跳到主要內容

臺灣博碩士論文加值系統

(18.97.14.82) 您好!臺灣時間:2025/01/17 06:36
字體大小: 字級放大   字級縮小   預設字形  
回查詢結果 :::

詳目顯示

我願授權國圖
: 
twitterline
研究生:楊宜恩
研究生(外文):YANG,YI-EN
論文名稱:具自銳性能研磨砂輪開發及其對晶圓片研磨效果之研究
論文名稱(外文):The Development of Diamond Grinding Wheels with Self-Dressed Properties and Their Impact on Grinding Effect of Wafers
指導教授:蔡宜壽蔡宜壽引用關係
指導教授(外文):TSAI,YI-SHOU
口試委員:廖世平楊國誠
口試委員(外文):LIAU,SHR-PINGYANG,GUO-CHENG
口試日期:2019-07-02
學位類別:碩士
校院名稱:逢甲大學
系所名稱:纖維與複合材料學系
學門:工程學門
學類:紡織工程學類
論文種類:學術論文
論文出版年:2019
畢業學年度:107
語文別:中文
論文頁數:117
中文關鍵詞:單晶矽晶圓碳化矽晶圓研磨砂輪自銳性能磨削比表面粗糙度
外文關鍵詞:Monocrystalline Silicon WaferSilicon Carbide WaferSelf-dressed PropertiesGrinding ratioSurface Roughness
相關次數:
  • 被引用被引用:0
  • 點閱點閱:407
  • 評分評分:
  • 下載下載:0
  • 收藏至我的研究室書目清單書目收藏:0
半導體產業中所使用之晶圓,已從第一代之單晶矽晶圓開發至第三代之寬禁帶半導體,碳化矽晶圓便是其中之一。在晶圓加工過程中,表面粗糙度控制非常重要,其關乎了後續電路蝕刻、沉積等製程之穩定性。由於碳化矽晶圓之莫氏硬度為9.5僅次於金剛石之莫氏硬度10.0,其表面減薄、拋光加工更是困難,也是目前業界亟須克服的問題。
本研究流程分為兩個部份,第一部份為陶瓷基研磨砂輪原料配比研究,並探討實驗室自製之中空玻璃次微米球作為造孔劑的影響,造孔劑的中空結構易受研磨力的作用而破裂,可提供空間來容納晶圓斷屑,而解決斷屑造成研磨砂輪的阻塞導致研磨砂輪自銳性能下降的問題。第二部份是研究樹脂基研磨砂輪原料配比與聚乙烯醇(PVA)及冰晶石作為填料的影響,由於PVA具有水溶性,當它與磨削冷卻水接觸時,可溶解於磨削冷卻水中,使磨粒較易脫落而完成磨粒自銳;另一方面,冰晶石與石墨一樣具備層狀結構,作為研磨砂輪填料可有效使研磨接觸面潤滑,降低多餘磨削熱與磨削力,並可降低晶圓因磨削熱所造成的氧化、磨削力所形成的晶格缺陷,而大幅提升研磨效率與研磨砂輪使用壽命。
實驗結果顯示,第一部份陶瓷基研磨砂輪所採用之造孔劑---中空玻璃次微米球會在研磨時破裂,但因其中空度僅28%,因此並無法如預期提供足夠空間來容納斷屑;且本研究中陶瓷基研磨砂輪之成形結構不如預期,熱壓成型之溫度與壓力都不足,導致陶瓷基結合劑無法使磨粒與填料黏合,燒結670 ℃後,結構仍過於鬆散,目前尚無法用於單晶矽晶圓與碳化矽晶圓之磨削實驗。第二部份樹脂基研磨砂輪方面,添加PVA與冰晶石後可有效降低研磨砂輪之磨削比,這意味著自銳性能提高;但冰晶石易使磨粒過於潤滑而無法對晶圓行有效的磨削作用。因此就單晶矽晶圓之表面粗糙度而言,本研究之最佳參數為:1.0 wt% PVA、不含冰晶石、輔助磨料為綠色碳化矽、進給速率30 μm/min之樣本,其研磨磨削比為14.6,表面粗糙度Ra可達1.446 ± 0.129 μm。
本研究成功開發出具研磨晶圓片能力之樹脂基研磨砂輪,初步完成對研磨效果與研磨砂輪自銳性能之評估,且這樣較低成本的製備方法,在工業應用上具備競爭力與前瞻性。在後續研究中,僅需改變並持續分析最佳製備參數,即可將本研究之成果成功拓展至實際應用領域。
Wafers used in the semiconductor industry have been developed from the first generation of Monocrystalline Silicon Wafers to the third generation of wide-bandgap semiconductors, and Silicon Carbide Wafers are one of them.Surface roughness control is very important during wafer processing, which is related to the stability of subsequent circuit etching, deposition and other processes. Since the hardness of the tantalum carbide wafer is second only to diamond (Mohs hardness 9.5), the surface thinning and polishing process are more difficult, and it is also an urgent problem in the industry.
The research process is divided into two parts: the first part is the proportioning and development of ceramic-based grinding wheel raw materials, and attempts to add laboratory-made hollow glass sub-microspheres as a pore-forming agent, using the hollow structure and the grinding force. The characteristics of rupture provide sufficient space for wafer chip breaking, which can easily cause the grinding wheel to block and prevent the self-sharp performance of the grinding wheel. The second part is the ratio and development of resin-based grinding wheel raw materials, and adding polyvinyl alcohol (PVA) and cryolite as fillers respectively, using PVA water-soluble and grinding cooling water to react, making the abrasive particles easier to fall off. Self-sharp; cryolite has the same layered structure as graphite. As a grinding wheel filler, it can effectively lubricate the grinding contact surface, take away more heat than grinding and reduce the grinding force, and reduce the thermal oxidation and grinding of the wafer due to grinding. The force forms a lattice defect, which greatly improves the grinding efficiency and the service life of the grinding wheel.
It is confirmed by experimental results that the hollow glass sub-micron sphere can be broken during grinding, but because of the hollowness of only 28%, it can not provide enough space for chipping; and the forming conditions of the ceramic-based grinding wheel are not good, and the temperature of the hot press forming is The pressure is insufficient, causing the ceramic-based bond to fail to bond the abrasive particles to the filler. After sintering (670 °C), the structure is still too loose to be used for the grinding experiments of s Monocrystalline Silicon Wafer and Silicon Carbide Wafers. In the case of resin-based grinding wheels, the addition of PVA and cryolite can effectively increase the self-sharpness of the grinding wheel and has no significant effect on the surface roughness of the wafer after grinding. Based on the above, the best parameters of this study are: 1.0 wt% PVA, no cryolite, auxiliary abrasive green silicon carbide, GB sample with process parameters of 30 μm/min, grinding and grinding ratio of 14.6, surface roughness Ra can reach 1.446 ± 0.129 μm.
In the future, in the same way, the powder raw material ratio of the resin-based grinding wheel and the ceramic-based grinding wheel can be continuously improved to obtain the best self-sharpening grinding wheel ratio; in terms of formability, the molding pressure can be changed and sintered or cured Temperature to make the grinding wheel structure more compact to meet industrial needs

