跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/17 06:19
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:阮新中
研究生(外文):NGUYEN TAN TRUNG
論文名稱:混合豬糞尿與鳳梨廢棄物連續兩階段共消化生產生物氫和生物甲烷的預處理研究
論文名稱(外文):Pretreatment Study on Biohydrogen and Biomethane Productions in a Continuous Two-stage Co-digestion Process from Mixed of Swine Manure and Pineapple Waste
指導教授:朱正永
指導教授(外文):CHEN-YEON, CHU
口試委員:張逢源李亞潔
口試委員(外文):Zhang FengyuanLi Yajie
口試日期:2019-07-18
學位類別:碩士
校院名稱:逢甲大學
系所名稱:綠色能源科技碩士學位學程
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:英文
論文頁數:83
中文關鍵詞:二階段厭氧生物反應器豬糞尿鳳梨廢棄物共消化生物氫生物甲烷預處理
外文關鍵詞:Two-stage anaerobic systemCo-digestionPineapple WasteSwine ManureBiohydrogenBiomethanePretreatment
相關次數:
  • 被引用被引用:0
  • 點閱點閱:184
  • 評分評分:
  • 下載下載:3
  • 收藏至我的研究室書目清單書目收藏:0
摘 要

本研究是以二階段連續攪拌的厭氧生物反應器來轉化混合豬糞尿與鳳梨廢棄物共消化生產生物氫和生物甲烷的預處理研究,其中第一階段是產氫發酵槽,在中溫條件下37℃,與豬糞混合的鳳梨廢水濃度105 g COD/L生產氫氣。第二階段是產甲烷發酵槽,將來自產氫發酵槽的出流物直接加入生產甲烷。氫發酵槽和甲烷發酵槽的工作體積分別為0.2 L和10.0 L。本研究主要操作參數為調整二階段氫氣和甲烷生產的水力停留時間和優化熱預處理,實驗發現,在二階段的厭氧共消化系統中,第一階段產氫發酵槽的最佳水力停留時間為4.5 h,第二階段產甲烷發酵槽為9 d,豬糞和鳳梨廢物的在95℃ 下分別熱預處理 1 h,最大產氫速率為1488.62 mL/L/d,產甲烷速率為991.57 mL/L/d。
在第一階段共消化產氫實驗中,乙酸、丁酸與戊酸為主要液相代謝物,其中在所有測試條件下乙酸非發性有機物的比例從70到73%,且從沒有預處理到熱預處理,以及從低進料速率到高進料速率,乙酸佔非發性有機物的比例也有增加的趨勢。從菌門的分析中厚壁菌門 Firmicutes佔絕對優勢,厚壁菌是厭氧反應器中常見的主要微生物群落,是水解和酸化階段最主要的微生物群落,其在HRT 9 h時佔比約48%,在HRT 4.5 h時約佔52%。在第二階段共消化產甲烷實驗中,在HRT 18天和非熱預處理中,對照中最主要的古菌門是廣域古菌門Euryarchaeota約佔60%,當水力停留時間進一步降低至9天時,發現廣域古菌門Euryarchaeota菌門群增加至約76%。該結果顯示甲烷醱酵槽中的細菌群落在低的水力停留時間時古菌群落佔優勢,這與許多的甲烷醱酵程序的優勢菌群結構一致。
二階段連續攪拌的厭氧生物反應器在110 d內生產氫氣和甲烷方面表現良好,從高COD廢水中轉化出高能量,水力停留時間4 h可達到196.47 kJ/L/d和90%COD去除效率。
最後,二階段連續共消化製程在110天內可以穩定的生產氫氣和甲烷,在高基質濃度105 g COD / L和低水力停留時間 4.5 h的完全厭氧共消化實驗中,最佳能量產率為196.47 kJ /L/d,COD去除率為90%。 實驗結果說明,二階段共消化過程可提高COD去除率,提高CH4生產率的同時提高淨能源產量,也提高沼氣質量,顯著縮短醱酵完成時間減少反應器體積。

The study was conducted in a continuous co-digestion process by using the mixed of swine manure and pineapple waste which consisted of two-stage anaerobic reactors, first stage was the hydrogen production fermenter (HPF) and second stage was the methane production fermenter (MPF) both at mesophilic condition of 37℃. HPF was used to produce hydrogen from a mixed of pineapple waste and swine manure with a substrate concentration of 105 g COD/L. The hydrogenogenic effluent from HPF was directly fed into MPF for methane production. The working volumes of HPF and MPF were 0.2 L and 10 L, respectively. The hydraulic retention times (HRT) and heat pretreatment of the feedstock for two-stage hydrogen and methane productions were examined in this study. A maximum hydrogen production rate of 1488.62 mL/L/d and methane production rate of 991.57 mL/L/d were achieved at optimal HRTs of 4.5 h in the HPF and 9 d in the MPR with heat pretreatment at 95℃ in 1 h on both swine manure and pineapple waste.
