跳到主要內容

臺灣博碩士論文加值系統

(18.97.9.172) 您好!臺灣時間:2025/02/11 12:18
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

: 
twitterline
研究生:藍柏凱
研究生(外文):Po-Kai Lan
論文名稱:淨零耗能豬場之研究-豬糞醱酵去污與產能
論文名稱(外文):Feasibility study of net zero energy pig farm using biogas energy
指導教授:賴奇厚賴奇厚引用關係陳上元陳上元引用關係
指導教授(外文):Chyi-How LaySHANG-YUAN CHEN
口試委員:賴奇厚陳上元林秋裕
口試委員(外文):Chyi-How LaySHANG-YUAN CHENChiu-Yue Lin
口試日期:2019-07-11
學位類別:碩士
校院名稱:逢甲大學
系所名稱:綠色能源科技碩士學位學程
學門:工程學門
學類:綜合工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:132
中文關鍵詞:淨零耗能建築養豬廢水厭氧醱酵產能模擬
外文關鍵詞:net zero energy-consuming buildingspig wastewateranaerobic fermentation capacitysimulation
相關次數:
  • 被引用被引用:1
  • 點閱點閱:275
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
在減緩氣候變遷與能源匱乏的危機下,本研究提倡淨零耗能建築(Net zero energy building, NZEB)以建築節能設計與再生能源發電的應用,並以用電密度(Energy use intensity, EUI)為建築耗能整體綜合指標的度量單位,再以「優化性能百分比」為優化方案的計算方式持續改善設計、進行分析,符合節能績效。
在國內大多養豬戶在處理養豬廢水上都以早期的三段式廢水處理,但成效不彰,最大的問題在於傳統厭氧池缺乏攪拌,導致大多數汙泥皆沉降在底部,其次為厭氧醱酵後之氣體無法直接使用,因為這些沼氣內含硫化物無法直接經由發電機燃燒。本研究應用貨櫃型厭氧醱酵產能模組,其包括大型厭氧醱酵槽、沙濾池、脫硫系統及發電機,該系統既可解決養豬廢水的問題亦可作為再生能源發電的應用。本研究以五階段方式區分設置系統前、設置系統期間、設置系統後、系統每周額外添加600kg豬糞固體物和系統最終穩定期,後面三階段在最大產甲烷速率(Methane production rate,MPR)分別為0.18、0.39和0.39 m3/m3-d;最大產沼氣速率(Biogas production rate,BPR)分別為0.25、0.51和0.57 m3/m3-d。
本研究之養豬場耗電量為37,345 kWh/y,但經由高效能建築優化後為28,195 kWh/y,以厭氧醱酵實驗計算該豬場產生之廢水可產生的電力為33,756 kWh/y,所以能源平衡計算:33,756 kWh/y ≥28,195 kWh/y,故本研究實證淨零耗能豬場的計算與設計的可行性。
關鍵詞:淨零耗能建築、養豬廢水、厭氧醱酵產能、模擬

Under the crisis of mitigating climate change and energy scarcity, this study advocates the application of Net zero energy building (NZEB) for building energy-saving design and renewable energy generation. And using Energy use intensity (EII) for the measurement unit of the overall comprehensive index of building energy consumption, the “optimal performance percentage” is used as the optimization method to continuously improve the design and analysis, which is in line with energy-saving performance.
In most domestic pig farmers, the treatment of pig-raising wastewater is treated with early three-stage wastewater, but the effect is not good. The biggest problem is that the traditional anaerobic tank lacks agitation, causing most of the sludge to settle at the bottom, followed by The gas after anaerobic fermentation can’t be used directly because the sulfur contained in these biogas can’t be directly burned by the generator. This study uses an anaerobic fermentation system, which includes a large anaerobic fermentation tank, a sand filter, a desulfurization system, and a generator. The system can solve the problem of pig wastewater and can be used as a renewable energy source. In this study, the five-stage method is used to distinguish the system before setting, during the system setting, and after setting up the system. The system adds 600 kg of pig manure solids and the system's final stable period every week. In the last three stages, the maximum methane production rate (MPR) was 0.18, 0.39 and 0.39 m3/m3-d, and the maximum biogas production rate (BPR) was 0.25, 0.51 and 0.57 m3/m3-d.