第一章、前言 1
1.1 緒論 1
1.2 單晶矽晶圓與碳化矽晶圓 2
1.2.1 單晶矽晶圓 2
1.2.2 碳化矽晶圓 3
1.2.3 晶圓比較與磨削特性 4
1.3 晶圓製造與表面處理技術 6
1.3.1 機械研磨法 9
1.3.2 化學機械研磨法 9
1.4 研磨砂輪之構成與標示方法 10
1.4.1 研磨砂輪之規格簡述與標準化標示 11
1.5 酚醛樹脂 13
1.6 研究動機與目的 14

第二章、文獻回顧 15
2.1 研磨砂輪製備參數對研磨之影響 15
2.2 研磨工藝參數對研磨之影響 18

第三章、原理 23
3.1 研磨砂輪參數定義與研磨性能評定方式 23
3.1.1 研磨砂輪參數-磨粒濃度 23
3.1.2 研磨砂輪參數-研磨砂輪有效磨粒數 24
3.1.3 研磨性能評比 25
3.2 工程陶瓷的磨削物理模型 26
3.3 晶圓磨削的表面去除機制 27
3.4 磨削表面的形成機制 28
3.4.1 磨粒作用於工件作用力表徵 29
3.4.2 磨粒與工件磨削作用三階段 30
3.4.3 最大未變形切削厚度 32
3.4.4 磨削表面磨痕總述 35
3.5 影響磨削力之因素 36
3.6 工藝參數對磨削過程之影響 38
3.7 研磨砂輪自銳性能 40
3.8 表面粗糙度種類與定義 41