Acetic, butyric, valeric acids were produced in hydrogen production fermenter, where the acetic acid was dominant volatile fatty acid of soluble metabolites from 70 to 73% at all tested conditions and had a trend of increasing from no pretreatment to heat pretreatment, also from high HRT to low HRT. Firmicutes was dominant and accounted for 48% in population at HRT 9 h and 52% at HRT 4.5 h. Firmicutes are common dominant microflora in anaerobic reactor and the most dominant microflora in hydrolysis and acidification stage. In methane production fermenter, the most dominant archaeal phylum in the control was Euryarchaeota accounted for 60 % in population at HRT 18 d and non-heat pretreatment conditions. Euryarchaeota population increased to 76 % when the HRT was further reduced to the optimal value of 9 d. This result indicates that the bacterial community in the MPF prevailed on archaeal community at short HRTs that in accordance with most methane production processes.
Finally, the two-stage continuous co-digestion process performed well in producing hydrogen and methane over 110 d. The optimal total energy of 196.47 kJ/L/d and COD removal efficiency of 90% were obtained in the complete anaerobic co-digestion process at high substrate concentration of 105 g COD/L and low HRT 4.5 h, respectively. The result shows that the two-stage co-digestion process could increase COD removal efficiency, increase CH4 production rate accompany with net energy gains as well as high quality of biogas and significantly reduced fermentation time.

Table of Contents
List of Figures 8
List of Tables 8
Abbreviations 9
Chapter 1. Introduction and objectives 10
1.1 Background 10
1.2 Motivation 15
Chapter 2. Literature review 17
2.1 Fossil fuel and hydrogen economy 17
2.1.1 Fossil fuel effects 17
2.1.2 Hydrogen society 19
2.2 Biowaste management 21
2.2.1 Swine manure 21
2.2.2 Pineapple waste 23
2.3 Biogas production 25
2.3.1 Hydrolysis and Acidogenesis 26
2.3.2 Methanogenesis 28
2.3.3 Bio-hythane 29
2.4 Two-stage biohythane production 31
2.4.1 Dark fermentation 31
2.4.2 Two-Stage Anaerobic System 32
a. Temperature 33
b. pH and Alkalinity 34
c. Nutrient 35
d. HRT 35
e. Microbial Communities 36
Chapter 3. Experimental setup and methods 38
3.1 Seed sludge and substrate 38
3.2 Pretreatment experiment 40
3.3 Procedure and equipments 41
3.3.1 Hydrogen production fermenter 42
3.3.2 Methane production fermenter 44
3.4. Water quality analysis: 45
3.4.1 TS and VS 45
3.4.2 Total sugar and COD 46
3.4.3 Gaseous sample analysis 47
3.4.4. VFAs. 47
3.4.5 TKN: Total Kjeldahl Nitrogen 47
Chapter 4. Results and discussion 49
4.1 Biohythane production performance 49
4.1.1 Hydrogen production 49
4.1.2 Methane production 54
4.2 Metabolites 58
4.2.1 Hydrogenesis 58
4.2.2 Methanogenesis 60
4.3 COD, total sugar, TS, and VS removal 61
4.4 Total energy recovery 64
4.5 Bacterial community 65
4.5.1 Hydrogen production fermenter 65
4.5.2 Methane production fermenter 68
4.6 Comparison analysis 70
Chapter 5. Conclusions 74
References 76


References

1.Hay, J. X. W., Wu, T. Y., Juan, J. C., and Md. Jahim, J., Biohydrogen production through photo fermentation or dark fermentation using waste as a substrate: Overview, economics, and future prospects of hydrogen usage. Biofuels, Bioproducts and Biorefining, 2013. 7(3): p. 334-352.
