[1] B.E. Conway, Electrochemical Supercapacitors, Kluwer-Plenum, New York (1999) pp.33-65.
[2] R. Kotz and M. Carlen, “Principles and applications of electrochemical capacitors,” Electrochimica Acta, 45 (2000) 2483-2498.
[3] Y. Zhang, H.F., X.B. Wu, L.Z. Wang, A.Q. Zhang, T.C. Xia, H.C. Dong, X.F. Li, and L.S. Zhang, “Progress of electrochemical capacitor electrode materials: A review,” Int. J. Hydrogen Energy, 34 (2009) 4889-4899.
[4] J.P. Zheng, P.J. Cygan, and T.R. Jow, “Hydors Ruthenium Oxide as an Electrode Material for Electrochemical Capacitors,” J. Electrochem Soc, 142 (1995) 2699.
[5] Eli Yablonovitch, “Inhibited Spontaneous Emission in Solid-State Physics and Electronics,” Phys. Rev. Lett., 58 (1987) 2059-62.
[6] Sajeev John, “Strong localization of photons in certain disordered dielectric superlattices,” Phys. Rev. Lett., 58 (1987) 2486-89.
[7] P. Jiang, K.S. Hwang, “Template-Directed Preparation of Macroporous Polymers with Oriented and Crystalline Arrays of Voids”, Am. Chem. Soc, 121 (1999) 11630-11637.
[8] 楊志忠,“新世紀奈米級光電材料結構,” 物理雙月刊(廿三卷六期, (2001) 647-651.
[9] F. Cuesta, A. Griol, A. Mariinez, J. Marti., “Optical directional couplers based on autocloned photonic crystals,” Electronics Letters, 39 (2003) 53-54.
[10] O. Painter, R. K. Lee, A. Scherer, A. Yariv, J. D. O’Brien, P. D. Dapkus, I. Kim, “Two-Dimensional Photonic Band-Gap Defect Mode Laser,” Science, 284 (1999) 1819-1821.
[11] C.C. Chen, C.Y Chen, W.K. Wang, F.H. Huang, C.K. Lin, W.Y. Chiu, Y.J. Chan, “Photonic crystal directional couplers formed by InAlGaAs nano-rods,” Optics Express, 13 (2005) 38-43.
[12] S.Y. Chou, P.R. Krauss, P.J. Renstrom, “Imprint lithography with 25-nanometer resolution,” Science, 272 (1996) 85-87.
[13] SA Rinnie, Garcia-Santamaria F, Braun PV. “Embedded cavities and waveguides in three-dimensional silicon photonic crystals,” Nat Photonics., 2 (2008) 52–56.
[14] L.M. Tham, L.Su, L. Cheng and M. Gupta, “Micromechanical Modeling of Processing-induced Damage in Al-SiC Metal Matrix Composites Synthesized Using the Disintegrated Melt Deposition Technique,” Mater. Res. Bull., 34 (1999) 71-79.
[15] J. Chen, Y. Wang, B. Jia, T. Geng, “Observation of the inverse Doppler effect in negative-index materials at optical frequencies,” Nature Photonics, 5 (2011) 239-245.
[16] A. Blanco, E. Chomski, S. Grabtchak, etc., “Large-scale synthesis of a silicon photonic crystal with a complete three-dimensional bandgap near 1.5 micrometres,” Nature, 405 (2000) 437-440.
[17] Q.-B. Meng, Z. Gu, O. Sato, “Fabrication of highly ordered porous structures,” Appl. Phys. Lett., 77 (2000) 4313-15.
[18] Q.B. Meng, C.H. Fu, Y. Einaga, etc., “Assembly of Highly Ordered Three-Dimensional Porous Structure with Nanocrystalline TiO2 Semiconductors,” Chem. Mater., 14 (2002) 83-88.
[19] Z.Z Gu, S. Kubo, A. Fujishima, O. Sato, “Infiltration of colloidal crystal with nanoparticles using capillary forces: a simple technique for the fabrication of films with an ordered porous structure,” Appl. Phys. Lett., 74 (2002) 127-129.