第四章、實驗 44
4.1 實驗材料 44
4.2 實驗儀器 49
4.3 分析設備 51
4.4 實驗流程 53
4.4.1 樹脂基研磨砂輪粉末製備流程 53
4.4.2 樹脂基研磨砂輪成型流程 55
4.4.3 陶瓷基研磨砂輪粉末製備流程 57
4.4.4 陶瓷基研磨砂輪製備流程 58
4.4.5 研磨測試與測試項目 60
4.5 分析方法 61
4.5.1 粒徑分析 61
4.5.2 示差掃描熱卡(DSC)分析 61
4.5.3 偏光顯微鏡分析 62
4.5.4 原子力顯微鏡(AFM)分析 62
4.5.5 掃描式電子顯微鏡(SEM)分析 63
4.5.6 場發射掃描式電子顯微鏡(FE-SEM)分析 63
4.5.7 表面形場量測(α-step)分析 64
4.5.8 化學分析電子能譜(ESCA)分析 64
4.5.9 X光繞射(XRD)分析 64
4.5.10 拉伸性能測試 65

第五章、結果與討論 66
5.1 原料與樣本基礎鑑定 66
5.1.1 酚醛樹脂之DSC分析 66
5.1.2 奈米單晶鑽石粉末之粒徑鑑定 68
5.1.3 磨料粉末之表面形貌分析 70
5.1.4 陶瓷基研磨砂輪造孔劑可行性評估與鑑定 71
5.2 陶瓷基研磨砂輪對單晶矽晶圓之研磨實驗 73
5.2.1陶瓷基研磨砂輪研磨實驗分析 73
5.3 樹脂基研磨砂輪對單晶矽晶圓之研磨測試 76
5.3.1 樹脂基研磨砂輪研磨實驗分析 76
5.3.2 不同輔助磨料對表面粗糙度與磨削比之影響 79
5.3.3 不同PVA含量對表面粗糙度與磨削比之影響 81
5.3.4 不同冰晶石含量對表面粗糙度與磨削比之影響 84
5.3.5 不同進給速率對表面粗糙度與磨削比之影響 87
5.3.6 單晶矽晶圓之晶型分析 91
5.3.7 樹脂基研磨砂輪各樣本之砂輪強度分析 95
5.3.8 樹脂基研磨砂輪研磨測試小結 97
5.4 樹脂基研磨砂輪對碳化矽晶圓之研磨實驗 98