2.Nam, T. c. C. n. V., Chăn nuôi lợn tại Việt Nam: Thực trạng và triển vọng. 2018.
3.Logan, B. E., Oh, S.-E., Kim, I. S., and Van Ginkel, S., Biological Hydrogen Production Measured in Batch Anaerobic Respirometers. Environmental Science & Technology, 2002. 36(11): p. 2530-2535.
4.Yokoyama, H., Waki, M., Moriya, N., Yasuda, T., Tanaka, Y., and Haga, K., Effect of fermentation temperature on hydrogen production from cow waste slurry by using anaerobic microflora within the slurry. Applied Microbiology and Biotechnology, 2007. 74(2): p. 474-483.
5.Upadhyay, A., P. Lama, J., and Tawata, S., Utilization of Pineapple Waste: A Review. Vol. 6. 2010. 10.
6.Kothari, R., Singh, D. P., Tyagi, V. V., and Tyagi, S. K., Fermentative hydrogen production – An alternative clean energy source. Renewable and Sustainable Energy Reviews, 2012. 16(4): p. 2337-2346.
7.Ghimire, A., Frunzo, L., Pirozzi, F., Trably, E., Escudie, R., Lens, P. N. L., and Esposito, G., A review on dark fermentative biohydrogen production from organic biomass: Process parameters and use of by-products. Applied Energy, 2015. 144: p. 73-95.
8.Florin, N. and Harris, A., Hydrogen production from biomass. The Environmentalist, 2007. 27(1): p. 207-215.
9.Nath, K. and Das, D., Improvement of fermentative hydrogen production: various approaches. Applied Microbiology and Biotechnology, 2004. 65(5): p. 520-529.
10.Das, D. and Veziroǧlu, T. N., Hydrogen production by biological processes: a survey of literature. International Journal of Hydrogen Energy, 2001. 26(1): p. 13-28.
11.Kapdan, I. K. and Kargi, F., Bio-hydrogen production from waste materials. Enzyme and Microbial Technology, 2006. 38(5): p. 569-582.
12.Bauer, C. G. and Forest, T. W., Effect of hydrogen addition on the performance of methane-fueled vehicles. Part I: effect on S.I. engine performance. International Journal of Hydrogen Energy, 2001. 26(1): p. 55-70.
13.Zhu, J., Li, Y., Wu, X., Miller, C., Chen, P., and Ruan, R., Swine manure fermentation for hydrogen production. Bioresour Technol, 2009. 100(22): p. 5472-7.
14.De Bere, L., Anaerobic digestion of solid waste: state-of-the-art. Water Science and Technology, 2000. 41(3): p. 283.
15.Hartmann, H. and Ahring Birgitte, K., A novel process configuration for anaerobic digestion of source‐sorted household waste using hyper‐thermophilic post‐treatment. Biotechnology and Bioengineering, 2005. 90(7): p. 830-837.
16.Han, S. K., Kim, S. H., Kim, H. W., and Shin, H. S., Pilot-scale two-stage process: a combination of acidogenic hydrogenesis and methanogenesis. Water Science and Technology, 2005. 52(1-2): p. 131.
17.Pan, J., Zhang, R., El-Mashad, H. M., Sun, H., and Ying, Y., Effect of food to microorganism ratio on biohydrogen production from food waste via anaerobic fermentation. International Journal of Hydrogen Energy, 2008. 33(23): p. 6968-6975.
18.Gavala, H. N., Skiadas, I. V., Ahring, B. K., and Lyberatos, G., Potential for biohydrogen and methane production from olive pulp. Water Science and Technology, 2005. 52(1-2): p. 209.
19.Antonopoulou, G., Stamatelatou, K., Venetsaneas, N., Kornaros, M., and Lyberatos, G., Biohydrogen and Methane Production from Cheese Whey in a Two-Stage Anaerobic Process. Industrial & Engineering Chemistry Research, 2008. 47(15): p. 5227-5233.