[20] Z.Z. Gu, S. Hayami, S. Kubo, Q.B. Meng, etc., “Fabrication of Structured Porous Film by Electrophoresis,” J. Am. Chem. Soc., 123 (2001) 175-176.
[21] Daniel Scodeler Raimundo, Walter Jaimes Salcedo, “2-D and 3-D photonic crystal fabrication by self-assembling of polystyrene micro-spheres,” Phys. Status. Solid C, 1 (2004) 62-65.
[22] S. Kubo, Z. Gu, K. Takahashi, A. Fujishima, H. Segawa, and O. Sato, “Tunable Photonic Band Gap Crystals Based on a Liquid Crystal-Infiltrated Inverse Opal Structure,” J. Am. Chem. Soc., 126 (2004) 8314-8319.
[23] G. Subramanian, V. N. Manoharan, J. D. Thorne, D. J. Pine, “Ordered Macroporous Materials by Colloidal Assembly: A Possible Route to Photonic Bandgap Materials,” Advanced Materials, 11 (1999) 1261-1265.
[24] BT Holland, CF Blanford, A Stein, “Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids,” Science, 281 (1998) 538-540.
[25] BT. Holland, CF. Blanford, T. Do, A. Stein, “Synthesis of Highly Ordered, Three-Dimensional, Macroporous Structures of Amorphous or Crystalline Inorganic Oxides, Phosphates, and Hybrid Composites,” Chem. Mater., 11 (1999) 795-805.
[26] H. Yan, CF. Blanford, BT. Holland, M. Parent, WH. Smyrl, A. Stein, “Chemical synthesis of periodic macroporous NiO and metallic Ni,” Chem. Mater., 11 (1999) 1003-1006.
[27] H. Yan, CF. Blanford, BT. Holland, WH. Smyrl, A. Stein, “General Synthesis of Periodic Macroporous Solids by Templated Salt Precipitation and Chemical Conversion,” Chem. Mater., 12 (2000) 1034-1141.
[28] O. D. Velev, T. A. Jede, R. F. Lobo, and A. M. Lenhoff, “Microstructured Porous Silica Obtained via Colloidal Crystal Templates,” Chem. Mater., 10 (1998) 3597-3602.
[29]J.E.G.J. Wijnhoven and W.L. Vos, “Preparation of Photonic Crystals Made of Air Spheres in Titania,” Science, 281 (1998) 802-804.
[30] A.S. Dimitrov, “Observations of Latex Particle Two-Dimensional Crystal Nucleation in Wetting Films on Mercury, Glass, and Mica,” Langmuir, 10 (1994) 432-440.
[31]A.S. Dimitrov, T. Miwa, and H. Yoshimura, “A Comparison between the Optical Properties of Amorphous and Crystalline Monolayers of Silica Particles,” Langmuir, 15 (1999) 5257-5264.
[32] Q.B. Meng, Z.Z. Gu, and O. Sato, “Fabrication of Highly Ordered Porous Structures,” Appl. Phys. Lett., 77 (2000) 4313-4315.
[33] M. Holgado, F.G. Santamaría, A. Blanco, M. Ibisate, A. Cintas, H. Míguez, C.J. Serna, C. Molpeceres, J. Requena, A. Mifsud, F. Meseguer, and C. López, “Electrophoretic Deposition To Control Artificial Opal Growth,” Langmuir, 15 (1999) 4701-4704.
[34] Y.A. Vlasov, X.Z. Bo, J.C. Sturm, and D.J. Norris, “On-chip Natural Assembly of Silicon Photonic Bandgap Crystals,” Nature, 414 (2001)289-293.
[35] H. Míguez, E. Chomski, F.G. Santamaría, M. Ibisate, S. John, C. López, F. Meseguer, J.P. Mondia, G.A. Ozin, O. Toader, and H.M.V. Driel, “Photonic Bandgap Engineering in Germanium Inverse Opals by Chemical Vapor Deposition,” Adv. Mater., 13 (2001) 1634-1637.
[36] A.V. Blaaderen, R. Ruel, and P. Wiltzius, “Template-directed Colloidal Crystallization,” Nature, 385 (1997) 321-324.
[37] A.S. Dimitrov and K. Nagayama, “Continuous Convective Assembling of Fine Particles into Two-Dimensional Arrays on Solid Surfaces,” Langmuir, 12 (1996) 1303-1311.