The pig farm in this study consumed 37,345 kWh/y, but after optimization by high-performance buildings, it was 28,195 kWh/y. The anaerobic fermentation experiment calculated that the wastewater generated by the farm could generate 33,756 kWh/y. Therefore, the energy balance calculation: 33,756 kWh / y ≥ 28,195 kWh / y, so this study demonstrates the feasibility of the calculation and design of the net zero-energy farm.
Key words: net zero energy-consuming buildings, pig wastewater, anaerobic fermentation capacity, simulation

誌 謝I
摘 要II
ABSTRACTIII
目 錄V
圖 目 錄VII
表 目 錄X
第一章 前言1
1-1 研究動機與目的1
1-2 研究內容3
1-3 研究流程與架構4
第二章 文獻探討 6
2-1 養豬產業的現況6
2-2 沼氣發電概述 13
2-3 厭氧醱酵反應機制14
2-4 豬場醱酵系統之成本分析17
2-5 台灣與丹麥之豬場比較21
2-6 淨零耗能豬場24
2-7 綠建築評級系統29
2-8 亞洲淨零耗能建築案例分析32
2-9 GREEN BIM 整合設計34
第三章 研究與方法36
3-1 PH值對豬廢水產甲烷之影響37
3-2 貨櫃型厭氧醱酵產能模組處理豬場廢水之產能效果42
3-3 貨櫃型厭氧醱酵產能模組配置與成本分析44
3-4 實驗分析方法52
3-5 設定目標與範圍62
3-6 高效節能建築模擬64
3-7 淨零耗能豬場能源計算71
第四章 結果與討論72
4-1 不同PH對厭氧消化產氣之影響72
4-2 本研究之貨櫃型厭氧醱酵產能模組之現場操作效果74
4-3 貨櫃型厭氧醱酵產能模組成本分析102
4-4 驗證設定目標與範圍107
4-5 驗證高效節能建築108
4-6 驗證淨零耗能豬場計算113
第五章 結論與建議119
5-1 結 論119
5-2 建 議120
中文參考文獻121
英文參考文獻124

內政部建築研究所(2018)。"永續智慧城市。" from https://smartgreen.abri.gov.tw/art.php?no=51&SubJt=.2019年1月5日。
內政部建築研究所智慧綠建築資訊網(2012)。"綠建築標章。" from https://smartgreen.abri.gov.tw/art.php?no=38&SubJt= 2019年2月18日。
白明德,(1999)。厭氧生物產氫機制與程序操作策略之研究。環境工程學系。台南市,國立成功大學,碩士論文。
古瑞麟(2017)。" 移動型模組設備處理飲料工廠廢水產製生質氣體之研究。"出版之碩士論文,逢甲大學綠色能源科技碩士學位學系,台中市。
行政院農委會(2017)。"養豬頭數調查報告。" from https://agrstat.coa.gov.tw/sdweb/public/book/Book.aspx.2019年1月5日。
行政院農委會(2017)。"豬糞變綠電,環境更輕鬆,豬農笑呵呵。" from https://www.agriharvest.tw/theme_data.php?theme=article&sub_theme=article&id=489&fb_comment_id=1269689296431343_1270758316324441. 2018年2月13日。
行政院環保署(2017)。"水污染防治法。" from https://oaout.epa.gov.tw/law/LawContent.aspx?id=FL015489.2019年1月5日。
行政院農委會畜牧處。"台灣養豬產業發展現況及展望。" from https://www.angrin.tlri.gov.tw/pig/2010TCA/2010TCA_1-44.pdf.2019年1月14日。
李俊毅(2018)。"單段與兩段式厭氧消化處理養豬廢水之比較。"出版之碩士論文,逢甲大學綠色能源科技碩士學位學系,台中市。
林勇志,2004,作業基礎成本制度之規劃與設計-以汽機車零組件製造業為例。未出版之碩士論文,東海大學工業工程與經營資訊研究所,台中市。
胡紀萃、周孟津、左劍惡 (2002)。 "廢水厭氧處理理論與技術
"。
施景文、洪肇嘉(2008)。"養台灣畜牧部門溫室氣體排放統計及減量策略初探"。台灣環境資源永續發展研討會。
郭猛德、蕭庭訓、王政騰 (2009)。 "養豬三段式廢水與污泥處理技術。" 現代養豬 30(7): 39-49。