20.Nathao, C., Sirisukpoka, U., and Pisutpaisal, N., Production of hydrogen and methane by one and two stage fermentation of food waste. International Journal of Hydrogen Energy, 2013. 38(35): p. 15764-15769.
21.Parawira, Anaerobic treatment of agricultural residues and wastewater. PhD Thesis, Lund University, Sweden. 2004.
22.Thompson, R. S. and University, U. S., Hydrogen Production By Anaerobic Fermentation Using Agricultural and Food Processing Wastes Utilizing a Two-Stage Digestion System. 2008.
23.González-Eguino, M., Energy poverty: An overview. Renewable and Sustainable Energy Reviews, 2015. 47: p. 377-385.
24.Demirbas, A., Methane Gas Hydrate. Vol. 34. 2010.
25.J., B., Feasibility analysis of photobiological hydrogen production. International Journal of Hydrogen Energy 1997; 22(10-11):979-987., 1997.
26.Turner, J. A., Sustainable Hydrogen Production. Science, 2004. 305(5686): p. 972.
27.J., R., The hydrogen economy. New York, 2002.
28.Lattin, W. C. and Utgikar, V. P., Transition to hydrogen economy in the United States: A 2006 status report. International Journal of Hydrogen Energy, 2007. 32(15): p. 3230-3237.
29.Kargi F, K. I., Biohydrogen production from waste materials. Int Hydrogen Energy Congress and Exhibition, Istanbul, Turkey. 2005.
30.CENTER, L. L., PIG FARMS AND MANURE MANAGEMENT. 2017.
31.Saraswaty, V., Risdian, C., Primadona, I., Andriyani, R., Andayani, D. G. S., and Mozef, T., Pineapple peel wastes as a potential source of antioxidant compounds. IOP Conference Series: Earth and Environmental Science, 2017. 60(1): p. 012013.
32.Jirapornvaree, I., Suppadit, T., and Popan, A., Use of pineapple waste for production of decomposable pots. International Journal of Recycling of Organic Waste in Agriculture, 2017. 6(4): p. 345-350.
33.DY, C., Studies of high rate anaerobic bio-conversion technology for energy production during treatment of high strength organic waste waters. . 2005.
34.Hwang, M. H., Jang, N. J., Hyun, S. H., and Kim, I. S., Anaerobic bio-hydrogen production from ethanol fermentation: the role of pH. Journal of Biotechnology, 2004. 111(3): p. 297-309.
35.Ali Shah, F., Mahmood, Q., Maroof Shah, M., Pervez, A., and Ahmad Asad, S., Microbial ecology of anaerobic digesters: the key players of anaerobiosis. TheScientificWorldJournal, 2014. 2014: p. 183752-183752.
36.Krishnan, S., Din, M. F. M., Taib, S. M., Ling, Y. E., Puteh, H., Mishra, P., Nasrullah, M., Sakinah, M., Wahid, Z. A., Rana, S., and Singh, L., Process constraints in sustainable bio-hythane production from wastewater: Technical note. Bioresource Technology Reports, 2018.
37.Liu, Z., Zhang, C., Lu, Y., Wu, X., Wang, L., Wang, L., Han, B., and Xing, X.-H., States and challenges for high-value biohythane production from waste biomass by dark fermentation technology. Bioresource Technology, 2013. 135: p. 292-303.
38.Krishna, D. R. H., Review of Research on Production Methods of Hydrogen: Future Fuel. 2013.
39.Demirel, B. and Yenigün, O., Two‐phase anaerobic digestion processes: a review. Journal of Chemical Technology & Biotechnology, 2002. 77(7): p. 743-755.
40.Cheong, D.-Y., Hansen, C. L., and Stevens, D. K., Production of bio-hydrogen by mesophilic anaerobic fermentation in an acid-phase sequencing batch reactor. Biotechnology and Bioengineering, 2006. 96(3): p. 421-432.
41.Association, A. P. H., Standard methods for the examination of water and wastewater. Washington DC, USA, (19th ed.) (1995).
42.Yemm, E. W. and Willis, A. J., The estimation of carbohydrates in plant extracts by anthrone. The Biochemical journal, 1954. 57(3): p. 508-514.
