 41-45.
[106] X. Mei, X. Meng,F. Wu, “Hydrothermal method for the production of reduced graphene oxide,“ Physica E: Low-dimensional Systems and Nanostructures, 68 (2015) 81-86.
[107] T. Fan, W. Zeng, Q. Niu, S. Tong, K.Cai, Y. Liu, W. Huang, Y. Minnd, A.J. Epstein, “Fabrication of high-quality graphene oxide nanoscrolls and application in supercapacitor,” Nanoscale Research Letters, 10 (2015) 192-194.
[108] B.G. Choi, M. Yang, W.H. Hong, J.W. Choi, Y.S. Huh, “3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities,” ACS Nano, 6 (2015) 4020-4028.
[109] X. Huang, X. Qi, F. Boey, H. Zhang, “Graphene-based composites,“ RSC, 41 (2012) 666-686 .
[110] J. Huang, L. Zhang, B. Chen, N. Ji, F. Chen, Y. Zhang and Z. Zhang , “Nanocomposites of size-controlled gold nanoparticles and graphene oxide: Formation and applications in SERS and catalysis,” RSC, 2 (2010) 2733-2738.
[111] M. Usman, L. Pan, A. Sohail, Z. Mahmood, R. Cui, “Fabrication of 3D vertically aligned silver nanoplates on nickel foam-graphene substrate by a novel electrodeposition with sonication for efficient supercapacitors,“ Chemical Engineering Journal, 311 (2017) 359-366.
[112] S. Woo, J. Lee, S.K. Park, H. Kim, T.D. Chung, Y. Piao, “Electrochemical codeposition of Pt/graphene catalyst for improved methanol oxidation,” Current Applied Physics, 15 (2015) 219-225.
[113] A.H.Al. Marri, M. Khan, M.R. Shaik, N. Mohri, S.F. Adil, M. Kuniyil, H.Z. Alkhathlan, A.l. Al-Warthan, W. Tremel, M.N. Tahir, M. Khan, M.R.H. Siddiqui, “Green synthesis of Pd@graphene nanocomposite: Catalyst for the selective oxidation of alcohols,” Arabian Journal of Chemistry, 9 (2016) 835-845.
[114] W. Yang, Z. Gao, J. Wang, B. Wang, L. Liu, “Hydrothermal synthesis of reduced graphene sheets/Fe2O3 nanorods composites and their enhanced electrochemical performance for supercapacitors,” Solid State Sciences, 20 (2013) 46-53.
[115] F. He, J. Fan, D. Ma, L. Zhang, C. Leung, and H.L. Chan, “The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding ,“ Carbon, 48 (2010) 3139-3144.
[116] D. Choi, H. Park, J.H. Lim, T.H. Han, J.Park, “Three-dimensionally stacked Al2O3/graphene oxide for gas barrier applications,“ Carbon, 125 (2017) 464-471.
[117] V. Velmurugan, U. Srinivasarao, R. Ramachandran, M. Saranya, A.N. Grace, “Synthesis of tin oxide/graphene(SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications,“ Materials Research Bulletin, 84 (2016) 145-151.
[118] Xu Hui, L. Qian, G. Harris, T. Wang, J. Che, “Fast fabrication of NiO@graphene composites for supercapacitor electrodes: Combination of reduction and deposition,“ Materials & Design, 105 (2016) 242-250.
[119] A.E. Rashed, A.A. El-Moneim, “Two steps synthesis approach of MnO2/graphene nanoplates/graphite composite electrode for supercapacitor application,“ Materialstoday Energy, 3 (2017) 24-31.
[120] X. Zhang, Y. Sun, X. Cui, Z. Jiang, “A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution,“ International Journal of Hydrogen Energy, 37 (2012) 811-815.
[121] E.R. Ezeigwe, M.T.T. Tan, P.S. Khiew, C.W. Siong, “One-step green synthesis of graphene/ZnO nanocomposites for electrochemical capacitors,“ Ceramics International, 41 (2015) 715-724.