[38] Q. Zhou, P. Dong, and B. Cheng, “Progress in Three-Dimensionally Ordered Self-assembly of Colloidal SiO2 Particles,” China Particuology, 1 (2003) 124-130.
[39] Y. Xia, B. Gates, Y. Yin, and Y. Lu, “Monodispersed Colloidal Spheres: Old Materials with New Applications,” Adv. Mater., 12 (2000) 693-713.
[40] A. Foissy and G. Robert, “Electrophoretic Forming of Beta- Alumina from Dichloromethane Suspensions,” Am. Ceram. Soc. Bull., 61 (1982) 251-255.
[41] R.F. Louh, Eric Huang, “Electrophoretic Self-Assembly of Silica Microspheres for 3-D Photonic Crystals,” 逢甲大學材料科學與工程學系碩士論文, (2008).
[42] T. Alfrey, E.B. Bradford, and J.W. Vanderhoff, “Optical properties of uniform particle-size latexes,” J. Opt. Soc. Am., 44 (1954) 603-609.
[43] H. Yoshimura, M. Matsumoto, S. Endo, and K. Nagayama, “Two-dimensional Crystallization of Proteins on Mercury,” Ultramicroscopy, 32 (1990) 265-274.
[44] S. Hayashi, Y. Kumanoto, T. Suzuki, and T. Hirai, “Imaging by polystyrene latex particles,” J. Colloid interface Sci., 144 (1991) 538- 547.
[45] R. Mayoral, J. Requena, C. Lopez, A. Cintas, H. Miguez, “3D long-range ordering in an SiO2 ubmicrometer-sphere sintered superstructure,” Adv Mater, 9 (1997) 257-60.
[46] P. Sarkar and P.S. Nicholson, “Electrophoretic Deposition (EPD): Mechanisms, Kinetics, and Application to Ceramics,” J. the Am. Ceram. Soc., 79 (1996) 1987-2002.
[47] 張有義, 郭蘭生編著, D.J. Shaw原著, “Introduction to Colloid and Surface Chemistry,”高立圖書有限公司, (2004).
[48] D. Myers, “Surfaces, Interfaces, and Colloids: Principles and Applications,” 2nd Ed., Wiley, City New York, 2 (1999) 231-232.
[49] 北原文雄,谷澤邦夫,尾崎正孝,大島廣行, “ゼ- タ電位-微粒子界面の物理化学,” (1995) pp.27-30.
[50] M. Campbell, D.N. Sharp, M.T. Harrison, R.G. Denning and A.J. Turberfield, “Fabrication of photonic crystals for the visible spectrum by holographic lithography,” Nature, 404 (2000) 53-56.
[51]S.L. Kuo and N.L. Wu, “Investigation of Pseudocapacitive Charge-Storage Reaction of MnO2•H2O Supercapacitors in Aqueous Electrolytes”, J. Electrochem. Soc., 153 (2006) 1317-1314
[52]P. Ragupathy, H.N. Vasan, N. Munichandraiah, “Synthesis and characterization of nano-MnO2 for electrochemical supercapacitor studies,” J. Electrochem. Soc., 155 (2008) 34-40.
[53]L. Mao, T. Sotomura, K. Nakatsu, N. Koshiba, D. Zhang, T. Ohsaka, “Electrochemical characterization of catalytic activities of manganese oxides to oxygen reduction in alkaline aqueous solution,” J. Electrochem. Soc., 149 (2002) 504-507.
[54]B.D. McCloskey, R. Scheffler, A. Speidel, D.S. Bethune, R.M. Shelby, A.C. Luntz, “On the efficacy of electrocatalysis in nonaqueous Li–O2 batteries,” J. Amer. Chem. Soc., 133 (2011)18038-41.
[55]X. Lang, A. Hirata, T. Fujita, M. Chen, “Nanoporous metal/oxide hybrid electrodes for electrochemical supercapacitors,” Nature nanotechnology, 6 (2011) 232-236.
[56]F. Cheng, Y. Su, J. Liang, Z. Tao, “MnO2-based nanostructures as catalysts for electrochemical oxygen reduction in alkaline media,” Chemical Materials, 22 (2010) 898–905.
