跳到主要內容

臺灣博碩士論文加值系統

(44.200.86.95) 您好!臺灣時間:2024/05/30 05:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:劉彥淳
研究生(外文):LIU, YEN-CHUN
論文名稱:高功率脈衝磁控濺鍍鉻系薄膜之耐蝕性研究
論文名稱(外文):High Power Impulse Magnetron Sputter Deposited Chromium-Based Coatings for Corrosion Protection
指導教授:何主亮何主亮引用關係
指導教授(外文):HE, JU-LIANG
口試委員:陳克昌郭晉全
口試委員(外文):CHEN, KEH-CHANGKUO, CHIN-CHIUAN
口試日期:2019-07-19
學位類別:碩士
校院名稱:逢甲大學
系所名稱:材料科學與工程學系
學門:工程學門
學類:材料工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:122
中文關鍵詞:高功率脈衝磁控濺鍍鉻系薄膜黃銅耐蝕性裝飾鍍膜
外文關鍵詞:High power impulse magnetron sputteringChromium-based coatingCopper alloyCorrosion resistanceDecorative coating
相關次數:
  • 被引用被引用:0
  • 點閱點閱:171
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
  高功率脈衝磁控濺鍍(High power impulse magnetron sputtering, HIPIMS)為近十年最新穎的PVD鍍膜技術,由於其高離化率、高電漿密度與高離子能量其電漿特性,有助於沉積高附著性、高品質及高緻密性的鍍膜。本研究以HIPIMS沉積鉻系薄膜於黃銅基材上以改善其耐蝕性,藉由改變製程參數(脈衝頻率、脈衝寬度),觀察金屬鉻靶之峰值電壓、峰值電流與峰值功率的變化,以求優化鍍膜參數。並設計幾種單層及多層鍍膜結構,透過銅鹽加速醋酸水溶液(Copper accelerated acetic acid salt solution, CASS)進行直流極化試驗以及噴霧試驗來檢驗其防蝕效果。
  研究結果顯示,在HIPIMS之脈衝頻率800 Hz及脈衝寬度75 µs且設定輸出功率於6000 W之製程參數下,峰值電流可達192 A及無間歇性的電弧產生。在單層層薄膜的實驗中,採用HIPIMS相較於傳統DCMS所沉積之Cr-N系薄膜擁有較高的薄膜緻密度及耐蝕特性,黃銅基材的Ecorr和Icorr分別為-193 mV和28.294 mA/cm2,其優化後HIPIMS沉積單層CrN樣品之Ecorr和Icorr為-109 mV和0.602 mA/cm2。在多層鍍膜的實驗中可知,優化後的疊層設計更可以延長腐蝕發生的時間,這歸因於多層結構中的底層可以阻擋上一層間的結構缺陷,使腐蝕因子更有效被阻擋,降低滲入到基材的機會。HM1多層鍍膜樣品有著最高的腐蝕電位246 mV,而以漸進式氮組成變化設計出的多層HM2樣品,則有最低的腐蝕電流為0.122 mA/cm2。值得一提的是若採用熟知的高偏壓種鉻層來建構緻密底層的企圖,雖然可以改善鍍層的緻密性,但因高偏壓伴隨升溫使基材在鍍製期間產生脫鋅現象,導致薄膜與基材的結合力下降,整體耐蝕性降低。在CASS試驗的表現方面,單層薄膜在試驗四小後於樣本表面產生了腐蝕坑洞。低偏壓種鉻層的多層鍍膜樣品有效地延長腐蝕發生的時間至測試八小時。
  總結來說,本研究製備的HIPIMS多層鉻系金屬薄膜有良好的鍍膜特性與耐蝕特性,有機會成為傳統電鍍產業的替代性應用。

  High power impulse magnetron sputtering (HIPIMS) is a relatively recent advance in sputtering technology used for the physical vapor deposition of thin film coatings, which enable to deposit high adhesion, high quality and dense films due to its high level of ionization degree, high plasma density and high ion energy. This study employs HIPIMS to deposit Cr-N coatings on copper alloy substrates to improve the corrosion resistance. The changes of peak voltage, peak current and peak power of chromium target were observed by controlled HIPIMS process parameters such as pulse frequency and pulse width for optimizition. Several kinds of Cr-N single layer and multilayer structure were designed to deposit on copper alloy (brass), and the corrosion resistance was tested by DC polarization and salt spray test through copper accelerated acetic acid salt solution (CASS).