43.Kim, D.-H., Kim, S.-H., and Shin, H.-S., Hydrogen fermentation of food waste without inoculum addition. Enzyme and Microbial Technology, 2009. 45(3): p. 181-187.
44.Bundhoo, M. A. Z., Mohee, R., and Hassan, M. A., Effects of pre-treatment technologies on dark fermentative biohydrogen production: A review. Journal of Environmental Management, 2015. 157: p. 20-48.
45.Xing, Y., Li, Z., Fan, Y., and Hou, H., Biohydrogen production from dairy manures with acidification pretreatment by anaerobic fermentation. Environ Sci Pollut Res Int, 2010. 17(2): p. 392-9.
46.Bao, M. D., Su, H.J., Tan, T.W.,, Dark fermentative bio-hydrogen production: effects of substrate pre-treatment and addition of metal ions or L-cysteine. Fuel 112, 38e44., 2013.
47.Krishnan, S., Singh, L., Sakinah, M., Thakur, S., Wahid, Z. A., and Sohaili, J., Effect of organic loading rate on hydrogen (H2) and methane (CH4) production in two-stage fermentation under thermophilic conditions using palm oil mill effluent (POME). Energy for Sustainable Development, 2016. 34: p. 130-138.
48.Liu, C.-M., Zheng, J.-L., Wu, S.-Y., and Chu, C.-Y., Fermentative hydrogen production potential from washing wastewater of beverage production process. International Journal of Hydrogen Energy, 2016. 41(7): p. 4466-4473.
49.Ottaviano, L. M., Ramos, L. R., Botta, L. S., Amâncio Varesche, M. B., and Silva, E. L., Continuous thermophilic hydrogen production from cheese whey powder solution in an anaerobic fluidized bed reactor: Effect of hydraulic retention time and initial substrate concentration. International Journal of Hydrogen Energy, 2017. 42(8): p. 4848-4860.
50.Sivagurunathan, P., Kumar, G., Bakonyi, P., Kim, S.-H., Kobayashi, T., Xu, K. Q., Lakner, G., Tóth, G., Nemestóthy, N., and Bélafi-Bakó, K., A critical review on issues and overcoming strategies for the enhancement of dark fermentative hydrogen production in continuous systems. International Journal of Hydrogen Energy, 2016. 41(6): p. 3820-3836.
51.Zhu, J., Li, Y., Wu, X., Miller, C., Chen, P., and Ruan, R., Swine manure fermentation for hydrogen production. Bioresource Technology, 2009. 100(22): p. 5472-5477.
52.Kongjan, P. A. I. A., Extreme thermophilic biohydrogen production from wheat straw hydrolysate using mixed culture fermentation: effect of reactor configuration. . Bioresource Technology, 2010. 101(20): p. 7789-7796.
53.Paudel, S., Kang, Y., Yoo, Y.-S., and Seo, G. T., Effect of volumetric organic loading rate (OLR) on H2 and CH4 production by two-stage anaerobic co-digestion of food waste and brown water. Waste Management, 2017. 61: p. 484-493.
54.Pasupuleti, S. B. and Venkata Mohan, S., Single-stage fermentation process for high-value biohythane production with the treatment of distillery spent-wash. Bioresource Technology, 2015. 189: p. 177-185.
55.Youn, J.-H. and Shin, H.-S., Comparative performance between temperaturephased and conventional mesophilic two-phased processes in terms of anaerobically produced bioenergy from food waste. Waste Management & Research, 2005. 23(1): p. 32-38.
56.Plangklang, P., Reungsang, A., and Pattra, S., Enhanced bio-hydrogen production from sugarcane juice by immobilized Clostridium butyricum on sugarcane bagasse. International Journal of Hydrogen Energy, 2012. 37(20): p. 15525-15532.
57.Lay, C.-H., Vo, T.-P., Lin, P.-Y., Abdul, P. M., Liu, C.-M., and Lin, C.-Y., Anaerobic hydrogen and methane production from low-strength beverage wastewater. International Journal of Hydrogen Energy, 2019. 44(28): p. 14351-14361.
58.Achouri, O., Enhancing the biomethane production from tannery wastewater by thermal pretreatment. Algerian Journal of Environmental Science and Technology, 2017.