[57]T. Bordjiba, D. Bélanger, “Hydrothermal synthesis and electrochemical characterizationof α-MnO2 nanorods as cathode material for lithium batteries,” Int. J. Electrochem. Sci., 156 (2009) 378-384.
[58]S.L. Chou, J.Z. Wang, S.Y. Chew, H.K. Liu, S.X. Dou, “Electrodeposition of MnO2 nanowires on carbon nanotube paper as free-standing, flexible electrode for supercapacitors,” Electrochem. Comm., 10 (2008) 1724-1727.
[59]T. Yousefi, A.N. Golikand, M.H. Mashhadizadeh, “Template-free synthesis of MnO2 nanowires with secondary flower like structure: Characterization and supercapacitor behavior studies,” Current Applied Physics, 12 (2012) 193-198.
[60]T. Yousefi, A.N. Golikand, M.H. Mashhadizadeh, “Facile synthesis of α-MnO2 one-dimensional (1D) nanostructure and energy storage ability studies,” J. Solid State Chem., 190 (2012) 202-207.
[61]M. Kundu, L. Liu, “Direct growth of mesoporous MnO2 nanosheet arrays on nickel foam current collectors for high-performance pseudocapacitors,” J. Power Sources, 243 (2013)676-681.
[62]D. Zhao, Z. Yang, L. Zhang, X. Feng, Y. Zhang, “Electrodeposited manganese oxide on nickel foam–supported carbon nanotubes for electrode of supercapacitors,” Electrochem. Solid-State Lett., 14 (2011) 93-96.
[63]S. Hassan, M. Suzuki, A.A. El-Moneim, “Synthesis of MnO2-chitosan nanocomposite by one-step electrodeposition for electrochemical energy storage application,” J. Power Sources, 246 (2014) 68-73.
[64]Y.Q. Zhao, D.D. Zhao, P.Y. Tang, Y.M. Wang, C.L. Xu, H.L. Li, “MnO2/graphene/nickel foam composite as high performance supercapacitor electrode via a facile electrochemical deposition strategy,” Mater. Lett., 76 (2012) 127-130.
[65]D.P. Dubala, D.S. Dhawalea, T.P. Gujarb, C.D. Lokhandea, “Effect of different modes of electrodeposition on supercapacitive properties of MnO2 thin films,” Appl. Surf. Sci., 257 (2011) 3378-3372.
[66]P.R. Jadhav, M.P. Suryawanshi, D.S. Dalavi, D.S. Patil, E.A. Jo, S.S. Kolekar, A.A. Wali, M.M. Karanjkar, J.H. Kim, P.S. Patil, “Design and electro-synthesis of 3-D nanofibers of MnO2 thin films and their application in high performance supercapacitor,” Electrochim. Acta, 176 (2015) 523-532.
[67]G.A. Ali, M.M. Yusoff, Y.H. Ng, H.N. Lim, K.F. Chong, “Potentiostatic and galvanostatic electrodeposition of manganese oxide for supercapacitor application: A comparison study,” Current Applied Physics, 15 (2015) 1143-1147.
[68]Z. Zeng, H. Zhou, X. Long, E. Guo, X. Wang, “Electrodeposition of hierarchical manganese oxide on metal nanoparticlesdecorated nanoporous gold with enhanced supercapacitor performance, Journal of Alloys and Compounds,” J. Alloys Compd., 632 (2015) 376-385.
[69]F.A. Lindemann, “The calculation of molecular vibration frequencies,” Z Phys, 11 (1910) 609-612.
[70]A.K. Geim, K.S. Novoselov, “The rise of graphene,” Nature Materials, 6 (2007) 183-191.
[71]K.I. Bolotin, K.J. Sikes, Z. Jiang, M. Klima, G. Fudenberg, J. Hone, P. Kim, H.L. Stormer, “Ultrahigh electron mobility in suspended graphene,” Solid State Commun, 146 (2008) 351-355.
[72]C. Lee, X. Wei, J.W. Kysar, “Measurement of the elastic properties andintrinsic strength of monolayer graphene,” Science, 321 (2008) 385-388.