  Experimental results show that, first of all, the peak current of HIPIMS process parameters under the pulse frequency of 800 Hz, the pulse width of 75 µs and the output power of 6 kW can reach up to 192 A and no intermittent arcs generated. Second, from the results of single layer study, HIPIMS coating had better film quality and electrochemical corrosion resistance than DCMS. The Ecorr and Icorr value of the brass substrate were -193 mV and 28.294 mA/cm2, while that of the HIPIMS-CrN single layer deposited brass were -109 mV and 0.602 mA/cm2, respectively. Thrid, from the results of multilayer study, it was found to improve corrosion protection further, due to the interuption of film defects by the underlying films that effectively stop corrosion medium toward substrate. In this regard, HM1 multilayer-structured sample has the highest Ecorr of 246 mV, and HM2 sample, with alternating gradient nitrogen composition, has the lowest Icorr of 0.122 mA/cm2. Notably, the known effect of high bias voltage applied for growing Cr seed layer can bring densified film microstructure and strong film adhesion for the on-growing layers. Here in our case, when implemented on brass substrate, shall be reduced its substrate bias voltage (and thus substrate heating) for avoiding dezincification of the brass, which would otherwise significant decrease in corrosion resistance. Finally, in terms of the CASS test, the HIPIMS and DCMS single layer coated sample showed lots of corrosion pins on the surface after 4-hour CASS testing. On the other hand, the multilayer-structured samples servived after 8-hour CASS test.
  In summary, the multilayer-structured HIPIMS Cr-N coatings developed in this study present good thin film quality and corrosion resistance, which can be considered as an alternative to electroplating industry.

誌 謝 I
中文摘要 II
Abstract IV
總 目 錄 VI
圖 目 錄 VIII
表 目 錄 X
第一章、前言 1
第二章、文獻回顧 3
2-1. 表面防蝕技術 3
2-1.1. 腐蝕定義與金屬腐蝕機制 3
2-1.2. 產業用表面防蝕技術回顧 9
2-1.3. 傳統電鍍及PVD製程防蝕表面工程技術 21
2-1.4. PVD薄膜之防蝕問題探討 26
2-2. 高功率脈衝磁控濺鍍技術 31
2-2.1. 高功率脈衝磁控濺鍍之簡介 31
2-2.2. 製程參數對薄膜結構的影響 36
2-2.3. 高功率脈衝磁控濺鍍鉻系薄膜 45
2-3. 研究動機 50
第三章、研究方法 52
3-1. 研究方法與實驗流程 52
3-2. 試片準備及前處理 53
3-3. 高功率脈衝磁控濺鍍設備 55
3-4. 高功率脈衝磁控濺鍍鉻系薄膜 57
3-5. 薄膜分析與檢測方式 65
3-5.1. 晶體結構分析 65
3-5.2. 微觀形貌觀察 66
3-5.3. 電化學特性分析 67
3-5.4. 銅鹽加速醋酸鹽霧試驗 69
第四章、結果與討論 70
4-1. HIPIMS最適化製程參數設定 70
4-1.1. HIPIMS脈衝頻率、寬度對峰值電流之影響 70
4-1.2. 調控氣體流量比對應峰值電流之影響 73
4-2. 鉻系薄膜之晶體結構探討 74
4-3. 鉻系薄膜之微觀形貌探討 76
4-4. 鉻系薄膜之電化學耐蝕性 80
4-5. 鉻系薄膜之CASS鹽霧試驗耐蝕性探討 90
第五章、結論 96
參考文獻 98


[1]周淑金及王正全,"綠色表面處理 – 六價鉻替代技術的發展",IECQ報導,第50期 (2006) 25-32。
[2]J.H. Hsieh, C. Liang, C. H. Yu and W. Wu, “Deposition and characterization of TiAlN and multi-layered TiN/TiAlN coatings using unbalanced magnetron sputtering”, Surface and Coatings Technology, 108-109 (1998) 132.137.