陳儀譯,2006,作業基礎成本管理的第一本書:減少無附加價值作業及成本,提高企業資源利用效率與獲利。台北市:美商麥格羅•希爾。(原文作者:Peter B.B. Turney)。
財團法人中央畜產會 (2016)。 "台灣養豬統計手冊。" from http://www.naif.org.tw/publicList.aspx?frontTitleMenuID=37&frontMenuID=238. 2018年12月8日。
曾四恭,(1992)。 "豬糞尿廢水中氮磷去除方法之研究。" 國立台灣大學環境工程研究所研究報告第130號:51。
廖培志,(2016) 。"高競爭下台灣養豬產業下一步。" from https://docsplayer.com/22956826-1050111_. 2019年2月11日。
鄭乃木、謝明娟,2003,醫療成本及財務管理。台中市:滄海書局。
鄭幸雄 (2015) , 兩段式高溫厭氧生物共消化程序開發應用。中工高雄會刊第22卷第2期。
鐘福,2007,建構以時間導向作業基礎成本制度之成本管理模式-以模具業為例。未出版之碩士論文,逢甲大學經營管理碩士在職專班,台中市。
Ariesyady, H. D., T. Ito and S. Okabe (2007). "Functional bacterial and archaeal community structures of major trophic groups in a full-scale anaerobic sludge digester." Water Research 41: 1554-1568.
Ascione, F., Bianco, N., Böttcher, O., Kaltenbrunner, R., & Vanoli, G. P. (2016). Net zero-energy buildings in Germany: Design, model calibration and lessons learned from a case-study in Berlin. Energy and Buildings, 133, 688-710.
Attia, S., Hamdy, M., O’Brien, W., & Carlucci, S. (2013). Assessing gaps and needs for integrating building performance optimization tools in net zero energy buildings design. Energy and Buildings, 60, 110-124.
Attia, S., Eleftheriou, P., Xeni, F., Morlot, R., Ménézo, C., Kostopoulos,V., Betsi, M., Kalaitzoglou, I., Pagliano, L., & Cellura, M. (2017). Overview and future challenges of nearly zero energy buildings (NZEB) design in Southern Europe. Energy and Buildings, 155, 439-458.
Autodesk® energy renewable available. (2017, February).Autodesk Help Retrieved from https:// knowledge.autodesk.com/
Azhar, S., Carlton, W. A., Olsen, D., & Ahmad, I. (2011). Building information modeling for sustainable design and LEED® rating analysis. Automation in Construction, 20(2), 217-224.
Banerjee, R. (2015). Importance of net zero energy building. International Journal of Innovative Research in Advanced Engineering, 2(5), 141-145.
Batstone, D. J., J. Landelli, A. Saunders, R. I. Webb, L. L. Blackall and J. Keller (2002). "The influence of calcium on granular sludge in a full-scale UASB treating paper mill wastewater." Water Science And Technology: A Journal Of The International Association On Water Pollution Research 45(10): 187-193.