[73]A.A. Balandin, S. Ghosh, W. Bao, I. Calizo, D. Teweldebrhan, F. Miao, C.N. Lau, “Superior thermal conductivity of single-layer graphene,” Nano Lett, 8 (2008) 902-907.
[74]K.S. Novoselov, A.K. Geim, S.V. Morozov, D. Jiang, Y. Zhang, S.V. Dubonos, I.V. Grigorieva, A.A. Firsov, “Electric field effect in atomically thin carbon films,” Science, 306 (2004) 666-669.
[75]Y. Zhang, J.P. Small, W.V. Pontius, P. Kim, “Fabrication and electric-field-dependent transport measurements of mesoscopic graphite devices,” Applied Physics Letters, 86 (2005) 1-3.
[76] P. Sutter, “How silicon leaves the scene,” Nature Materials, 8 (2009) 171-172.
[77]D.S. Lee, C. Riedl, B. Krauss, K. von Klitzing, U. Starke, J.H. Smet, “Ramanspectra of epitaxial graphene on SiC and of epitaxial graphene transferred to SiO2,” Nano Lett, 8 (2008) 4320-4325.
[78] R.C. Johnson, “Graphene wafers ready to fab carbon chips,” EE Times, (2010).
[79]吳至彧, “利用化學氣相沉積法合成數層石墨烯以及其透明導電薄膜之研究”,清華大學碩士論文(2009) pp.14-25.[80]莊鎮宇, “石墨烯簡介與熱裂解化學氣相合成方法合成石墨烯的近期發展”,物理雙月刊, 33 (2011) pp.155-162.
[81]C.Y. Su, A.Y. Lu, Y.P. Xu, F.R. Chen, A.N. Khlobystov, L.J. Li, “High-quality thin graphene films from fast electrochemical exfoliation,” ACS Nano, 5 (2011) 2332-2339.
[82]L. Staudenmaier, “Verfahren zur Darstellung der Graphitsaure,” Ber. Dtsch. Chem, 31 (1898) 1481-1487.
[83]W.S. Hummer, R.E. Offeman, J. Am. Chem, “Preparation of Graphitic Oxide,” Soc, 80 (1958) 1339-42.
[84]C.Y. Su, Y. Xu, W. Zhang, J. Zhao, X. Tang, C.H. Tsai, and L.J. Li, “Electrical and Spectroscopic Characterizations of Ultra-Large Reduced Graphene Oxide Monolayers,” Chem. Mater, 21 (2009) 5674-5680.
[85]蘇清源, “石墨烯量產技術與產業應用”,光連雙月刊, No.108 (2013) pp.61-25.
[86]D. Li, M.B. Muller, S. Gilje, R.B. Kaner, G.G. Wallace, “Processable aqueous dispersions of graphene nanosheets,” Nature Nanotechnology, 3 (2008) 101-105.
[87]U. Kosidlo, M.A.R. de Larramendi, F. Tonner, H.J. Park,C. Glanz, V. Skakalova, S. Roth, and I. Kolaric, “Production methods of graphene and resulting material properties,” Poster appeared in the 7th Nano Europe Symposium, 70182 (2009) 1.
[88]A. Bagri, C. Mattevi, M. Acik, Y.J. Chabal, M. Chhowalla, and V.B. Shenoy, “Structural evolution during the reduction of chemically derived graphene oxide,” Nature Chemistry, 2 (2010) 581-587.
[89]Y. Wang, Z. Shi, Y. Huang, Y. Ma, C. Wang, M. Chen, and Y. Chen, “Supercapacitor Devices Based on Graphene Materials,” J. Phys. Chem, 113 (2009) 13103-07.
[90]S. Park, J. An, I. Jung, R.D. Piner, S.J. An, X. Li, A. Velamakanni, and R.S. Ruoff, “Colloidal Suspensions of Highly Reduced Graphene Oxide in a Wide Variety of Organic Solvents,” Nano Lett, 9 (2009) 1593-1597.
[91]W.B. Wan, Z.B. Zhao, H. Hu, Q. Zhou, Y.R. Fan , and J.S. Qiu, “Green reduction of graphene oxide to graphene by sodium citrate,” New Carbon Mater, 26 (2011) 16-20.
