|
References
1.Hay, J. X. W., Wu, T. Y., Juan, J. C., and Md. Jahim, J., Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: Overview, economics, and future prospects of hydrogen usage. Biofuels, Bioproducts and Biorefining, 2013. 7(3): p. 334-352. 2.Nam, T. c. C. n. V., Chăn nuôi lợn tại Việt Nam: Thực trạng và triển vọng. 2018. 3.Logan, B. E., Oh, S.-E., Kim, I. S., and Van Ginkel, S., Biological Hydrogen Production Measured in Batch Anaerobic Respirometers. Environmental Science & Technology, 2002. 36(11): p. 2530-2535. 4.Yokoyama, H., Waki, M., Moriya, N., Yasuda, T., Tanaka, Y., and Haga, K., Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Applied Microbiology and Biotechnology, 2007. 74(2): p. 474-483. 5.Upadhyay, A., P. Lama, J., and Tawata, S., Utilization of Pineapple Waste: A Review. Vol. 6. 2010. 10. 6.Kothari, R., Singh, D. P., Tyagi, V. V., and Tyagi, S. K., Fermentative hydrogen production – An alternative clean energy source. Renewable and Sustainable Energy Reviews, 2012. 16(4): p. 2337-2346. 7.Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P. N. L., and Esposito, G., A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy, 2015. 144: p. 73-95. 8.Florin, N. and Harris, A., Hydrogen production from biomass. The Environmentalist, 2007. 27(1): p. 207-215. 9.Nath, K. and Das, D., Improvement of fermentative hydrogen production: various approaches. Applied Microbiology and Biotechnology, 2004. 65(5): p. 520-529. 10.Das, D. and Veziroǧlu, T. N., Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 2001. 26(1): p. 13-28. 11.Kapdan, I. K. and Kargi, F., Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 2006. 38(5): p. 569-582. 12.Bauer, C. G. and Forest, T. W., Effect of hydrogen addition on the performance of methane-fueled vehicles. Part I: effect on S.I. engine performance. International Journal of Hydrogen Energy, 2001. 26(1): p. 55-70. 13.Zhu, J., Li, Y., Wu, X., Miller, C., Chen, P., and Ruan, R., Swine manure fermentation for hydrogen production. Bioresour Technol, 2009. 100(22): p. 5472-7. 14.De Bere, L., Anaerobic digestion of solid waste: state-of-the-art. Water Science and Technology, 2000. 41(3): p. 283. 15.Hartmann, H. and Ahring Birgitte, K., A novel process configuration for anaerobic digestion of source‐sorted household waste using hyper‐thermophilic post‐treatment. Biotechnology and Bioengineering, 2005. 90(7): p. 830-837. 16.Han, S. K., Kim, S. H., Kim, H. W., and Shin, H. S., Pilot-scale two-stage process: a combination of acidogenic hydrogenesis and methanogenesis. Water Science and Technology, 2005. 52(1-2): p. 131. 17.Pan, J., Zhang, R., El-Mashad, H. M., Sun, H., and Ying, Y., Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. International Journal of Hydrogen Energy, 2008. 33(23): p. 6968-6975. 18.Gavala, H. N., Skiadas, I. V., Ahring, B. K., and Lyberatos, G., Potential for biohydrogen and methane production from olive pulp. Water Science and Technology, 2005. 52(1-2): p. 209. 19.Antonopoulou, G., Stamatelatou, K., Venetsaneas, N., Kornaros, M., and Lyberatos, G., Biohydrogen and Methane Production from Cheese Whey in a Two-Stage Anaerobic Process. Industrial & Engineering Chemistry Research, 2008. 47(15): p. 5227-5233. 20.Nathao, C., Sirisukpoka, U., and Pisutpaisal, N., Production of hydrogen and methane by one and two stage fermentation of food waste. International Journal of Hydrogen Energy, 2013. 38(35): p. 15764-15769. 21.Parawira, Anaerobic treatment of agricultural residues and wastewater. PhD Thesis, Lund University, Sweden. 2004. 22.Thompson, R. S. and University, U. S., Hydrogen Production By Anaerobic Fermentation Using Agricultural and Food Processing Wastes Utilizing a Two-Stage Digestion System. 2008. 23.González-Eguino, M., Energy poverty: An overview. Renewable and Sustainable Energy Reviews, 2015. 47: p. 377-385. 24.Demirbas, A., Methane Gas Hydrate. Vol. 34. 2010. 25.J., B., Feasibility analysis of photobiological hydrogen production. International Journal of Hydrogen Energy 1997; 22(10-11):979-987., 1997. 26.Turner, J. A., Sustainable Hydrogen Production. Science, 2004. 305(5686): p. 972. 27.J., R., The hydrogen economy. New York, 2002. 28.Lattin, W. C. and Utgikar, V. P., Transition to hydrogen economy in the United States: A 2006 status report. International Journal of Hydrogen Energy, 2007. 32(15): p. 3230-3237. 29.Kargi F, K. I., Biohydrogen production from waste materials. Int Hydrogen Energy Congress and Exhibition, Istanbul, Turkey. 2005. 