Batzias, F. A., D. K. Sidiras and E. K. Spyrou (2005). Evaluating livestock manures for biogas production: a GIS based method."Renewable Energy 30: 1161-1176.
Becchio, C., Corgnati, S. P., Vio, M., Crespi, G., Prendin, L., Ranieri, M., & Vidotto, D. (2017). Toward NZEB by optimizing HVAC system configuration in different climates. Energy Procedia, 140, 115-126.
Bryant, M., E. Wolin, M. Wolin and R. Wolfe (1967). "Methanobacillus omelianskii, a symbiotic association of two species of bacteria." Archiv für Mikrobiologie 59(1-3): 20.
Bryant, M. P. (1979). Microbial methane production—theoretical aspects.Brimson, J. A.,1991. Activity Accounting: An Activity-Based Costing Approach. New York: John Wiley & Sons, Inc.
Chastas, P., Theodosiou, T., & Bikas, D. (2016). Embodied energy in residential buildings-towards the nearly zero energy building : A literature review. Building and Environment, 105, 267-282.
Chen, S. Y. (2018). A green building information modelling approach: building energy performance analysis and design optimization. MATEC Web of Conferences, 169.
Chen, P. H., Cui, L., Wan, C., Yang, Q., Ting, S. K., & Tiong, R. L. K. (2005). Implementation of IFC-based web server for collaborative building design between architects and structural engineers, Automation in Construction. 14(1), 115-128.
Chen, P. H., & Nguyen, T. C. (2017). Integrating web map service and building information modeling for location and transportation analysis in green building certification process. Automation in Construction, 77, 52-66
Crawley, D., Pless, S., & Torcellini, P. (2009). Getting to net zero(No. NREL/JA-550-46382). National Renewable Energy Lab(NREL).
David, B. Qian, L.(2003) Activity-based cost management for design and development stage. International Journal of Production Economics 83(2):169-183
Deng, S., Wang, R. Z., & Dai, Y. J. (2014). How to evaluate performance of net zero energy building – A literature research. Energy, 71, 1-16.
Dwaikat, L. N., & Ali, K. N. (2018). The economic benefits of a green building – Evidence from Malaysia. Journal of Building Engineering, 18, 448-453.
D, Y., L. W and H. X (2015). "Production of Bio-Energy from Pig Manure: A Focus on the Dynamics Change of Four Parameters under Sunlight-Dark Conditions." Plos ONE 10(5).
D. J. Araujo, S. M. S. Rocha, M. C. Cammarota, A. M. F. Xavier andV. L. Cardoso. (2008). ANAEROBIC TREATMENT OF WASTEWATER FROM THE HOUSEHOLD AND PERSONAL PRODUCTS INDUSTRY IN A HYBRID BIOREACTOR. Brazilian Journal of Chemical Engineering, 25(03):443-51.
Gerrish, T., Ruikar, K., Cook, M., Johnson, M., Phillip, M., & Lowry, C. (2017). BIM application to building energy performance visualisation and management : Challenges and potential. Energy and Buildings, 144, 218-228.
Gourlis, G., & Kovacic, I. (2017). Building Information Modelling for analysis of energy efficient industrial buildings–A case study. Renewable and Sustainable Energy Reviews, 68, 953-963.
Guang Yang. & Jianlong Wang. (2017). Fermentative hydrogen production from sewage sludge. Journal Critical Reviews in Enironmental Science and Technology, 47(10):1219-1281
Gurgun, A. P., Polat, G., Damci, A., & Bayhan, H. G. (2016). Performance of LEED Energy Credit Requirements in European Countries. Procedia Engineering, 164, 432-438.
Huang, L. N., Zhou, H., Chen, Y. Q., Luo, S., Lan, C. Y., and Qu, L. H. 2002. Diversity and structure of the archaeal community in the leachate of a full-scale recirculating landfill as examined by direct 16S rRNA gene sequence retrieval. FEMS Microbiol. Lett. 214, 235-240.