[92]Y. Li, W. Gao, L. Ci, C. Wang, and P.M. Ajayan, “Catalytic performance of Pt nanoparticles on reduced graphene oxide for methanol electro-oxidation,” Carbon, 48 (2010) 1124-1130.
[93]W. Yuan, B. Li, and L. Li, “A green synthetic approach to graphene nanosheets for hydrogen adsorption,” Applied Surface Science, 257 (2011) 10183-87.
[94]A.B. Bourlinos, D. Gournis, D. Petridis, T. Szabo, A. Szeri, and I. Dekany, “Graphite Oxide: Chemical Reduction to Graphite and Surface Modification with Primary Aliphatic Amines and Amino Acids,” Langmuir, 19 (2003) 6050-6055.
[95]J.I. Paredes, S. Villar-Rodil, M.J. Fernandez-Merino, L. Guardia, A. Martinez-Alonso, and J.M.D. Tascon, “Environmentally friendly approaches toward the mass production of processable graphene from graphite oxide,” J. Mater. Chem, 21 (2011) 298-306.
[96]S. Pei, J. Zhao, J. Du, W. Ren, and H.M. Cheng, “Direct reduction of graphene oxide films into highly conductive and flexible graphene films by hydrohalic acids,” Carbon, 48 (2010) 4466-4474.
[97]Z.S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, and H.M. Cheng, “Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation,” ACS Nano, 3 (2009) 411-417.
[98]Z.S. Wu, W. Ren, L. Gao, J. Zhao, Z. Chen, B. Liu, D. Tang, B. Yu, C. Jiang, and H.M. Cheng, “Synthesis of Graphene Sheets with High Electrical Conductivity and Good Thermal Stability by Hydrogen Arc Discharge Exfoliation,” ACS Nano, 3 (2009) 411-417.
[99]Z.H. Sheng, L. Shao, J.J. Chen, W.J. Bao, F.B. Wang, and X.H. Xia, “Catalyst-Free Synthesis of Nitrogen-Doped Graphene via Thermal Annealing Graphite Oxide with Melamine and Its Excellent Electrocatalysis,” ACS Nano, 5 (2011) 4350-4358.
[100] C.M. Chen, Y.G. Yang, Y.F. Wen, Q.H. Yang, and M.Z. Wang, “有序石墨烯導電炭薄膜的製備,” New Carbon Materials, 23 (2008) 345-350.
[101] H.A. Becerril, J. Mao, Z. Liu, R.M. Stoltenberg, Z. Bao, and Y. Chen, “Evaluation of Solution-Processed Reduced Graphene Oxide Films as Transparent Conductors,” ACS Nano, 2 (2008) 463-470.
[102] H.C. Schniepp, J.L. Li, M.J. McAllister, H. Sai, M. Herrera-Alonso, D.H. Adamson, R.K. Prud'homme, R. Car, D.A. Saville , and I.A. Aksay, “Functionalized Single Graphene Sheets Derived from Splitting Graphite Oxide,” J. Phys. Chem, 110 (2006) 8535-8539.
[103] Z. Gonzalez, C. Botas, P. Alvarez, S. Roldan, C. Blanco, R. Santamarıa, M. Granda, and R. Menendez, “Thermally reduced graphite oxide as positive electrode in Vanadium Redox Flow Batteries,” Carbon, 50 (2012) 882-834.
[104] P. Steurer, R. Wissert, R. Thomann, and R. Mulhaupt, “Functionalized Graphenes and Thermoplastic Nanocomposites Based upon Expanded Graphite Oxide,” Macromolecular Rapid Communications, 30 (2009) 316-327.
[105] Y.Z. Liu, Y.F. Li, Y.G. Yang, Y.F. Wen, and M.Z. Wang, “The effect of thermal treatment at low temperatures on graphene oxide films,” New Carbon Material, 26 (2011) 41-45.
[106] X. Mei, X. Meng,F. Wu, “Hydrothermal method for the production of reduced graphene oxide,“ Physica E: Low-dimensional Systems and Nanostructures, 68 (2015) 81-86.