30.CENTER, L. L., PIG FARMS AND MANURE MANAGEMENT. 2017. 31.Saraswaty, V., Risdian, C., Primadona, I., Andriyani, R., Andayani, D. G. S., and Mozef, T., Pineapple peel wastes as a potential source of antioxidant compounds. IOP Conference Series: Earth and Environmental Science, 2017. 60(1): p. 012013. 32.Jirapornvaree, I., Suppadit, T., and Popan, A., Use of pineapple waste for production of decomposable pots. International Journal of Recycling of Organic Waste in Agriculture, 2017. 6(4): p. 345-350. 33.DY, C., Studies of high rate anaerobic bio-conversion technology for energy production during treatment of high strength organic waste waters. . 2005. 34.Hwang, M. H., Jang, N. J., Hyun, S. H., and Kim, I. S., Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. Journal of Biotechnology, 2004. 111(3): p. 297-309. 35.Ali Shah, F., Mahmood, Q., Maroof Shah, M., Pervez, A., and Ahmad Asad, S., Microbial ecology of anaerobic digesters: the key players of anaerobiosis. TheScientificWorldJournal, 2014. 2014: p. 183752-183752. 36.Krishnan, S., Din, M. F. M., Taib, S. M., Ling, Y. E., Puteh, H., Mishra, P., Nasrullah, M., Sakinah, M., Wahid, Z. A., Rana, S., and Singh, L., Process constraints in sustainable bio-hythane production from wastewater: Technical note. Bioresource Technology Reports, 2018. 37.Liu, Z., Zhang, C., Lu, Y., Wu, X., Wang, L., Wang, L., Han, B., and Xing, X.-H., States and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Bioresource Technology, 2013. 135: p. 292-303. 38.Krishna, D. R. H., Review of Research on Production Methods of Hydrogen: Future Fuel. 2013. 39.Demirel, B. and Yenigün, O., Two‐phase anaerobic digestion processes: a review. Journal of Chemical Technology & Biotechnology, 2002. 77(7): p. 743-755. 40.Cheong, D.-Y., Hansen, C. L., and Stevens, D. K., Production of bio-hydrogen by mesophilic anaerobic fermentation in an acid-phase sequencing batch reactor. Biotechnology and Bioengineering, 2006. 96(3): p. 421-432. 41.Association, A. P. H., Standard methods for the examination of water and wastewater. Washington DC, USA, (19th ed.) (1995). 42.Yemm, E. W. and Willis, A. J., The estimation of carbohydrates in plant extracts by anthrone. The Biochemical journal, 1954. 57(3): p. 508-514. 43.Kim, D.-H., Kim, S.-H., and Shin, H.-S., Hydrogen fermentation of food waste without inoculum addition. Enzyme and Microbial Technology, 2009. 45(3): p. 181-187. 44.Bundhoo, M. A. Z., Mohee, R., and Hassan, M. A., Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review. Journal of Environmental Management, 2015. 157: p. 20-48. 45.Xing, Y., Li, Z., Fan, Y., and Hou, H., Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Environ Sci Pollut Res Int, 2010. 17(2): p. 392-9. 46.Bao, M. D., Su, H.J., Tan, T.W.,, Dark fermentative bio-hydrogen production: effects of substrate pre-treatment and addition of metal ions or L-cysteine. Fuel 112, 38e44., 2013. 47.Krishnan, S., Singh, L., Sakinah, M., Thakur, S., Wahid, Z. A., and Sohaili, J., Effect of organic loading rate on hydrogen (H2) and methane (CH4) production in two-stage fermentation under thermophilic conditions using palm oil mill effluent (POME). Energy for Sustainable Development, 2016. 34: p. 130-138. 48.Liu, C.-M., Zheng, J.-L., Wu, S.-Y., and Chu, C.-Y., Fermentative hydrogen production potential from washing wastewater of beverage production process. International Journal of Hydrogen Energy, 2016. 41(7): p. 4466-4473. 49.Ottaviano, L. M., Ramos, L. R., Botta, L. S., Amâncio Varesche, M. B., and Silva, E. L., Continuous thermophilic hydrogen production from cheese whey powder solution in an anaerobic fluidized bed reactor: Effect of hydraulic retention time and initial substrate concentration. International Journal of Hydrogen Energy, 2017. 42(8): p. 4848-4860. 50.Sivagurunathan, P., Kumar, G., Bakonyi, P., Kim, S.-H., Kobayashi, T., Xu, K. Q., Lakner, G., Tóth, G., Nemestóthy, N., and Bélafi-Bakó, K., A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems. International Journal of Hydrogen Energy, 2016. 41(6): p. 3820-3836. 51.Zhu, J., Li, Y., Wu, X., Miller, C., Chen, P., and Ruan, R., Swine manure fermentation for hydrogen production. Bioresource Technology, 2009. 100(22): p. 5472-5477. 52.Kongjan, P. A. I. A., Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration. . Bioresource Technology, 2010. 101(20): p. 7789-7796. 53.Paudel, S., Kang, Y., Yoo, Y.-S., and Seo, G. T., Effect of volumetric organic loading rate (OLR) on H2 and CH4 production by two-stage anaerobic co-digestion of food waste and brown water. Waste Management, 2017. 