[3]J. H. Liepack, K. Bartsch, W. Brückner and A. Leonhardt, “Mechanical behavior of PACVD TiC–amorphous carbon composite layers”, Surface and Coatings Technology, 183 (2004) 69-73.
[4]S. K. Wu, H. C. Lin and P. L. Liu, “An investigation of unbalanced-magnetron sputtered TiAlN films on SKH51 high-speed steel”, Surface and Coatings Technology, 124 (2000) 97-103.
[5]M. C. R. Guimaraes, B. C. N. M. de Castilho, T. deS. Nossa, P. R. T. Avila, S. Cucatti, F. Alvarez, J. L. Garcia and H. C. Pinto, “On the effect of substrate oscillation on CrN coatings deposited by HiPIMS and dcMS”, Surface and Coatings Technology, 340 (2018) 112-120.
[6]Z. Y. Chen, Z. Q. Li and X. H. Meng, “Structure, hardness and corrosion behavior of a gradient CrNx thick coating applied to turbine blades”, Applied Surface Science, 255 (2009) 7408-7413.
[7]K. Kazmanli, B. Daryal and M. Urgen, “Characterization of nano-composite TiN–Sb coating produced with hybrid physical vapor deposition system”, Thin Solid Films, 515 (2007) 3675-3680.
[8]C. Liu, A. Leyland, Q. Bi and A. Matthews, “Corrosion resistance of multi-layered plasma-assisted physical vapour deposition TiN and CrN coatings”, Surface and Coatings Technology, 141 (2001) 164-173.
[9]吳錦裕、梁文龍及艾啟峰,"新鍍膜技術 – 高功率脈衝磁控濺射之介紹及研發",真空科技,第22期 (2009) 24-33.
[10]ISO 8044 “Corrosion of metals and alloys – Basic terms and definitions”, International Organization for Standardization, Switzerland, 2015.
[11]L. S. V. Delinder and A. deS. Brasunas, Corrosion Basics: An introduction, National Association of Corrosion Engineers, (1984) 1-3.
[12]H. H. Uhlig, “The cost of corrosion to the United States”, Corrosion, 6 (1950) 29-33.
[13]G.H. Koch, M.P.H. Brongers, N.G. Thompson, Y.P. Virmani and J.H. Payer, “Corrosion costs and preventive strategies in the United States”, U.S. Federal Highway Administration Report, FHWA-RD-01-156, March (2002).
[14]G. Koch, J. Varney, N. Thompson, O. Moghissi, M. Gould and J. Payer, International Measures of Prevention, Application, and Economics of Corrosion Technologies Study, National Association of Corrosion Engineers, (2016) 1-6.
[15]B. P. Salunkhe and S. P. Rane, “Treatise on conducting polymers for corrosion protection – Advanced approach”, 27th Indian Paint (IPA) Conference, (2015) 61-81.
[16]M. G . Fontana, Corrosion Engineering, McGraw-Hill Book Company, (1978) 39-152.
[17]B. Nimmo and G. Hinds, “Beginners Guide to Corrosion”, NPL, (2003) 1-10.
[18]M. Finšgar, “Galvanic series of different stainless steels and copper- and aluminium-based materials in acid solutions”, Corrosion Science, 68 (2013) 51-56.
[19]D. X. Chen, X. Q. Wu and E. H. Han, “Research progress of crevice corrosion and crevice corrosion Issues of nuclear-grade materials [J]”, Journal of Chinese Society for Corrosion and protection, 34-4 (2014) 295-300.
[20]G. S . Frankel, “Pitting corrosion of metals a review of the critical factors”, Journal of the Electrochemical Society, 145-6 (1998) 2186-2198.
[21]G. Palumbo and K. T. Aust, “Structure-dependence of intergranular corrosion in high purity nickel”, Acta Metallurgica et Materialia, 38-11 (1990) 2343-2352.
[22]A. Akcil and H. Ciftci, “A study of the selective leaching of complex sulphides from the eastern black sea region, Tukey”, Minerals Engineering, 15-6 (2002) 457-459.
[23]D. Upadhyay, M. A. Panchal, R. S. Dubey and V. K. Srivastave, “Corrosion of alloys used in dentistry: A review”, Materials Science and Engineering: A, 432 (2006) 1-11.