[107] T. Fan, W. Zeng, Q. Niu, S. Tong, K.Cai, Y. Liu, W. Huang, Y. Minnd, A.J. Epstein, “Fabrication of high-quality graphene oxide nanoscrolls and application in supercapacitor,” Nanoscale Research Letters, 10 (2015) 192-194.
[108] B.G. Choi, M. Yang, W.H. Hong, J.W. Choi, Y.S. Huh, “3D Macroporous Graphene Frameworks for Supercapacitors with High Energy and Power Densities,” ACS Nano, 6 (2015) 4020-4028.
[109] X. Huang, X. Qi, F. Boey, H. Zhang, “Graphene-based composites,“ RSC, 41 (2012) 666-686 .
[110] J. Huang, L. Zhang, B. Chen, N. Ji, F. Chen, Y. Zhang and Z. Zhang , “Nanocomposites of size-controlled gold nanoparticles and graphene oxide: Formation and applications in SERS and catalysis,” RSC, 2 (2010) 2733-2738.
[111] M. Usman, L. Pan, A. Sohail, Z. Mahmood, R. Cui, “Fabrication of 3D vertically aligned silver nanoplates on nickel foam-graphene substrate by a novel electrodeposition with sonication for efficient supercapacitors,“ Chemical Engineering Journal, 311 (2017) 359-366.
[112] S. Woo, J. Lee, S.K. Park, H. Kim, T.D. Chung, Y. Piao, “Electrochemical codeposition of Pt/graphene catalyst for improved methanol oxidation,” Current Applied Physics, 15 (2015) 219-225.
[113] A.H.Al. Marri, M. Khan, M.R. Shaik, N. Mohri, S.F. Adil, M. Kuniyil, H.Z. Alkhathlan, A.l. Al-Warthan, W. Tremel, M.N. Tahir, M. Khan, M.R.H. Siddiqui, “Green synthesis of Pd@graphene nanocomposite: Catalyst for the selective oxidation of alcohols,” Arabian Journal of Chemistry, 9 (2016) 835-845.
[114] W. Yang, Z. Gao, J. Wang, B. Wang, L. Liu, “Hydrothermal synthesis of reduced graphene sheets/Fe2O3 nanorods composites and their enhanced electrochemical performance for supercapacitors,” Solid State Sciences, 20 (2013) 46-53.
[115] F. He, J. Fan, D. Ma, L. Zhang, C. Leung, and H.L. Chan, “The attachment of Fe3O4 nanoparticles to graphene oxide by covalent bonding ,“ Carbon, 48 (2010) 3139-3144.
[116] D. Choi, H. Park, J.H. Lim, T.H. Han, J.Park, “Three-dimensionally stacked Al2O3/graphene oxide for gas barrier applications,“ Carbon, 125 (2017) 464-471.
[117] V. Velmurugan, U. Srinivasarao, R. Ramachandran, M. Saranya, A.N. Grace, “Synthesis of tin oxide/graphene(SnO2/G) nanocomposite and its electrochemical properties for supercapacitor applications,“ Materials Research Bulletin, 84 (2016) 145-151.
[118] Xu Hui, L. Qian, G. Harris, T. Wang, J. Che, “Fast fabrication of NiO@graphene composites for supercapacitor electrodes: Combination of reduction and deposition,“ Materials & Design, 105 (2016) 242-250.
[119] A.E. Rashed, A.A. El-Moneim, “Two steps synthesis approach of MnO2/graphene nanoplates/graphite composite electrode for supercapacitor application,“ Materialstoday Energy, 3 (2017) 24-31.
[120] X. Zhang, Y. Sun, X. Cui, Z. Jiang, “A green and facile synthesis of TiO2/graphene nanocomposites and their photocatalytic activity for hydrogen evolution,“ International Journal of Hydrogen Energy, 37 (2012) 811-815.
[121] E.R. Ezeigwe, M.T.T. Tan, P.S. Khiew, C.W. Siong, “One-step green synthesis of graphene/ZnO nanocomposites for electrochemical capacitors,“ Ceramics International, 41 (2015) 715-724.