第六章、結論 101

參考文獻103

[1]林明獻,矽晶圓半導體材料技術(2018),全華圖書股份有限公司,新北市,pp.1-5~1-7、pp.6-1~6-37。
[2]Peter Van Zant著、姜庭龍譯,半導體製程(2001),滄海書局,臺北市,pp.2、pp.14~16、pp.317~323。
[3]辛志杰等,超硬與難磨削材料加工技術實例(2013),化學工業出版社,北京市,pp.181~182、pp.196。
[4]齊人鵬、解文法,研磨技術(1992),中國砂輪公司,台北市,pp.3~10、pp.33~49。
[5]Katsumi Yamaguchi , Yuanqian Wei , Iwao Horaguchi , Development of diamond-like carbon fibre wheel(2004) , Precision Engineering , Japan.
[6]Elssner, G., Hoven, H., Kiessler, G., &Wellner, P.(1999).Ceramics and ceramic composites:materialographic preparation. New York:Elsevier.
[7]任敬心、康仁科、王西彬,難加工材料磨削技術(2011),電子工業出版社,pp.342~380、pp.288~293、pp.349。
[8]William F. Smith Javad Hashemi著、盧陽明譯,材料科學概論(2011),台灣東華書局,台北市,pp.528~530。
[9]丁嘉仁、翁志強、劉俊葳,碳化矽晶圓複合加工技術(2017),先進製造技術專輯414期,工研院機械所。
[10]Shang Gao , Han Huang , Xianglong Zhu , Renke Kang ,Surface integrity and removel mechanism of silicon wafers in chemo-mechanical grinding using a newly developed soft abrasive grinding wheel(2017) , Materials Science in Semiconductor Processing , pp.97~106.
[11]Young Suk Kim , Nobuhide Maeda , hideki Kitada , Koji Fujimoto , Shoichi Kodama , Akihito Kawai , Kazuhisa Arai , Kousuke Suzuki , Tomoji Nakamura , Takayuki Ohba , Advanced wafer thinning technology and feasibility test for 3D integration(2013) , Microelectronic Engineering , pp.65~71.
[12]PHILIP G. NEUDECK , Progress in Silicon Carbide Semiconductor Electronics Technology(1995) , Journal of Electronic Materials , pp.283~288.
[13]Tsunenobu Kimoto , Progress and Future Challenges of Silicon Carbide Devices for Integrated Circuits(2014) , Proceedings of the IEEE 2014 Custom integrated Circuits conference.
[14]M. Bhatnagar , B.J. Baliga , Comparison of 6H-SiC , 3C-SiC , and Si for power devices(1993) , IEEE Transactions on Electron Devices , pp.645~655.
[15]H. Karamitaheri , Thermal and Thermoelectric Properties of Nano structures(2013), Universität Wien Fakultät für Elektrotechnik und Informationstechnik Grades eines Doktors der technischen Wissenschaften Dissertation.
[16]維基百科。碳化矽。上網日期:2019年04月10日。檢自https://zh.wikipedia.org/wiki/%E7%A2%B3%E5%8C%96%E7%A1%85
[17]Jiwang Yan , Zhiyu Zhang , Tsunemoto Kuriyagawa , Mechanism for Material Removal in Diamond Turning of Reaction-Bonded Silicon Carbide(2009) , International Journal of Machine Tools & Manufacture , pp.366~374.
[18]黃弘毅、楊宏智,矽晶圓超精密輪磨之研究(2003),國立台灣大學機械工程學研究所碩士學位論文,台北,pp.3~12。
[19]Albin Matavz , József Mursics , Ivan Anzel , Tina Zagar , The Influence of External Conditions on the Mechanical Properties of Resin-bonded Grinding Wheels(2018) , Journal of Mechanical Engineering , pp.453~464.
[20]FENGWEI HUO , HONGHAO ZHAO , DONGJIE ZHAO , Nanogrinding of Silicon Wafer Using a Novel Vitrified Diamond Wheel , Materials and Manufacture Processes(2011) , pp.977~981.
[21]楊榮川,機械工程手冊4:非金屬材料(2002),五南圖書出版股份有限公司,台北市,第8、9與第10章。
[22]洪敏雄、王木琴,非金屬材料(1987),復文書局,台南市,pp.261~272。
[23]林俊德、李訓清,Novolac熱塑性酚醛樹脂的製備及應用在研磨工具材料的特性研究(2009),萬能科技大學材料科技研究所碩士學位論文,pp.1~20。
[24]J.A. Brydson , 23-Phenolic Resins(1999) , Plastics Materials(Seventh Edition) , pp.635~667.
[25]A.Pizzi , C.C lbeh , 2-Phenol-Formaldehydes(2014) , Handbook of Thermoset Plastics(Third Edition) , pp.13~44.
[26]Hongxiu Zhou , Miao Guo , Xinze Wang , Ultraprecision grinding of silicon wafers using a newly developed diamond wheel(2017) , Materials Science in Semiconductor Processing , pp
[27]C.C Wang , F.L. Zhang , J.S. Pan , J.B. Mao , Y. Long , H.P Huang , An experimental study on preparation of vitrified bond diamond grinding wheel with hollow spherical corumdum granules as pore former(2017) , pp.595~604.
[28]Shang Gao , Ren-Ke Kang , Zhi-Gang Dong , Bi Zhang , Zi-Guang Wang , Surface integrity and removal mechanism in grinding sapphire wafers with novel vitrified bond diamond plates(2017) , Materials and Manufacturing Processes , pp.121~126.
[29]Shang Gao , Han Huang , Xianglong Zhu , Renke Kang , Surface integrity and removal mechanism of silicon wafers in chemo-mechanical grinding using a newly developed soft abrasive grinding wheel(2017) , Materials Science in Semiconductor Processing , pp.97~106.
[30]Guang Feng , Qiuzu Liu , Wenliang Guo , Yupeng Xin , Qunlong Liang , Experimental investigations on nanogrinding of RB-SiC wafers(2018) , Materials and Manufacturing Processes , pp.1~6.
[31]FengWei Huo , HongHao Zhao , DongJie ZHAO , Nanogrinding of Silicon Wafer Using a Novel Vitrified Diamond Wheel(2011) , Materials and Manufacturing Processes , pp.977~981.