[24]N. Winzer, A. Atrens, G. Song, E. Ghali, W. Dietzel, K. U. Kainer, N. Hort and C. Blawert, “A critical review of the stress corrosion cracking (SCC) of magnesium alloys”, Advanced Engineering Materials, 7 (2005) 659-693.
[25]吉祥電鍍有限公司,https://www.gichiang.com.tw/product.html
[26]G. O. Mallory and J. B. Hajdu, Electroless plating: Fundamentals and applications, American Electroplaters and Surface Finishers Society, (1990) 1-3.
[27]M. L. Feng, Y. T. Chia, H. L. Chun and M. Y. Chen, “Surface mechanical properties of plastic industrial components for electroless coating technology”, Journal of Science and Engineering Technology, 7 (2011) 19-34.
[28]美上鎂科技(股)公司,http://www.tepla.com.tw/tw/products5.html 
[29]J. T. Lu, H. J. Wu, G. Kong, C. S. Che and Q. Y. Xu, “Growth and corrosion behavior of rare earth film on hot-dip galvanized steel”, Transactions of Nonferrous Metals Society of China, 16 (2006) 1397-1401.
[30]中國鋼鐵(股)公司,https://www.csc.com.tw/csc/pd/prs13-3.htm
[31]Galco Steel Ltd, https://galco.ie/services/galvanizing-services/
[32]J. R. Davis, Handbook of Thermal Spray Technology, ASM international, (2004) 3-9.
[33]OSAKA FUJI, https://www.ofic.co.jp/en/r_and_d/thermalspraying/
[34]P. S. Sidky and M. G. Hocking, “Review of inorganic coatings and coating processes for reducing wear and corrosion”, British Corrosion Journal, 34 (1999) 171-183.
[35]American Faucet and Coatings Corporation,
https://www.americanfaucetcorp.com/metal-finishing
[36]D. S. Rickerby and A. Mattews, Advanced surface coatings, Chapman and Hall, New York, (1992) 94-95.
[37]D. M. Mattox, “Fundamentals of ion plating”, Journal of Vacuum Science and Technology, 10 (1973) 47-52.
[38]F. Niino, H. Hirasawa and K. I. Kondo, "Deposition of low-resistively ITO on plastic substrates by DC arc-discharge ion plating", Thin Solid Films, 411 (2002) 28-31.
[39]H. O. Pierson, Handbook of Chemical Vapor Deposition: Principles, Technology and Applications, Noyes Publications, New Jersey, U.S.A., (1999) 25-30.
[40]林育緯,"利用四極柱質譜儀與光放射光譜儀進行非晶矽薄膜於ESR-CVD之電漿診斷研究",國立中央大學碩士論文,2015,p. 13-15.
[41]A. M. Mahajan, L. S .Patil, J. P. Bange and D. K. Gautam, “Growth of SiO2 films by TEOS-PECVD system for microelectronics applications”, Surface and Coatings Technology, 183 (2004) 295-300.
[42]NANO-MASTER, Inc., http://www.nanomaster.com/pecvd.html
[43]M. Kutz, Handbook of environmental degradation of materials, Vol. II William Andrew, Elsevier, (2012) 655-672.
[44]S. R. Taylor, “Coating for corrosion protection: organic”, Encyclopedia of Materials: Science and Technology, 11 (2001), 1274-1279.
[45]ArcelorMittal in Belgium, https://belgium.arcelormittal.com/en/work-environment/organic-coating-line/
[46]C. Rebholz, H. Ziegele, A. Leyland and A. Matthews, “Structure, mechanical and tribological properties of nitrogen-containing chromium coatings prepared by reactive magnetron sputtering”, Surface and Coatings Technology, 115 (1999) 222-229.
[47]An Chen, X. Qiu, K. Sridharan, W. G. Horne, R. A. Dodd, A. H. Hamdi, A. A. Elmoursi, G. W. Malaczynski and J. R. Conrad, “Chromium plating pollution source reduction by plasma source ion implantation”, Surface and Coating Technology, 82 (1996) 305-310.
[48]A. El-Naggar, M. Zohdy, M. Hassan and E. Khalil, “Antimicrobial protection of cotton and cotton/polyester fabrics by radiation and thermal treatments. I. Effect of ZnO formulation on the mechanical and dyeing properties”, Journal of applied polymer science, 88 (2003) 1129-113.