59.Schievano, A., Tenca, A., Scaglia, B., Merlino, G., Rizzi, A., Daffonchio, D., Oberti, R., and Adani, F., Two-Stage vs Single-Stage Thermophilic Anaerobic Digestion: Comparison of Energy Production and Biodegradation Efficiencies. Environmental Science & Technology, 2012. 46(15): p. 8502-8510.
60.Nualsri, C., Kongjan, P., and Reungsang, A., Direct integration of CSTR-UASB reactors for two-stage hydrogen and methane production from sugarcane syrup. International Journal of Hydrogen Energy, 2016. 41(40): p. 17884-17895.
61.Qian, M., Li, Y., Zhang, Y., Sun, Z., Wang, Y., Feng, J., Yao, Z., and Zhao, L., Efficient acetogenesis of anaerobic co-digestion of food waste and maize straw in a HSAD reactor. Bioresource Technology, 2019. 283: p. 221-228.
62.Jaenicke, S., Ander, C., Bekel, T., Bisdorf, R., Dröge, M., Gartemann, K.-H., Jünemann, S., Kaiser, O., Krause, L., Tille, F., Zakrzewski, M., Pühler, A., Schlüter, A., and Goesmann, A., Comparative and Joint Analysis of Two Metagenomic Datasets from a Biogas Fermenter Obtained by 454-Pyrosequencing. PLOS ONE, 2011. 6(1): p. e14519.
63.Shin, S. G., Lee, S., Lee, C., Hwang, K., and Hwang, S., Qualitative and quantitative assessment of microbial community in batch anaerobic digestion of secondary sludge. Bioresource Technology, 2010. 101(24): p. 9461-9470.
64.Algapani, D. E., Qiao, W., di Pumpo, F., Bianchi, D., Wandera, S. M., Adani, F., and Dong, R., Long-term bio-H2 and bio-CH4 production from food waste in a continuous two-stage system: Energy efficiency and conversion pathways. Bioresource Technology, 2018. 248: p. 204-213.
65.Kongjan, P., Sama, K., Sani, K., Jariyaboon, R., and Reungsang, A., Feasibility of bio-hythane production by co-digesting skim latex serum (SLS) with palm oil mill effluent (POME) through two-phase anaerobic process. International Journal of Hydrogen Energy, 2018. 43(20): p. 9577-9590.
66.Schievano, A., Tenca, A., Lonati, S., Manzini, E., and Adani, F., Can two-stage instead of one-stage anaerobic digestion really increase energy recovery from biomass? Applied Energy, 2014. 124: p. 335-342.
67.Shin, S. G., Han, G., Lim, J., Lee, C., and Hwang, S., A comprehensive microbial insight into two-stage anaerobic digestion of food waste-recycling wastewater. Water Research, 2010. 44(17): p. 4838-4849.
68.Dareioti, M. A. and Kornaros, M., Anaerobic mesophilic co-digestion of ensiled sorghum, cheese whey and liquid cow manure in a two-stage CSTR system: Effect of hydraulic retention time. Bioresource Technology, 2015. 175: p. 553-562.
69.Seengenyoung, J., Mamimin, C., Prasertsan, P., and O-Thong, S., Pilot-scale of biohythane production from palm oil mill effluent by two-stage thermophilic anaerobic fermentation. International Journal of Hydrogen Energy, 2019. 44(6): p. 3347-3355.
70.Jiang, H., Qin, Y., Gadow, S. I., Ohnishi, A., Fujimoto, N., and Li, Y.-Y., Bio-hythane production from cassava residue by two-stage fermentative process with recirculation. Bioresource Technology, 2018. 247: p. 769-775.
71.Panpong, K., Srimachai, T., Nuithitikul, K., Kongjan, P., O-thong, S., Imai, T., and Kaewthong, N., Anaerobic co-digestion between canned sardine wastewater and glycerol waste for biogas production: Effect of different operating processes. Energy Procedia, 2017. 138: p. 260-266.
72.Kumari, S. and Das, D., Biohythane production from sugarcane bagasse and water hyacinth: A way towards promising green energy production. Journal of Cleaner Production, 2019. 207: p. 689-701.


QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