61: p. 484-493. 54.Pasupuleti, S. B. and Venkata Mohan, S., Single-stage fermentation process for high-value biohythane production with the treatment of distillery spent-wash. Bioresource Technology, 2015. 189: p. 177-185. 55.Youn, J.-H. and Shin, H.-S., Comparative performance between temperaturephased and conventional mesophilic two-phased processes in terms of anaerobically produced bioenergy from food waste. Waste Management & Research, 2005. 23(1): p. 32-38. 56.Plangklang, P., Reungsang, A., and Pattra, S., Enhanced bio-hydrogen production from sugarcane juice by immobilized Clostridium butyricum on sugarcane bagasse. International Journal of Hydrogen Energy, 2012. 37(20): p. 15525-15532. 57.Lay, C.-H., Vo, T.-P., Lin, P.-Y., Abdul, P. M., Liu, C.-M., and Lin, C.-Y., Anaerobic hydrogen and methane production from low-strength beverage wastewater. International Journal of Hydrogen Energy, 2019. 44(28): p. 14351-14361. 58.Achouri, O., Enhancing the biomethane production from tannery wastewater by thermal pretreatment. Algerian Journal of Environmental Science and Technology, 2017. 59.Schievano, A., Tenca, A., Scaglia, B., Merlino, G., Rizzi, A., Daffonchio, D., Oberti, R., and Adani, F., Two-Stage vs Single-Stage Thermophilic Anaerobic Digestion: Comparison of Energy Production and Biodegradation Efficiencies. Environmental Science & Technology, 2012. 46(15): p. 8502-8510. 60.Nualsri, C., Kongjan, P., and Reungsang, A., Direct integration of CSTR-UASB reactors for two-stage hydrogen and methane production from sugarcane syrup. International Journal of Hydrogen Energy, 2016. 41(40): p. 17884-17895. 61.Qian, M., Li, Y., Zhang, Y., Sun, Z., Wang, Y., Feng, J., Yao, Z., and Zhao, L., Efficient acetogenesis of anaerobic co-digestion of food waste and maize straw in a HSAD reactor. Bioresource Technology, 2019. 283: p. 221-228. 62.Jaenicke, S., Ander, C., Bekel, T., Bisdorf, R., Dröge, M., Gartemann, K.-H., Jünemann, S., Kaiser, O., Krause, L., Tille, F., Zakrzewski, M., Pühler, A., Schlüter, A., and Goesmann, A., Comparative and Joint Analysis of Two Metagenomic Datasets from a Biogas Fermenter Obtained by 454-Pyrosequencing. PLOS ONE, 2011. 6(1): p. e14519. 63.Shin, S. G., Lee, S., Lee, C., Hwang, K., and Hwang, S., Qualitative and quantitative assessment of microbial community in batch anaerobic digestion of secondary sludge. Bioresource Technology, 2010. 101(24): p. 9461-9470. 64.Algapani, D. E., Qiao, W., di Pumpo, F., Bianchi, D., Wandera, S. M., Adani, F., and Dong, R., Long-term bio-H2 and bio-CH4 production from food waste in a continuous two-stage system: Energy efficiency and conversion pathways. Bioresource Technology, 2018. 248: p. 204-213. 65.Kongjan, P., Sama, K., Sani, K., Jariyaboon, R., and Reungsang, A., Feasibility of bio-hythane production by co-digesting skim latex serum (SLS) with palm oil mill effluent (POME) through two-phase anaerobic process. International Journal of Hydrogen Energy, 2018. 43(20): p. 9577-9590. 66.Schievano, A., Tenca, A., Lonati, S., Manzini, E., and Adani, F., Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass? Applied Energy, 2014. 124: p. 335-342. 67.Shin, S. G., Han, G., Lim, J., Lee, C., and Hwang, S., A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater. Water Research, 2010. 44(17): p. 4838-4849. 68.Dareioti, M. A. and Kornaros, M., Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: Effect of hydraulic retention time. Bioresource Technology, 2015. 175: p. 553-562. 69.Seengenyoung, J., Mamimin, C., Prasertsan, P., and O-Thong, S., Pilot-scale of biohythane production from palm oil mill effluent by two-stage thermophilic anaerobic fermentation. International Journal of Hydrogen Energy, 2019. 44(6): p. 3347-3355. 70.Jiang, H., Qin, Y., Gadow, S. I., Ohnishi, A., Fujimoto, N., and Li, Y.-Y., Bio-hythane production from cassava residue by two-stage fermentative process with recirculation. Bioresource Technology, 2018. 247: p. 769-775. 71.Panpong, K., Srimachai, T., Nuithitikul, K., Kongjan, P., O-thong, S., Imai, T., and Kaewthong, N., Anaerobic co-digestion between canned sardine wastewater and glycerol waste for biogas production: Effect of different operating processes. Energy Procedia, 2017. 138: p. 260-266. 72.Kumari, S. and Das, D., Biohythane production from sugarcane bagasse and water hyacinth: A way towards promising green energy production. Journal of Cleaner Production, 2019. 207: p. 689-701.
|