[49]2002/96/EC, “Waste Electrical and Electronic Equipment (WEEE)”, Official Journal of the European Union, 2003.
[50]2002/95/EC, “Restriction of Hazardous Substances in Electrical and Electronic Equipment”, Official Journal of the European Union, 2003.
[51]K. O. Legg, M. Graham, P. Chang, F. Rastagar, A. Gonzales and B. Sartwell, “The replacement of electroplating”, Surface and Coatings Technology, 81 (1996) 99-105.
[52]G. Vergason, M. Fitch, R. Smith, M. Brazil and T. Jochum, “PVD chromium coatings replacing decorative chromium electroplated coatings on plastics”, Society of Vacuum Coaters Annual Technical Conference.
[53]B. Navinšek, “Improvement of cutting tools with TiN PVD hard coatings”, Materials and Manufacturing Processes, 7 (1992) 363-382.
[54]B. Navinšek, P. Panjan and I. Milošev, “PVD coatings as an environmentally clean alternative to electroplating and electroless processes”, Surface and Coatings Technology, 116-119 (1999) 476-487.
[55]M. V. Stappen, L. M. Stals, M. Kerkhofs and C. Quaeyhaegens, “State of the art for the industrial use of ceramic PVD coatings”, Surface and Coatings Technology, 74-75 (1995) 629-633.
[56]L. J. Korb, Metals Handbook: Corrosion, ASM International, (1987) 419-431.
[57]G. Bertrand, C. Savall and C. Meunier “Properties of reactively RF magnetron-sputtered chromium nitride coatings”, Surface and Coatings Technology, 96 (1997) 323-329.
[58]B. Navinšek, P. Panjan and I. Milošev, “Industrial applications of CrN (PVD) coatings, deposited at high and low temperatures”, Surface and Coatings Technology, 97 (1997) 182-191.
[59]S. M. Rossnagel, J. J. Cuomo and W. D. Westwood, Handbook of Plasma Processing Technology, Noyes Publications, New Jersy, U.S.A., (1982) 3-20.
[60]J. Vetter, M. Stüber and S. Ulrich, “Growth effects in carbon coatings deposited by magnetron sputtering”, Surface and Coatings Technology, 168 (2003) 169-178.
[61]F. Vacandio, Y. Massiani, P. Gravier; S. Rossi, P. L. Bonora and L. Fedrizzi, “Improvement of the electrochemical behavior of AIN films produced by reactive sputtering using various under-layers”, Electrochimica Acta, 46 (2001) 3827-3834.
[62]C. Liu, Q. Bi, A. Leyland and A. Matthews, “An electrochemical impedance spectroscopy study of the corrosion behaviour of PVD coated steels in 0.5 N NaCl aqueous solution: Part II.: EIS interpretation of corrosion behaviour", Corrosion Science, 45 (2003) 1257-1273.
[63]I. Milošev, H. -H. Strehblow and B. Navinšek, “Comparison of TiN, ZrN and CrN hard nitride coatings: Electrochemical and thermal oxidation”, Thin Solid Films, 303 (1997) 246-254.
[64]D. K. Merl, P. Panjan, M. Cekada and M. Macek, “The corrosion behavior of Cr-(C,N) PVD hard coatings deposited on various substrates”, Electrochimica Acta, 49 (2004) 1527-1533.
[65]A. Drnovšek, P. Panjan, M. Panjan and MihaČekada, “The influence of growth defects in sputter-deposited TiAlN hard coatings on their tribological behavior”, Surface and Coatings Technology, 288 (2016) 171-178.
[66]M. Cekada, P. Panjan, D. Kek-Merl, M. Panjan and G. Kapun, “SEM study of defects in PVD hard coatings”, Vacuum, 82 (2008) 252-256.
[67]O. Durst, J. Ellermeire and C. Berger, “Influence of plasma-nitriding and surface roughness on the wear and corrosion resistance of thin films (PVD/PECVD)”, Surface and Coatings Technology, 203 (2008) 848-854.
[68]P. Panjan, M. Čekada, M. Panjan and D. Kek-Merl, “Growth defects in PVD hard coatings”, Vacuum, 84 (2009) 209-214.