[32]Jisheng Pan , Xiaowei Zhang , Qiusheng Yan , Shenkai Chen , Experimental study of surface performance of monocrystalline 6H-SiC substrates in plane grinding with a metal-bonded diamond wheel(2017) , The International Journal of Advanced Manufacturing Technology , pp.619~627.
[33]Sanjay Agarwal , P. Venkateswara Rao , Grinding characteristics , material removal and damage formation mechanisms in high removal rate grinding of silicon carbide(2010) , International Journal of Machine Tools & Manufacture , pp.1077~1087.
[34]Zhenyu Zhang , Fengwei Huo , Yueqin Wu , Han Huang , Grinding of silicon wafers using an ultrafine diamond wheel of a hybrid bond material(2011) , International Journal of Machine Tools & Manufacture ,pp.18~24.
[35]E. Ihara , Metal-coated abrasives , grinding wheel using metal-coated abrasives and method of producing metal-coated abrasives(2005) , US Patent 20050129975
[36]Jae-Seob Kwak , Man-Kyung Ha , Evalution of Wheel Life by Grinding Ratio and Static Force(2002) , Journal of Mechaniscal Science and Technology , pp.1072~1077.
[37]J Paulo Davim , Modern Machining Technology 1st Edition(2011) , Woodhead Publishing , pp.227.
[38]潘立、謝偉東,陶瓷材料磨削加工的技術研究與發展現狀(2003),機械公報第30卷第6期,pp.4~11.
[39]M. Huerta , S. Malkin , Grinding of Glass: The Mechanics of the Process(1976) , Journal of Engineering for Industry , pp.459~473.
[40]G. Warnecke , U. Zitt , Kinematic Simulation for Analzing and Predicting High-Performance Grinding Processes(1998) , CIRP Annals – Manufacturing Technology , pp.265~270.
[41]Zhipeng Li , Feihu Zhang , Xichun Luo , Xiaoguang Guo , Yukui Cai , Wenlong Chang , Jining Sun , A New Grinding Force Model for Micro Grinding RB-SiC Ceramic with Grinding Wheel Topography as an Input(2018) , MDPI micromachines 2018.09.368.
[42]Zhenyu Zhang , Liangchao Guo , Junfeng Cui , Renke Kang , Dongming Guo , Nanoscale solely amorphous layer in silicon wafers induced by a newly developed diamond wheel(2016) , SCIENTIFIC REPORTS , pp.1~7.
[43]Sanjay Agarwal , P. Venkateswara Rao , Predictive modeling of force and power based on a new analytical undeformed chip thickness model in ceramic grinding(2013) , International Journal of Machine Tools & Manufacture , pp.68~78.
[44]Sanjay Agarwal , P.Venkateswara Rao , Predictive modeling of undeformed chip thickness in ceramic grinding(2012) , International Journal of Machine Tools & Manufacture , pp.59~68.
[45]閆艷燕、王潤興、照波,金剛石飛切單晶矽的切削力模型及試驗研究(2016),中國機械工程學報第27卷第4期,pp.507~512.
[46]Takao ABE , Edgar F. Steigmeier , Walter Hagleitner , Allan J. Pidduck , Microroughness Measurements on Polished Silicon Wafers(1992) , The Japan Society of Applied Physics , pp.721~728.
[47]C. Teichert , J.F. MacKay, D.E. Savage , M.G. Lagally , M.Brohl , Comparison of surface roughness of polished silicon wafers measured by light scattering topography , softxray scattering and atomicforce microscopy(1995) , Applied Physics Letters , pp.2345~2348.
[48]Young Suk Kim , Nobuhide Maeda , Hideki Kitada , Koji Fujimoto , Shoichi Kodama , Takayuki Ohba , Advanced wafer thinning technology and feasibility test for 3D integration(2013), Microelectronic Engineering , pp.65~71.
[49]俞漢清,表面粗糙度標準及應用(1997),中國計量出版社,北京,pp.38-pp.40。
[50]研磨砂輪自銳性能,Tokyo Diamond網站,https://www.tokyodiamond.com/english/casestudy/case1-2/,上網日期:2019年,5月1日。
[51]陳力瑋、蔡宜壽,以溶膠凝膠法製備二氧化矽中空次微米球及其複合薄膜功能性之研究(2018),逢甲大學纖維與複合材料學系碩士論文。
[52]I. Iiev , H. Yordanova , P. Petrenko , P. Novakov , Reaction of Phenol-Formaldehyde Novolac Resin And Hexamethylenetetramine in OH-Containing Solvents as Medium(2006) , Journal of the University of Chemical Technology and Metallurgy , pp.26~34.
[53]許樹恩、吳泰伯,X光繞射原理與材料結構分析(1993),行政院國家科學委員會精密儀器發展中心,pp.219~223。
[54]Peter Zaumseil , High resolution characterization of the forbidden Si 200 and Si 222 reflections(2015) , Applied Crystallography , pp.528~532.





電子全文 電子全文(本篇電子全文限研究生所屬學校校內系統及IP範圍內開放)
QRCODE
 
 
 
 
 
                                                                                                                                                                                                                                                                                                                                                                                                               
第一頁 上一頁 下一頁 最後一頁 top