[122] A. Wang, X. Li, Y. Zhao, W. Wu, J. Chen, H. Meng, “Preparation and characterizations of Cu2O/reduced graphene oxide nanocomposites with high photo-catalytic performances,“ Powder Technology, 261 (2014) 42-48.
[123] M.K. Ghimire, H.Z. Gul, H. Yi, D.X. Dang, W.K. Sakong, N.V. Luan, H.J. Ji, S.Chu Lim, “Graphene-CdSe quantum dot hybrid as a platform for the control of carrier temperature,“ FlatChem, 6 (2017) 77-82.
[124] M.E. Khan, M.M. Khan, M.H. Cho, “CdS-graphene Nanocomposite for Efficient Visible-light-driven Photocatalytic and Photoelectrochemical Applications,“ Journal of Colloid and Interface Science, 484 (2016) 211-232.
[125] S. Pan, Xi. Liu, “ZnS–Graphene nanocomposite: Synthesis, characterization and optical properties“ Journal of Solid State Chemistry, 191 (2012) 51-56.
[126] A.C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Communications, 143 (2007) 47-57.
[127] H.J. Keh and J.L. Anderson, “Boundary Effects on Electrophoretic Motion of Colloidal Spheres,” J. of Fluid Mechanics, 153 (1985) 417-439.
[128] J. Ennis and J.L. Anderson, “Boundary Effects on Electrophoretic Motion of Spherical Particles for Thick Double Layers and Low Zeta Potential,” J. of Colloid and Interface Sci., 185 (1997) 497-514.
[129] 黃苡叡, “膠體晶體與反蛋白石結構之製作及工程應用,” 交通大學材料科學與工程學系, 博士論文, (2010).
[130] K.G. Young and S.H. Dong, “Effects of Liquid Bridge between Colloidal Spheres and Evaporation Temperature on Fabrication of Colloidal Multilayers,” J. Phys. Chem. B, 111 (2007) 1545-1551.
[131] K.W. Nam, W.S. Yoon, and K.B. Kim, “X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors,”Electrochim. Acta, 47 (2002) 3201-3211.
[132] Lu Peng, Xiao Ji, Houzhao Wan, etc., “Nickel Sulfide Nanoparticles Synthesized by Microwave-assisted Method as Promisiing Supercapacitor Electrodes: An Experimental and Computational Study,” Electrochimica Acta, 182 (2015) 361-367.
[133] Sahay, P. P., and Ajay Kumar Kushwaha. "Electrochemical supercapacitive performance of potentiostatically cathodic electrodeposited nanostructured MnO 2 films." Journal of Solid State Electrochemistry, 21.8 (2017) 2393-2405.
[134] Xia, Hui, et al. "Hierarchically structured Co3O4@Pt@MnO2 nanowire arrays for high-performance supercapacitors." Scientific reports, 3 (2013) 2978-82.
[135] Zhu, Tao, et al. "Effect of low magnetic fields on the morphology and electrochemical properties of MnO2 films on nickel foams." Journal of Alloys and Compounds, 644 (2015) 186-192.
[136] Zhao, Yong-Qing, et al. "MnO2/graphene/nickel foam composite as high performance supercapacitor electrode via a facile electrochemical deposition strategy." Materials Letters, 76 (2012) 127-130.
[137] Ali, Gomaa AM, et al. "Potentiostatic and galvanostatic electrodeposition of manganese oxide for supercapacitor application: A comparison study." Current Applied Physics, 15.10 (2015) 1143-1147.
[138] Chai, Yaqiong, et al. "Construction of hierarchical holey graphene/MnO2 composites as potential electrode materials for supercapacitors." Journal of Alloys and Compounds, 775 (2019) 1206-1212.
[139] Zhang, Qian, et al. "One-step hydrothermal synthesis of MnO2/graphene composite for electrochemical energy storage." Journal of Electroanalytical Chemistry, 837 (2019) 108-115.
[140] Liu, Jia-Qin, et al. "Hydrothermal synthesis of well-standing δ-MnO2 nanoplatelets on
電子全文 電子全文(全文開放日期20240901,本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