[69]H. W. Wang, M. M. Stack, S. B. Lyon, P. Hovespian and W. D. Munz, “The corrosion behaviour of macropartical defects in arc bond-sputtered CrN/NbN superlattice coatings”, Surface and Coatings Technology, 126 (2000) 279-287.
[70]L. A. Rocha, E. Arize, J. Ferreira, F. Vaz, E. Ribeiro, L. Rebouta, E. Alves, A. R. Ramos, Ph. Goudeau and J. P. Riviere, “Structural and corrosion behavior of stoichiometric and substoichiometric TiN thin films”, Surface and Coatings Technology, 180 (2004) 158-163.
[71]P. Panjan, D. K. Merl, F. Zupanič, M. Čekada and M. Panjan, “SEM study of defects in PVD hard coatings using focused ion beam milling”, Surface and Coatings Technology, 202 (2008) 2302-2305.
[72]H. Ljungcrantz, L. Hultman, J. -E. Sundgren, G. Håkansson and L. Karlsson, “Microstructural investigation of droplets in arc-evaporated TiN films”, Surface and Coatings Technology, 63 (1994) 123-128.
[73]M. Fenker, M. Balzer, H. A. Jehn, H. Kappl, J. J. Lee, K. H. Lee and H. S. Park, “Improvement of the corrosion resistance of hard wear resistant coatings by intermediate plasma etching or multilayered structure”, Surface and Coatings Technology, 150 (2002) 101-106.
[74]H. A. Jehn, “Improvement of the corrosion resistance of PVD hard coating-substrate systems”, Surface and Coatings Technology, 125 (2000) 212-217.
[75]T. Mori, S. Fukuda and Y. Takemura, “Improvement of mechanical properties of Ti/TiN multilayer film deposited by sputtering”, Surface and Coatings Technology, 140 (2001) 122-127.
[76]M. Fenker, M. Balzer and H. Kappl, “Corrosion behavior of decorative and wear resistant coatings on steel deposited by reactive magnetron sputtering – tests and improvements”, Thin Solid Films, 515 (2006) 27-32.
[77]K. Bobzin, N. Bagcivan, S. Theiß, R. Weiß, U. Depner, T. Troßmann, J. Ellermeier and M. Oechsner, “Behavior of DLC coated low-alloy under tribological and corrosive load: effect of top layer and interlayer variation”, Surface and Coatings Technology, 215 (2013) 110-118.
[78]L. A. Dobrzański, K. Lukaszkowicz, J. Mikula and D. Pakula, “Structure and corrosion resistance of gradient and multilayer coatings”, Journal of Achievements in Materials and Manufacturing Engineering, 18 (2006) 75-78.
[79]J. Roth, Industrial Plasma Engineering, Vol. I Principles, Institute of Physics Publishing, (1995) 366-370.
[80]K. Sarakinos, J. Alami, and S. Konstantinidis, "High power pulsed magnetron sputtering: A review on scientific and engineering state of the art," Surface and Coatings Technology, 204 (2010) 1661-1684.
[81]A. Anders, Handbook of plasma immersion ion implantation and deposition 8: Wiley New York etc., (2000) 125-242.
[82]U. Helmersson, M. Lattemann, J. Bohlmark, A. P. Ehiasarian and J. T. Gudmundsson, “Ionized physical vapor deposition (IPVD): A review of technology and applications”, Thin Solid Films 513 (2006) 1-24.
[83]A. Anders, "A structure zone diagram including plasma-based deposition and ion etching," Thin Solid Films, 518 (2010) 4087-4090.
[84]T. Shimizu, Y. Teranishi, K. Morikawa, H. Komiya, T. Watanabe, H. Nagasaka and M. Yang, “Impact of pulse duration in high power impulse magnetron sputtering on the low-temperature growth of wurtzite phase (Ti,Al)N films with high hardness”, Thin Solid Films, 581 (2015) 39-47.
[85]Y. C. Hsaio, J. W. Lee, Y. C. Yang and B. S. Lou, “Effects of duty cycle and pulse frequency on the fabrication of AlCrN thin films deposited by high power impulse magnetron sputtering”, Thin Solid Films, 549 (2013) 281-291.
[86]J. Alami, K. Sarakinos, F. Uslu and M. Wuttig, “On the relationship between the peak target current and the morphology of chromium nitride thin films deposited by reactive high power pulsed magnetron sputtering”, Journal of Physics D: Applied Physics, 42 (2009) 015304.