Huang, K. T., Huang, W. P., Lin, T. P., & Hwang, R. L. (2015).Implementation of green building specification credits for better thermal conditions in naturally ventilated school buildings. Building and Environment, 86, 141-150.
Hussy, I., F. R. Hawkes, R. Dinsdale and D. L. Hawkes (2003). "Continuous fermentative hydrogen production from a wheat starch co-product by mixed microflora." Biotechnology And Bioengineering 84(6): 619-626.
IgliAski, B., R. Buczkowski, A. IgliAska, M. Cichosz, G. Piechota and W. Kujawski (2012). Agricultural biogas plants in Poland: Investment process, economical and environmental aspects, biogas potential. Renewable and Sustainable Energy Reviews(7): 4890.
Jeong, W., Kim, J. B., Clayton, M. J., Haberl, J. S., & Yan, W. (2016). A framework to integrate object-oriented physical modelling with building information modelling for building thermal simulation. Journal of Building Performance Simulation, 9(1), 50-69.
J. Everaerts (2008).THE USE OF UNMANNED AERIAL VEHICLES (UAVS) FOR REMOTE SENSING AND MAPPING. Remote Sensing and Earth Observation Processes Unit, Flemish Institute for Technological Research, Boeretang 200, BE-2400 Mol, Belgium
Kang, X.-R., G.-M. Zhang, L. Chen, W.-D. Tian and W.-Y. Dong (2011). Effect of Initial pH Adjustment on Hydrolysis and Acidification of Sludge by Ultrasonic Pretreatment.
Kim, S. K., Lee, S.-J., Kwon, H. J., & Ahn, M. (2015). Zero-energy home development in Korea: Energy-efficient and environmentally friendly design features and future directions. Housing and Society, 42(3), 222-238.
Krakat, N., S. Schmidt and P. Scherer (2011). "Potential impact of process parameters upon the bacterial diversity in the mesophilic anaerobic digestion of beet silage." Bioresource Technology 102: 5692-5701.
Lai, Q. and Z. Shao (2008). Pseudomonas xiamenensis sp nov., a denitrifying bacterium isolated from activated sludge.
Lee, J. B., Park, J. W., Yoon, J. H., Baek, N. C., & Shin, U. C. (2014). An empirical study of performance characteristics of BIPV (Building Integrated Photovoltaic) system for the realization of zero energy building. Energy, 66, 25-34.
Lin, T. W., C. M. Hong and G. H. Hsu. (1993). "Survey of the efficiency of the cases of three stage pig excrement treatment facilities." from https://www.tlri.gov.tw/book/MagRelease.asp.
Marszal, A. J., Heiselberg, P., Bourrelle, J. S., Musall, E., Voss, K., Sartori, I., & Napolitano, A. (2011). Zero Energy Building–A review of definitions and calculation methodologies. Energy and Buildings, 43(4), 971-979.
Mohamed Najib Sannaa(2004). The Development of Biogas Technology in Denmark: Achievements & Obstacles. Unpublished thesis, Department of Environment, Technology and Social Studies Roskilde University RUC, Denmark
Morrison, M. and J. Miron (2000). Adhesion to cellulose by Ruminococcus albus: A combination of cellulosomes and Pil-proteins? " FEMS Microbiology Letters, 185(2): 109-115.
Miller, J. A., 1996, Implementing Activity-Based Management in Daily OperationsFei, Z. Y., Isa, C. R.,2011. The Effect of Activity-Based Costing on Firms Performance, A Study Among Chinese Manufacturing Firms
Nguyen, A. T., Reiter, S., & Rigo, P. (2014). A review on simulation-based optimization methods applied to building performance analysis. Applied Energy, 113, 1043-1058.
Ng, T. S. K., Yau, R. M. H., Lam, T. N T., & Cheng, V. S. Y. (2016). Design and commission a zero-carbon building for hot and humid climate. International Journal of Low-Carbon Technologies, 11(2), 222-234.