[122] A. Wang, X. Li, Y. Zhao, W. Wu, J. Chen, H. Meng, “Preparation and characterizations of Cu2O/reduced graphene oxide nanocomposites with high photo-catalytic performances,“ Powder Technology, 261 (2014) 42-48.
[123] M.K. Ghimire, H.Z. Gul, H. Yi, D.X. Dang, W.K. Sakong, N.V. Luan, H.J. Ji, S.Chu Lim, “Graphene-CdSe quantum dot hybrid as a platform for the control of carrier temperature,“ FlatChem, 6 (2017) 77-82.
[124] M.E. Khan, M.M. Khan, M.H. Cho, “CdS-graphene Nanocomposite for Efficient Visible-light-driven Photocatalytic and Photoelectrochemical Applications,“ Journal of Colloid and Interface Science, 484 (2016) 211-232.
[125] S. Pan, Xi. Liu, “ZnS–Graphene nanocomposite: Synthesis, characterization and optical properties“ Journal of Solid State Chemistry, 191 (2012) 51-56.
[126] A.C. Ferrari, “Raman spectroscopy of graphene and graphite: Disorder, electron–phonon coupling, doping and nonadiabatic effects,” Solid State Communications, 143 (2007) 47-57.
[127] H.J. Keh and J.L. Anderson, “Boundary Effects on Electrophoretic Motion of Colloidal Spheres,” J. of Fluid Mechanics, 153 (1985) 417-439.
[128] J. Ennis and J.L. Anderson, “Boundary Effects on Electrophoretic Motion of Spherical Particles for Thick Double Layers and Low Zeta Potential,” J. of Colloid and Interface Sci., 185 (1997) 497-514.
[129] 黃苡叡, “膠體晶體與反蛋白石結構之製作及工程應用,” 交通大學材料科學與工程學系, 博士論文, (2010).[130] K.G. Young and S.H. Dong, “Effects of Liquid Bridge between Colloidal Spheres and Evaporation Temperature on Fabrication of Colloidal Multilayers,” J. Phys. Chem. B, 111 (2007) 1545-1551.
[131] K.W. Nam, W.S. Yoon, and K.B. Kim, “X-ray absorption spectroscopy studies of nickel oxide thin film electrodes for supercapacitors,”Electrochim. Acta, 47 (2002) 3201-3211.
[132] Lu Peng, Xiao Ji, Houzhao Wan, etc., “Nickel Sulfide Nanoparticles Synthesized by Microwave-assisted Method as Promisiing Supercapacitor Electrodes: An Experimental and Computational Study,” Electrochimica Acta, 182 (2015) 361-367.
[133] Sahay, P. P., and Ajay Kumar Kushwaha. "Electrochemical supercapacitive performance of potentiostatically cathodic electrodeposited nanostructured MnO 2 films." Journal of Solid State Electrochemistry, 21.8 (2017) 2393-2405.
[134] Xia, Hui, et al. "Hierarchically structured Co3O4@Pt@MnO2 nanowire arrays for high-performance supercapacitors." Scientific reports, 3 (2013) 2978-82.
[135] Zhu, Tao, et al. "Effect of low magnetic fields on the morphology and electrochemical properties of MnO2 films on nickel foams." Journal of Alloys and Compounds, 644 (2015) 186-192.
[136] Zhao, Yong-Qing, et al. "MnO2/graphene/nickel foam composite as high performance supercapacitor electrode via a facile electrochemical deposition strategy." Materials Letters, 76 (2012) 127-130.
[137] Ali, Gomaa AM, et al. "Potentiostatic and galvanostatic electrodeposition of manganese oxide for supercapacitor application: A comparison study." Current Applied Physics, 15.10 (2015) 1143-1147.
[138] Chai, Yaqiong, et al. "Construction of hierarchical holey graphene/MnO2 composites as potential electrode materials for supercapacitors." Journal of Alloys and Compounds, 775 (2019) 1206-1212.
[139] Zhang, Qian, et al. "One-step hydrothermal synthesis of MnO2/graphene composite for electrochemical energy storage." Journal of Electroanalytical Chemistry, 837 (2019) 108-115.
[140] Liu, Jia-Qin, et al. "Hydrothermal synthesis of well-standing δ-MnO2 nanoplatelets on