[87]R. Machunze, A. P. Ehiasarian, F. D. Tichelaar and G. C. A. M Janssen, “Stress and texture in HIPIMS TiN thin films”, Thin Solid Films, 518 (2009) 1561-1565.
[88]S. Nakao, K. Yukimura, S. Nakano and H. Ogiso, “DLC Coating by HiPIMS: The Influence of Substrate Bias Voltage”, IEEE Transactions of Plasma Science, 41 (2013) 1819-1829.
[89]J.A. Thorton, "Influence of apparatus geometry and deposition conditions on the structure and topography of thick sputtered coatings", Journal of Vacuum Science and Technology, 11 (1974) 666-670.
[90]P. B Barna and M. Adamik, "Fundamental structure forming phenomena of polycrystalline films and the structure zone models", Thin Solid Films, 317 (1998) 27-33.
[91]R. Messier, A.P. Giri and R.A. Roy, "Revised structure zone model for thin film physical structure", Journal of Vacuum Science Technology A, 2 (1984) 500-503.
[92]P.J. Martin, D.R. McKenzie, R.P. Netterfield, P.R. Swift, S.W. Filipczuk, K.H. Müller, C.G. Pacey and B. James, "Characteristics of titanium arc evaporation processes", Thin Solid Films, 153 (1987) 91-102.
[93]R.D. Arnell and P.J. Kelly, "Recent advances in magnetron sputtering", Surface and Coatings Technology, 112 (1999) 170-176.
[94]J. T. Gudmundsson, P. Sigurjonsson, P. Larsson, D. Lundin and U. Helmersson,” On the electron energy in the high power impulse magnetron sputtering discharge”, Journal of Applied Physics, 105 (2009) 123302.
[95]R. Ganesan, B. J. Murdoch, J. G. Partridge, S. Bathgate, B. Treverrow, X. Dong, A. E. Ross, D. G. McCulloch, D. R. McKenzie and M. M. M. Bilek, “Optimizing HiPIMS pressure for deposition of high-k (k = 18.3) amorphous HfO2”, Applied Surface Science, 365 (2016) 336-341.
[96]V. Kouznetsov, K. Macák, J. M. Schneider, U. Helmersson and I. Petrov, “A novel pulsed magnetron sputter technique utilizing very high target power densities”, Surface and Coatings Technology, 122 (1999) 290-293.
[97]A. Anders, “A novel pulsed magnetron sputter technique utilizing very high target power densities”, Journal of Applied Physics, 121 (2017) 171101.
[98]G Wei, A Rar and J.A Barnard, "Composition, structure, and nanomechanical properties of DC-sputtered CrNx (0≤x≤1) thin films", Thin Solid Films, 398-399 (2001) 460-464.
[99]A. Barata, L. Cunha and C. Moura, “Characterisation of chromium nitride films produced by PVD techniques”, Thin Solid Films, 198-399 (2001) 501-506.
[100]Z. Han, J. Tian, Q. Lai, X. Yu and G. Li, “Effect of N2 partial pressure on the microstructure and mechanical properties of magnetron sputtered CrNx films”, Surface and Coatings Technology, 162 (2003) 189-193.
[101]A. P. Ehiasarian, P. E. Hovsepian, L. Hultman and U. Helmersson, “Comparison of microstructure and mechanical properties of chromium nitride-based coatings deposited by high power impulse magnetron sputtering and by the combined steered cathodic arc/unbalanced magnetron technique”, Thin Solid Films, 457 (2004) 270-277.
[102]Y. P. Purandare, A. P. Ehiasarian, M. M. Stack and P. Eh. Hovsepian, “CrN/NbN coatings deposited by HIPIMS: A preliminary study of erosion-corrosion performance”, Surface and Coatings Technology, 204 (2010) 1158-1162.
[103]A. P. Ehiasarian, W. D. Münz, L. Hultman, U. Helmersson and I. Petrov, “High power pulsed magnetron sputtered CrNx films”, Surface and Coatings Technology, 163 (2003) 267-272.