Oren, Aharon (2014). "The Family Methanocorpusculaceae". The Prokaryotes. Springer. pp. 225–230. Retrieved 2016-07-31
Ramachandra, T. V., N. V. Joshi and D. K. Subramanian (2000). "Present and prospective role of bioenergy in regional energy system." Renewable and Sustainable Energy Reviews 4(4): 375-430.
Rasi, S., Veijanen, A., & Rintala, J. (2007). Trace compounds of biogas from different biogas production plants. Energy, 32(8), 1375-1380.
Ren, J., X. Yuan, J. Li, X. Ma, Y. Zhao, W. Zhu, X. Wang and Z. Cui (2014). "Performance and microbial community dynamics in a two-phase anaerobic co-digestion system using cassava dregs and pig manure." Bioresource Technology, 155: 342-351.
Sartori, I., Napolitano, A., & Voss, K. (2012). Net zero energy buildings: A consistent definition framework. Energy and Buildings, 48, 220-232.
Sajjakulnukit, B., R. Yingyuad, V. Maneekhao, V. Pongnarintasut, S. C. Bhattacharya and P. A. Salam (2005). "Assessment of sustainable energy potential of non-plantation biomass resources in Thailand." Biomass and Bioenergy (3): 214.
Schlueter, A., & Thesseling, F. (2009). Building information model based energy/exergy performance assessment in early design stages. Automation in Construction, 18(2), 153-163.
Speece, R. E. (1983). "Anaerobic biotechnology for industrial wastewater treatment." Environmental Science & Technology 17(9): 416A-427A.
Succar, B. (2009). Building information modelling framework: A research and delivery foundation for industry stakeholders. Automation in Construction, 18(3), 357-375.
Supaphol, S., S. N. Jenkins, P. Intomo, I. S. Waite and A. G. O’Donnell (2011). "Microbial community dynamics in mesophilic anaerobic co-digestion of mixed waste." Bioresource Technology. 102: 4021-4027.
Tsai, W. H, Kuo, L., 2004, Operating Costs and Capacity in the Turney, P. B. B. Common Cents: The ABC Performance Breakthrough, How To Succeed With Activity-Based Costing. Cost Technologywaste. Water. Res., 33(11),Biotechnol. Bioeng, 74
Vanotti, M. B., A. A. Szogi and C. A. Vives (2008). "Greenhouse gas emission reduction and environmental quality improvement from implementation of aerobic waste treatment systems in swine farms." Waste Management 28: 759-766.
Vysotskiy, A., Makarov, S., Zolotova, J., & Tuchkevich, E. (2015). Features of BIM Implementation Using Autodesk Software. Procedia Engineering, 117, 1143-1152.
Wells, L., Rismanchi, B., & Aye, L. (2018). A review of Net Zero Energy Buildings with reflections on the Australian context. Energy and Buildings, 158, 616-628.
Wong, J. K. W., & Zhou, J. (2015). Enhancing environmental sustainability over building life cycles through green BIM: A review. Automation in Construction, 57, 156-165.
Wu, L.-J., A. Higashimori, Y. Qin, T. Hojo, K. Kubota and Y.-Y. Li (2016). "Comparison of hyper-thermophilic–mesophilic two-stage with single-stage mesophilic anaerobic digestion of waste activated sludge: Process performance and microbial community analysis." Chemical Engineering Journal, 290: 290-301.
Zhu H., W. Parker, et al. (2008). Biohydrogen production by anaerobic co-digestionof municipal food waste and sewage sludges. International Journal of HydrogenEnergy, 33(14): 3651-3659.
Zwietering M. H., Jongenburger I., F. Rombouts M., K. van 't Riet. (1990).Modeling of the Bacterial Growth Curve. Applied and Environmental Microbiology. 56(6):1875-1881.

QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top
無相關期刊