[104]Y. P. Purandare, A. Ehiasarian, A. Santana and P. Hovsepian “ZrN coatings deposited by high power impulse magnetron sputtering and cathodic arc techniques”, Journal of Vacuum Science and Technology, 32 (2014) 031507.
[105]ASTM B368 – 09, “Standard test method for copper-accelerated acetic acid-salt spray (fog) testing (CASS test)”, American Society for Testing and Materials, Philadelphia, PA, 2014.
[106]A. Anders, "Deposition rates of high power impulse magnetron sputtering: Physics and economics", Journal of Vacuum Science & Technology A, 28 (2010) 783-790.
[107]M. Hala, J. Capek, O. Zabeida, J. E0 Klemberg-Sapieha and L. Martinu, “Hysteresis-free deposition of niobium oxide films by HiPIMS using different pulse management strategies”, Journal of Physics D: Applied Physics, 45 (2012) 055204.
[108]T. Shimizu, M. Villamayor, D. Lundin and U. Helmersson, “Process stabilization by peak current regulation in reactive high-power impulse magnetron sputtering of hafnium nitride”, Journal of Physics D: Applied Physics, 49 (2016) 065202.
[109]J. Lin, J. J. Moore, W. D. Sproul, B. Mishra, Z. Wu, “Modulated pulse power sputtered chromium coatings”, Thin Solid Films, 518 (2009) 1566-1570.
[110]J. Lin, W. D. Sproul, J. J. Moore, S. Lee, S. Myers, “High rate deposition of thick CrN and Cr2N coatings using modulated pulse power (MPP) magnetron sputtering”, Surface and Coatings Technology, 205 (2011) 3226-3234.
[111]J. Lin, Z. L. Wu, X. H. Zhang, B. Mishra, J. J. Moore and W. D. Sproul, “A comparative study of CrNx coatings synthesized by dc and pulsed dc magnetron sputtering”, Thin Solid Films, 517 (2009) 1887-1894.
[112]Q. Kong, L. Ji, H. Li, X. Liu, Y. Wang, J. Chen and H. Zhou, “Composition, microstructure and properties of CrNx films deposited using medium frequency magnetron sputtering”, Applied Surface Science, 257 (2011) 2269-2274.
[113]C. Liu, Q. Bi, H. Ziegele, A. Leyland and A. Mattews, “Structure and corrosion properties of PVD Cr-N coatings”, Journal of Vacuum Science & Technology A Vacuum Surfaces and Films, 20 (2002) 772-780.
[114]Y. L. Chipatecua, J. J. Olaya and D. F. Arias, “Corrosion behaviour of CrN/Cr multilayers on stainless steel deposited by unbalanced magnetron sputtering”, Vacuum, 86 (2012) 1393-1401.
[115]S. D. Chyou and H. C. Shih, “The effect of nitrogen on the corrosion of plasma-nitrided 4140 steel”, Corrosion, 47 (1991) 31-34.
[116]C. Keawhan, P. Wongpanya, N. W-Anun and P. Songsiriritthigul, “Corrosion behavior of AISI 410 steel surface coated by physical vapor deposition”, Journal of Metals, Materials and Minerals, 22 (2012) 69-76.
[117]I. Itoh and T. Hikage, “Dezincification mechanism of brass in vacuum at high temperature”, Transactions of The Japan Institute of Metals, 17 (1976) 165-169.
[118]R. E. Honig and D. A. Kramer, “Vapor pressure data for the solid and li quid elements”, RCA Review, 30 (1969) 285-305.
[119]A. D. Smigelskas and E. O. Kirkendall, “Zinc diffusion in alpha brass”, Transactions of AIME, 171 (1947) 130-142.
[120]D. M. Mattox, “Particle bombardment effects on thin film deposition: A review”, Journal of Vacuum Science and Technology A, 7 (1989) 1105-1114.
[121]S. Rashmi, L. Elias and A. C. Hegde, “Multilayer Zn-Ni alloy coatings for better corrosion protection of mild steel”, Engineering Science and Technology, An International Journal, 20 (2017) 1227-1232.
[122]M. Rahsepar and M. E. Bahrololoom, “Corrosion study of Ni/Zn compositionally modulated multilayer coatings using electrochemical impedance spectroscopy”, Corrosion Science, 51 (2009) 2537-2543.

電子全文 電子全文(網際網路公開日期:20250101)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top